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Abstract. Solomonoff’s uncomputable universal prediction scheme ξ al-
lows to predict the next symbol xk of a sequence x1...xk−1 for any Turing
computable, but otherwise unknown, probabilistic environment µ. This
scheme will be generalized to arbitrary environmental classes, which,
among others, allows the construction of computable universal prediction
schemes ξ. Convergence of ξ to µ in a conditional mean squared sense
and with µ probability 1 is proven. It is shown that the average number
of prediction errors made by the universal ξ scheme rapidly converges
to those made by the best possible informed µ scheme. The schemes,
theorems and proofs are given for general finite alphabet, which results
in additional complications as compared to the binary case. Several ex-
tensions of the presented theory and results are outlined. They include
general loss functions and bounds, games of chance, infinite alphabet,
partial and delayed prediction, classification, and more active systems.

1 Introduction

The Bayesian framework is ideally suited for studying induction problems. The
probability of observing xk at time k, given past observations x1...xk−1, can
be computed with Bayes’ rule if the generating probability distribution µ, from
which sequences x1x2x3... are drawn, is known. The problem, however, is that in
many cases one does not even have a reasonable estimate of the true generating
distribution. What is the true probability of weather sequences or stock charts?
In order to overcome this problem we define a universal distribution ξ as a
weighted sum of distributions µi ∈ M , where M is any finite or countable set
of distributions including µ. This is a generalization of Solomonoff induction,
in which M is the set of all enumerable semi-measures [Sol64,Sol78]. We show
that using the universal ξ as a prior is nearly as good as using the unknown
generating distribution µ. In a sense, this solves the problem, that the generating
distribution µ is not known, in a universal way. All results are obtained for
general finite alphabet. Convergence of ξ to µ in a conditional mean squared
sense and with µ probability 1 is proven. The number of errors EΘξ

made by the
universal prediction scheme Θξ based on ξ minus the number of errors EΘµ
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the optimal informed prediction scheme Θµ based on µ is proven to be bounded
by O(

√
EΘµ

).
Extensions to arbitrary loss functions, games of chance, infinite alphabet,

partial and delayed prediction, classification, and more active systems are dis-
cussed (Section 5). The main new results are a generalization of the universal
probability ξ [Sol64] to arbitrary probability classes and weights (Section 2),
a generalization of the convergence [Sol78] ξ → µ (Section 3) and the error
bounds [Hut99] to arbitrary alphabet (Section 4). The non-binary setting causes
substantial additional complications. Non-binary prediction cannot be (easily)
reduced to the binary case. One may have in mind a binary coding of the symbols
xk in the sequence x1x2.... But this makes it necessary to predict a block of bits
xk, before receiving the true block of bits xk, which differs from the bit-by-bit
prediction considered in [Sol78,LV97,Hut99].

For an excellent introduction to Kolmogorov complexity and Solomonoff in-
duction one should consult the book of Li and Vitányi [LV97] or the article
[LV92] for a short course. Historical surveys of inductive reasoning and inference
can be found in [AS83,Sol97].

2 Setup

2.1 Strings and Probability Distributions

We denote strings over a finite alphabet A by x1x2...xn with xk ∈A. We further
use the abbreviations xn:m := xnxn+1...xm−1xm and x<n := x1...xn−1. We
use Greek letters for probability distributions and underline their arguments to
indicate that they are probability arguments. Let ρ(x1...xn) be the probability
that an (infinite) sequence starts with x1...xn:

∑
x1:n∈An

ρ(x1:n) = 1,
∑

xn∈A
ρ(x1:n) = ρ(x<n), ρ(ε) = 1. (1)

We also need conditional probabilities derived from Bayes’ rule. We prefer a
notation which preserves the order of the words, in contrast to the standard
notation ρ(·|·) which flips it. We extend the definition of ρ to the conditional
case with the following convention for its arguments: An underlined argument
xk is a probability variable and other non-underlined arguments xk represent
conditions. With this convention, Bayes’ rule has the following look:

