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Abstract. In many applications, modelling techniques are necessary
which take into account the inherent variability of given data. In this
paper, we present an approach to model class specific pattern variation
based on tangent distance within a statistical framework for classifica-
tion. The model is an effective means to explicitly incorporate invariance
with respect to transformations that do not change class-membership like
e.g. small affine transformations in the case of image objects. If no prior
knowledge about the type of variability is available, it is desirable to learn
the model parameters from the data. The probabilistic interpretation
presented here allows us to view learning of the variational derivatives in
terms of a maximum likelihood estimation problem. We present exper-
imental results from two different real-world pattern recognition tasks,
namely image object recognition and automatic speech recognition. On
the US Postal Service handwritten digit recognition task, learning of vari-
ability achieves results well comparable to those obtained using specific
domain knowledge. On the SieTill corpus for continuously spoken tele-
phone line recorded German digit strings the method shows a significant
improvement in comparison with a common mixture density approach
using a comparable amount of parameters. The probabilistic model is
well-suited to be used in the field of statistical pattern recognition and
can be extended to other domains like cluster analysis.

1 Introduction

In many applications, it is important to carefully consider the inherent variability
of data. In the field of pattern recognition it is desired to construct classification
algorithms which tolerate variation of the input patterns that leaves the class-
membership unchanged. For example, image objects are usually subject to affine
transformations of the image grid like rotation, scaling and translation. Conven-
tional distance measures like the Euclidean distance or the Mahalanobis distance
[3] do not take into account such transformations or do so only if the training
data contains a large number of transformed patterns, respectively. One method
to incorporate invariance whith respect to such transformations into a classifier
is to use invariant distance measures like the tangent distance, which has been
successfully applied in image object recognition during the last years [9,14,15].
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Tangent distance (TD) is usually applied by explicitly modelling the derivative
of transformations which are known a priori. This is especially effective in cases
where the training set is small. But not in all domains such specific knowledge
is available. For example, the transformation effects on the feature vectors of a
speech signal that are used in automatic speech recognition are generally difficult
to obtain or unknown.

In this paper we present a method to automatically learn the derivative of the
variability present in the data within a statistical framework, thus leading to an
increased robustness of the clasifier. To show the practical value of the approach
we present results from experiments in two real-world application areas, namely
optical character recognition (OCR) and automatic speech recognition (ASR).

To classify an observation x ∈ IRD, we use the Bayesian decision rule

x 7−→ r(x) = argmax
k

{p(k) · p(x|k)} . (1)

Here, p(k) is the a priori probability of class k, p(x|k) is the class conditional
probability for the observation x given class k and r(x) is the decision of the
classifier. This decision rule is known to be optimal with respect to the expected
number of classification errors if the required distributions are known [3]. How-
ever, as neither p(k) nor p(x|k) are known in practical situations, it is necessary
to choose models for the respective distributions and estimate their parame-
ters using the training data. The class conditional probabilities are modelled
using Gaussian mixture densities (GMD) or kernel densities (KD) in the exper-
iments. The latter can be regarded as an extreme case of the mixture density
model, where each training sample is interpreted as the center of a Gaussian
distribution. A Gaussian mixture is defined as a linear combination of Gaussian
component densities, which can approximate any density function with arbitrary
precision, even if only component densities with diagonal covariance matrices are
used. This restriction is often imposed in order to reduce the number of param-
eters that must be estimated. The necessary parameters for the GMD can be
estimated using the Expectation-Maximization (EM) algorithm [3].

2 Invariance and Tangent Distance

There exists a variety of ways to achieve invariance or transformation tolerance
of a classifier, including normalization, extraction of invariant features and in-
variant distance measures [19]. Distance measures are used for classification as
dissimilarity measures, i.e. the distances should ideally be small for members of
the same class and large for members of different classes. An invariant distance
measure ideally takes into account transformations of the patterns, yielding small
values for patterns which mostly differ by a transformation that does not change
class-membership. In the following, we will give a brief overview of one invariant
distance measure called tangent distance, which was introduced in [15,16].