ρ(x<nxn) = ρ(x1:n)/ρ(x<n) , ρ(x1...xn) = ρ(x1)·ρ(x1x2)·...·ρ(x1...xn−1xn).
(2)

The first equation states that the probability that a string x1...xn−1 is followed
by xn is equal to the probability that a string starts with x1...xn divided by the
probability that a string starts with x1...xn−1. The second equation is the first,
applied n times.
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2.2 Universal Prior Probability Distribution

Most inductive inference problem can be brought into the following form: Given
a string x<k, take a guess at its continuation xk. We will assume that the strings
which have to be continued are drawn from a probability1 distribution µ. The
maximal prior information a prediction algorithm can possess is the exact knowl-
edge of µ, but in many cases the generating distribution is not known. Instead,
the prediction is based on a guess ρ of µ. We expect that a predictor based on ρ
performs well, if ρ is close to µ or converges, in a sense, to µ. Let M :={µ1, µ2, ...}
be a finite or countable set of candidate probability distributions on strings. We
define a weighted average on M

ξ(x1:n) :=
∑

µi∈M

wµi
·µi(x1:n),

∑
µi∈M

wµi
= 1, wµi

> 0. (3)

It is easy to see that ξ is a probability distribution as the weights wµi are positive
and normalized to 1 and the µi ∈ M are probabilities. For finite M a possible
choice for the w is to give all µi equal weight (wµi

= 1
|M | ). We call ξ universal

relative to M , as it multiplicatively dominates all distributions in M

ξ(x1:n) ≥ wµi
·µi(x1:n) for all µi ∈ M. (4)

In the following, we assume that M is known and contains2 the true generating
distribution, i.e. µ ∈ M . We will see that this is not a serious constraint as
we can always chose M to be sufficiently large. In the next section we show
the important property of ξ converging to the generating distribution µ in a
sense and, hence, might being a useful substitute for the true generating, but in
general, unknown distribution µ.

2.3 Probability Classes

We get a rather wide class M if we include all computable probability distribu-
tions in M . In this case, the assumption µ∈M is very weak, as it only assumes
that the strings are drawn from any computable distribution; and all valid phys-
ical theories (and, hence, all environments) are computable (in a probabilistic
sense).

We will see that it is favorable to assign high weights wµi to the µi. Sim-
plicity should be favored over complexity, according to Occam’s razor. In our
context this means that a high weight should be assigned to simple µi. The
prefix Kolmogorov complexity K(µi) is a universal complexity measure [Kol65,

1 This includes deterministic environments, in which case the probability distribution
µ is 1 for some sequence x1:∞ and 0 for all others. We call probability distributions
of this kind deterministic.

2 Actually all theorems remain valid for µ being a finite linear combination of µi ∈
L ⊆ M and wµ := minµi∈L wµi [Hut01].
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ZL70,LV97]. It is defined as the length of the shortest self-delimiting program
(on a universal Turing machine) computing µi(x1:n) given x1:n. If we define

wµi
:=

1
Ω

2−K(µi) , Ω :=
∑

µi∈M

2−K(µi)

then, distributions which can be calculated by short programs, have high weights.
Besides ensuring correct normalization, Ω (sometimes called the number of wis-
dom) has interesting properties in itself [Cal98,Cha91]. If we enlarge M to in-
clude all enumerable semi-measures, we attain Solomonoff’s universal probabil-
ity, apart from normalization, which has to be treated differently in this case
[Sol64,Sol78]. Recently, M has been further enlarged to include all cumulatively
enumerable semi-measures [Sch00]. In all cases, ξ is not finitely computable, but
can still be approximated to arbitrary but not pre-specifiable precision. If we
consider all approximable (i.e. asymptotically computable) distributions, then
the universal distribution ξ, although still well defined, is not even approximable
[Sch00]. An interesting and quickly approximable distribution is the Speed prior
S defined in [Sch00]. It is related to Levin complexity and Levin search [Lev73,
Lev84], but it is unclear for now which distributions are dominated by S. If one
considers only finite-state automata instead of general Turing machines, one can
attain a quickly computable, universal finite-state prediction scheme related to
that of Feder et al. [FMG92], which itself is related to the famous Lempel-Ziv
data compression algorithm. If one has extra knowledge on the source generating
the sequence, one might further reduce M and increase w. A detailed analysis
of these and other specific classes M will be given elsewhere. Note that ξ∈M in
the enumerable and cumulatively enumerable case, but ξ 6∈M in the computable,
approximable and finite-state case. If ξ is itself in M , it is called a universal el-
ement of M [LV97]. As we do not need this property here, M may be any finite
or countable set of distributions. In the following we consider generic M and w.

3 Convergence

3.1 Upper Bound for the Relative Entropy

Let us define the relative entropy (also called Kullback Leibler divergence
[Kul59]) between µ and ξ:

hk(x<k) :=
∑

xk∈A
µ(x<kxk) ln

µ(x<kxk)
ξ(x<kxk)

. (5)

Hn is then defined as the sum-expectation, for which the following upper bound
can be shown

Hn :=
n∑

k=1

∑
x<k∈Ak−1

µ(x<k)·hk(x<k) =
n∑

k=1

∑
x1:k∈Ak

µ(x1:k) ln
µ(x<kxk)
ξ(x<kxk)

= (6)
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=
∑
x1:n

µ(x1:n) ln
n∏

k=1

µ(x<kxk)
ξ(x<kxk)

=
∑
x1:n

µ(x1:n) ln
µ(x1:n)
ξ(x1:n)

≤ ln
1

wµ
=: dµ

In the first line we have inserted (5) and used Bayes’ rule µ(x<k) ·µ(x<kxk) =
µ(x1:k). Due to (1), we can further replace

∑
x1:k

µ(x1:k) by
∑

x1:n
µ(x1:n) as

the argument of the logarithm is independent of xk+1:n. The k sum can now be
exchanged with the x1:n sum and transforms to a product inside the logarithm.
In the last equality we have used the second form of Bayes’ rule (2) for µ and
ξ. Using universality (4) of ξ, i.e. lnµ(x1:n)/ξ(x1:n)≤ ln 1

wµ
for µ∈M yields the

final inequality in (6). The proof given here is simplified version of those given
in [Sol78] and [LV97].

3.2 Lower Bound for the Relative Entropy

We need the following inequality to lower bound Hn

N∑
i=1

(yi−zi)2 ≤
N∑

i=1

yi ln
yi

zi
for yi ≥ 0, zi ≥ 0,

N∑
i=1

yi = 1 =
N∑

i=1

zi. (7)

The proof of the case N =2

2(y−z)2 ≤ y ln
y

z
+ (1−y) ln

1−y

1−z
, 0 < y < 1, 0 < z < 1 (8)

will not be repeated here, as it is elementary and well known [LV97]. The proof
of (7) is one point where the generalization from binary to arbitrary alphabet is
not trivial.3 We will reduce the general case N >2 to the case N =2. We do this
by a partition {1, ..., N} = G+ ∪ G−, G+ ∩ G− = {}, and define y± :=

∑
i∈G±

yi

and z± :=
∑

i∈G±
zi. It is well known that the relative entropy is positive, i.e.

∑
i∈G±

pi ln
pi

qi
≥ 0 for pi ≥ 0, qi ≥ 0,

∑
i∈G±

pi = 1 =
∑

i∈G±
qi. (9)

Note that there are 4 probability distributions (pi and qi for i ∈ G+ and i ∈
G−). For i ∈ G±, pi := yi/y± and qi := zi/z± satisfy the conditions on p and
q. Inserting this into (9) and rearranging the terms we get

∑
i∈G± yi ln yi

zi
≥

y± ln y±

z± . If we sum this over ± and define y ≡ y+ = 1−y− and z ≡ z+ = 1−z−

we get
N∑

i=1

yi ln
yi

zi
≥

∑
±

y± ln
y±

z± = y ln
y

z
+ (1−y) ln

1−y

1−z
. (10)

3 We will not explicate every subtlety and only sketch the proofs. Subtleties regarding
y, z = 0/1 have been checked but will be passed over. 0 ln 0

zi
:= 0 even for zi = 0.