Let x ∈ IRD be a pattern and t(x, α) denote a transformation of x that
depends on a parameter L-tuple α ∈ IRL, where we assume that t does not
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Fig. 1. Illustration of the Euclidean distance between an observation x and a refer-
ence µ (dashed line) in comparison to the distance between the corresponding manifolds
(dotted line). The tangent approximation of the manifold of the reference and the cor-
responding (one-sided) tangent distance is depicted by the light gray lines.

affect class membership (for small α). The set of all transformed patterns now
comprises a manifold Mx =

{
t(x, α) : α ∈ IRL

} ⊂ IRD in pattern space. The
distance between two patterns can then be defined as the minimum distance
between the manifold Mx of the pattern x and the manifold Mµ of a class
specific prototype pattern µ, which is truly invariant with respect to the regarded
transformations (cf. Fig. 1):

d(x, µ) = min
α,β∈IRL

{||t(x, α) − t(µ, β)||2} (2)

However, the resulting distance calculation between manifolds is a hard non-
linear optimization problem in general. Moreover, the manifolds usually cannot
be handled analytically. To overcome these problems, the manifolds can be ap-
proximated by a tangent subspace M̂. The tangent vectors xl that span the
subspace are the partial derivatives of the transformation t with respect to the
parameters αl (l = 1, . . . , L), i.e. xl = ∂t(x, α)/∂αl. Thus, the transformation
t(x, α) can be approximated using a Taylor expansion around α = 0:

t(x, α) = x +
L∑

l=1
αlxl +

L∑
l=1

O(α2
l ) (3)

The set of points consisting of all linear combinations of the pattern x with
the tangent vectors xl forms the tangent subspace M̂x, which is a first-order
approximation of Mx:

M̂x =
{
x +

L∑
l=1

αlxl : α ∈ IRL
} ⊂ IRD (4)

Using the linear approximation M̂x has the advantage that distance calculations
are equivalent to the solution of linear least square problems or equivalently
projections into subspaces, which are computationally inexpensive operations.
The approximation is valid for small values of α, which nevertheless is sufficient
in many applications, as Fig. 2 shows for examples of OCR data. These examples
illustrate the advantage of TD over other distance measures, as the depicted
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Fig. 2. Example of first-order approximation of affine transformations and line thick-
ness. (Left to right: original image, diagonal deformation, scale, line thickness increase,
shift left, axis deformation, line thickness decrease)

patterns all lie in the same subspace. The TD between the original image and
any of the transformations is therefore zero, while the Euclidean distance is
significantly greater than zero. Using the squared Euclidean norm, the TD is
defined as:

d2S(x, µ) = min
α,β∈IRL

{||(x +
L∑

l=1
αlxl) − (µ +

L∑
l=1

βlµl)||2
}

(5)

Eq. (5) is also known as two-sided tangent distance (2S) [3]. In order to reduce the
effort for determining d2S(x, µ) it may be convenient to restrict the calculation of
the tangent subspaces to the prototype (or the reference) vectors. The resulting
distance measure is called one-sided tangent distance (1S):

d1S(x, µ) = min
α∈IRL

{||x − (µ +
L∑

l=1
αlµl)||2

}
(6)

The presented considerations are based on the Euclidean distance, but equally
apply when using the Mahalanobis distance [3] in a statistical framework. They
show that a suitable first-order model of variability is a subspace model based
on the derivatives of transformations that respect class-membership, where the
variation is modelled by the tangent vectors or subspace components, respec-
tively. In the following we will concentrate on properties of the model and the
estimation of subspace components if the transformations are not known.

3 Learning of Variability

We first discuss a probabilistic framework for TD and then show, how learning
of the tangent vectors can be considered as the solution of a maximum likelihood
estimation problem. This estimation is especially useful for cases where no prior
knowledge about the transformations present in the data is available.