Positive means ≥ 0.
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For the special choice G± :={i : yi
>
≤zi}, we can upper bound the quadratic term

by
∑

i∈G±
(yi−zi)2 ≤

( ∑
i∈G±

|yi−zi|
)2

=
( ∑

i∈G±
yi−zi

)2
= (y±−z±)2.

The first equality is true, since all yi−zi are positive/negative for i∈G± due to
the special choice of G±. Summation over ± gives

N∑
i=1

(yi−zi)2 ≤
∑
±

(y±−z±)2 = 2(y−z)2 (11)

Chaining the inequalities (11), (8) and (10) proves (7). If we identify

A = {1, ..., N}, N = |A|, i = xk, yi = µ(x<kxk), zi = ξ(x<kxk) (12)

multiply both sides of (7) with µ(x<k) and take the sum over x<k and k we get

n∑
k=1

∑
x1:k

µ(x<k)
(
µ(x<kxk) − ξ(x<kxk)

)2
≤

n∑
k=1

∑
x1:k

µ(x1:k) ln
µ(x<kxk)
ξ(x<kxk)

. (13)

3.3 Convergence of ξ to µ

The upper (6) and lower (13) bounds on Hn allow us to prove the convergence
of ξ to µ in a conditional mean squared sense and with µ probability 1.

Theorem 1 (Convergence). Let there be sequences x1x2... over a finite al-
phabet A drawn with probability µ(x1:n) for the first n symbols. The universal
conditional probability ξ(x<kxk) of the next symbol xk given x<k is related to
the generating conditional probability µ(x<kxk) in the following way:

i)
n∑

k=1

∑
x1:k

µ(x<k)
(
µ(x<kxk) − ξ(x<kxk)

)2
≤ Hn ≤ dµ = ln

1
wµ

< ∞

ii) ξ(x<kxk) → µ(x<kxk) for k → ∞ with µ probability 1

where Hn is the relative entropy (6), and wµ is the weight (3) of µ in ξ.

(i) follows from (6) and (13). For n → ∞ the l.h.s. of (i) is an infinite k-
sum over positive arguments, which is bounded by the finite constant dµ on
the r.h.s. Hence the arguments must converge to zero for k → ∞. Since the
arguments are µ expectations of the squared difference of ξ and µ, this means
that ξ(x<kxk) converges to µ(x<kxk) with µ probability 1 or, more stringent, in
a mean square sense. This proves (ii). The reason for the astonishing property
of a single (universal) function ξ to converge to any µi ∈ M lies in the fact
that the sets of µ-random sequences differ for different µ. Since the conditional
probabilities are the basis of all prediction algorithms considered in this work,
we expect a good prediction performance if we use ξ as a guess of µ. Performance
measures are defined in the following sections.
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4 Error Bounds

We now consider the following measure for the quality of a prediction: making a
wrong prediction counts as one error, making a correct prediction counts as no
error.

4.1 Total Expected Numbers of Errors

Let Θµ be the optimal prediction scheme when the strings are drawn from the
probability distribution µ, i.e. the probability of xk given x<k is µ(x<kxk), and
µ is known. Θµ predicts (by definition) x

Θµ

k when observing x<k. The prediction
is erroneous if the true kth symbol is not x

Θµ

k . The probability of this event is
1 − µ(x<kx

Θµ

k ). It is minimized if x
Θµ

k maximizes µ(x<kx
Θµ

k ). More generally,
let Θρ be a prediction scheme predicting x

Θρ

k := maxargxk
ρ(x<kxk) for some

distribution ρ. Every deterministic predictor can be interpreted as maximizing
some distribution. The µ probability of making a wrong prediction for the kth

symbol and the total µ-expected number of errors in the first n predictions of
predictor Θρ are

ekΘρ(x<k) := 1−µ(x<kx
Θρ

k ) , EnΘρ :=
n∑

k=1

∑
x1...xk−1

µ(x<k)·ekΘρ(x<k). (14)

If µ is known, Θµ is obviously the best prediction scheme in the sense of making
the least number of expected errors

EnΘµ ≤ EnΘρ for any Θρ, (15)

since ekΘµ(x<k)=1−µ(x<kx
Θµ

k )=min
xk

(1−µ(x<kxk))≤1−µ(x<kx
Θρ

k )=ekΘρ(x<k)

for any ρ.

4.2 Error Bound

Of special interest is the universal predictor Θξ. As ξ converges to µ the predic-
tion of Θξ might converge to the prediction of the optimal Θµ. Hence, Θξ may
not make many more errors than Θµ and, hence, any other predictor Θρ. Note
that x

Θρ

k is a discontinuous function of ρ and x
Θξ

k → x
Θµ

k can not be proved
from ξ → µ. Indeed, this problem occurs in related prediction schemes, where
the predictor has to be regularized so that it is continuous [FMG92]. Fortunately
this is not necessary here. We prove the following error bound.

Theorem 2 (Error bound). Let there be sequences x1x2... over a finite al-
phabet A drawn with probability µ(x1:n) for the first n symbols. The Θρ-system
predicts by definition x

Θρ
n ∈A from x<n, where x

Θρ
n maximizes ρ(x<nxn). Θξ is

the universal prediction scheme based on the universal prior ξ. Θµ is the optimal
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informed prediction scheme. The total µ-expected number of prediction errors
EnΘξ

and EnΘµ
of Θξ and Θµ as defined in (14) are bounded in the following

way

0 ≤ EnΘξ
− EnΘµ ≤ Hn +

√
4EnΘµHn + H2

n ≤ 2Hn + 2
√

EnΘµHn

where Hn ≤ ln 1
wµ

is the relative entropy (6), and wµ is the weight (3) of µ in ξ.

First, we observe that the number of errors E∞Θξ
of the universal Θξ predic-

tor is finite if the number of errors E∞Θµ
of the informed Θµ predictor is finite.

This is especially the case for deterministic µ, as EnΘµ
≡ 0 in this case4, i.e.

Θξ makes only a finite number of errors on deterministic environments. More
precisely, E∞Θξ

≤ 2H∞ ≤ 2 ln 1
wµ

. A combinatoric argument shows that there
are M and µ ∈ M with E∞Θξ

≥ log2 |M |. This shows that the upper bound
E∞Θξ

≤2 ln |M | for uniform w must be rather tight. For more complicated prob-
abilistic environments, where even the ideal informed system makes an infinite
number of errors, the theorem ensures that the error excess EnΘξ

−EnΘµ
is only

of order
√

EnΘµ
. The excess is quantified in terms of the information content

Hn of µ (relative to ξ), or the weight wµ of µ in ξ. This ensures that the error
densities En/n of both systems converge to each other. Actually, the theorem
ensures more, namely that the quotient converges to 1, and also gives the speed
of convergence EnΘξ

/EnΘµ
= 1 + O(E−1/2

nΘµ
) −→ 1 for EnΘµ

→ ∞.

4.3 Proof of Theorem 2

The first inequality in Theorem 2 has already been proved (15). The last inequal-
ity is a simple triangle inequality. For the second inequality, let us start more
modestly and try to find constants A and B that satisfy the linear inequality

EnΘξ
≤ (A + 1)EnΘµ + (B + 1)Hn. (16)

If we could show

ekΘξ
(x<k) ≤ (A + 1)ekΘµ

(x<k) + (B + 1)hk(x<k) (17)

for all k ≤ n and all x<k, (16) would follow immediately by summation and
the definition of En and Hn. With the abbreviations (12) and the abbreviations
m = x

Θµ

k and s = x
Θξ

k the various error functions can then be expressed by
ekΘξ

= 1−ys, ekΘµ
= 1−ym and hk =

∑
i yi ln yi

zi
. Inserting this into (17) we get

1−ys ≤ (A+1)(1−ym) + (B+1)
N∑

i=1

yi ln
yi

zi
. (18)

4 Remember that we named a probability distribution deterministic if it is 1 for exactly
one sequence and 0 for all others.
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By definition of x
Θµ

k and x
Θξ

k we have ym ≥ yi and zs ≥ zi for all i. We prove a
sequence of inequalities which show that

(B+1)
N∑

i=1

yi ln
yi

zi
+ (A+1)(1−ym) − (1−ys) ≥ ... (19)

is positive for suitable A ≥ 0 and B ≥ 0, which proves (18). For m = s (19)
is obviously positive since the relative entropy is positive (hk ≥ 0). So we will
assume m 6=s in the following. We replace the relative entropy by the sum over
squares (7) and further keep only contributions from i=m and i=s.

... ≥ (B+1)[(ym−zm)2 + (ys−zs)2] + (A+1)(1−ym) − (1−ys) ≥ ...

By definition of y, z, m and s we have the constraints ym+ys ≤ 1, zm+zs ≤ 1,
ym ≥ys ≥0 and zs ≥zm ≥0. From the latter two it is easy to see that the square
terms (as a function of zm and zs) are minimized by zm = zs = 1

2 (ym + ys).
Furthermore, we define x :=ym−ys and eliminate ys.

... ≥ (B+1) 1
2x2 + A(1−ym) − x ≥ ... (20)

The constraint on ym+ys ≤1 translates into ym ≤ x+1
2 , hence (20) is minimized

by ym = x+1
2 .

... ≥ 1
2 [(B+1)x2 − (A+2)x + A] ≥ ... (21)

(21) is quadratic in x and minimized by x∗ = A+2
2(B+1) . Inserting x∗ gives

... ≥ 4AB − A2 − 4
8(B + 1)

≥ 0 for B ≥ 1
4A + 1

A , A > 0, (⇒ B ≥ 1). (22)

Inequality (16) therefore holds for any A > 0, provided we insert B = 1
4A + 1

A .
Thus we might minimize the r.h.s. of (16) w.r.t. A leading to the upper bound

EnΘξ
≤ EnΘµ + Hn +

√
4EnµHn + H2

n for A2 =
Hn

EnΘµ + 1
4Hn

which completes the proof of Theorem 2 ut.

5 Generalizations

In the following we discuss several directions in which the findings of this work
may be extended.

5.1 General Loss Function

A prediction is very often the basis for some decision. The decision results in an
action, which itself leads to some reward or loss. To stay in the framework of
(passive) prediction we have to assume that the action itself does not influence
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the environment. Let lkxkyk
(x<k)∈ [lmin, lmin+l∆] be the received loss when taking

action yk ∈Y and xk ∈A is the kth symbol of the sequence. For instance, if we
make a sequence of weather forecasts A={sunny, rainy} and base our decision,
whether to take an umbrella or wear sunglasses Y = {umbrella, sunglasses} on
it, the action of taking the umbrella or wearing sunglasses does not influence the
future weather (ignoring the butterfly effect). The error assignment of section
4 falls into this class. The action was just a prediction (Y =A) and a unit loss
was assigned to an erroneous prediction (lxkyk

=1 for xk 6= yk) and no loss to a
correct prediction (lxkxk

=0). In general, a Λρ action/prediction scheme y
Λρ

k :=
minargyk

∑
xk

ρ(x<kxk)lxkyk
can be defined that minimizes the ρ-expected loss.

Λξ is the universal scheme based on the universal prior ξ. Λµ is the optimal
informed scheme. In [Hut01] it is proven that the total µ-expected losses LnΛξ

and LnΛµ
of Λξ and Λµ are bounded in the following way: 0 ≤ LnΛξ

−LnΛµ
≤

l∆Hn +
√

4(LnΛµ
−nlmin)l∆Hn + l2∆H2

n. The loss bound has a similar form as
the error bound of Theorem 2, but the proof is much more evolved.

5.2 Games of Chance

The general loss bound stated in the previous subsection can be used to estimate
the time needed to reach the winning threshold in a game of chance (defined as a
sequence of bets, observations and rewards). In step k we bet, depending on the
history x<k, a certain amount of money sk, take some action yk, observe outcome
xk, and receive reward rk. Our profit, which we want to maximize, is pk =rk−sk ∈
[pmax−p∆, pmax]. The loss, which we want to minimize, can be identified with the
negative profit, lxkyk

=−pk. The Λρ-system acts as to maximize the ρ-expected
profit. Let p̄nΛρ

be the average expected profit of the first n rounds. One can
show that the average profit of the Λξ system converges to the best possible
average profit p̄nΛµ achieved by the Λµ scheme (p̄nΛξ

−p̄nΛµ =O(n−1/2) → 0 for
n → ∞). If there is a profitable scheme at all, then asymptotically the universal
Λξ scheme will also become profitable with the same average profit. In [Hut01]
it is further shown that ( 2p∆

p̄nΛµ
)2 ·dµ is an upper bound for the number of bets

n needed to reach the winning zone. The bound is proportional to the relative
entropy of µ and ξ.

5.3 Infinite Alphabet

In many cases the basic prediction unit is not a letter, but a number (for inducing
number sequences), or a word (for completing sentences), or a real number or
vector (for physical measurements). The prediction may either be generalized
to a block by block prediction of symbols or, more suitably, the finite alphabet
A could be generalized to countable (numbers, words) or continuous (real or
vector) alphabet. The theorems should generalize to countably infinite alphabets
by appropriately taking the limit |A| → ∞ and to continuous alphabets by a
denseness or separability argument.
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5.4 Partial Prediction, Delayed Prediction, Classification

The Λρ schemes may also be used for partial prediction where, for instance, only
every mth symbol is predicted. This can be arranged by setting the loss lk to zero
when no prediction is made, e.g. if k is not a multiple of m. Classification could
be interpreted as partial sequence prediction, where x(k−1)m+1:km−1 is classified
as xkm. There are better ways for classification by treating x(k−1)m+1:km−1 as
pure conditions in ξ, as has been done in [Hut00] in a more general context. An-
other possibility is to generalize the prediction schemes and theorems to delayed
sequence prediction, where the true symbol xk is given only in cycle k+d. A
delayed feedback is common in many practical problems.

5.5 More Active Systems

Prediction means guessing the future, but not influencing it. A tiny step in the
direction to more active systems, described in subsection 5.1, was to allow the
Λ system to act and to receive a loss lxkyk

depending on the action yk and the
outcome xk. The probability µ is still independent of the action, and the loss
function lk has to be known in advance. This ensures that the greedy strategy
is optimal. The loss function may be generalized to depend not only on the
history x<k, but also on the historic actions y<k with µ still independent of the
action. It would be interesting to know whether the scheme Λ and/or the loss
bounds generalize to this case. The full model of an acting agent influencing
the environment has been developed in [Hut00], but loss bounds have yet to be
proven.

5.6 Miscellaneous

Another direction is to investigate the learning aspect of universal prediction.
Many prediction schemes explicitly learn and exploit a model of the environment.
Learning and exploitation are melted together in the framework of universal
Bayesian prediction. A separation of these two aspects in the spirit of hypothesis
learning with MDL [VL00] could lead to new insights. Finally, the system should
be tested on specific induction problems for specific M with computable ξ.

6 Summary

Solomonoff’s universal probability measure has been generalized to arbitrary
probability classes and weights. A wise choice of M widens the applicability
by reducing the computational burden for ξ. Convergence of ξ to µ and error
bounds have been proven for arbitrary finite alphabet. They show that the uni-
versal prediction scheme Λξ is an excellent substitute for the best possible (but
generally unknown) informed scheme Λµ. Extensions and applications, including
general loss functions and bounds, games of chance, infinite alphabet, partial and
delayed prediction, classification, and more active systems, have been discussed.
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