3.1 Tangent Distance in a Probabilistic Framework

To embed the TD into a statistical framework we will focus on the one-sided
TD, assuming that the references are subject to variations. A more detailed
presentation including the remaining cases of variation of the observations and
the two-sided TD can be found in [8].

We restrict our considerations here to the case where the observations x are
normally distributed with expectation µ and covariance matrix Σ. The extension
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to Gaussian mixtures or kernel densities is straightforward using maximum ap-
proximation or the EM algorithm. In order to simplify the notation, class indices
are omitted. Using the first-order approximation of the manifold Mµ for a mean
vector µ, we obtain the probability density function (pdf) for the observations:

p(x |µ, α, Σ) = N (x |µ +
L∑

l=1
αlµl, Σ) (7)

The integral of the joint distribution p(x, α |µ, Σ) over the unknown transfor-
mation parameters α then leads to the following distribution:

p(x |µ, Σ) =
∫

p(x, α |µ, Σ) dα

=
∫

p(α |µ, Σ) · p(x |µ, α, Σ) dα

=
∫

p(α) · p(x |µ, α, Σ) dα (8)

Without loss of generality, the tangent vectors of the pdf in Eq. (7) can be as-
sumed orthonormal with respect to Σ, as only the spanned subspace determines
the modelled variation. Hence, it is always possible to achieve the condition

µT
l Σ−1µm = δl,m (9)

using e.g. a singular value decomposition, where δl,m denotes the Kronecker
delta. Note that we assume that α is independent of µ and Σ, i.e. p(α |µ, Σ) ≡
p(α). Furthermore, α ∈ IRL is assumed to be normally distributed with mean
0 and a covariance matrix γ2I, i.e. p(α) = N (α | 0, γ2I), where I denotes the
identity matrix and γ is a hyperparameter describing the standard deviation of
the transformation parameters. These assumptions reduce the complexity of the
calculations but do not affect the general result. The evaluation of the integral
in Eq. (8) leads to the following expression:

p(x|µ, Σ) = N (x|µ, Σ′) = det(2πΣ′)− 1
2 exp

(
− 1

2

[
(x − µ)T Σ′−1(x − µ)

])
(10)

Σ′ = Σ + γ2
L∑

l=1

µlµ
T
l , Σ′−1 = Σ−1 − 1

1 + 1
γ2

Σ−1
L∑

l=1

µlµ
T
l Σ−1 (11)

Note that the exponent in Eq. (10) leads to the conventional Mahalanobis dis-
tance for γ → 0 and to TD for γ → ∞. Thus, the incorporation of tangent
vectors adds a corrective term to the Mahalanobis distance that only affects the
covariance matrix which can be interpreted as structuring Σ [8]. For the limiting
case Σ = I, a similar result was derived in [6]. The probabilistic interpretation
of TD can also be used for a more reliable estimation of the parameters of the
distribution [2,8]. Note that det(Σ′) = (1+ γ2)Ldet(Σ) [5, pp. 38ff.] which is in-
dependent of the tangent vectors and can therefore be neglected in the following
maximum likelihood estimation.
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3.2 Estimation of Subspace Components

In order to circumvent the restriction that the applicable transformations must
be known a priori, the tangent vectors can be learned from the training data.
This estimation can be formulated within a maximum likelihood approach.

Let the training data be given by xn,k, n = 1, . . . , Nk training patterns of
k = 1, . . . , K classes. Assuming that the number L of tangent vectors is known
(note that L can be determined automatically [1]) we consider the log-likelihood
as a function of the unknown tangent vectors {µkl} (for each class k):

F ({µkl}) :=
K∑

k=1

Nk∑
n=1

log N (xn,k|µk, Σ′
k)

=
1

1 + 1
γ2

K∑
k=1

Nk∑
n=1

L∑
l=1

((xn,k − µk)T Σ−1µkl)2 + const

=
1

1 + 1
γ2

K∑
k=1

L∑
l=1

µT
klΣ

−1SkΣ−1µkl + const (12)

with Sk =
∑Nk

n=1(xn,k − µk)(xn,k − µk)T as the class specific scatter matrix. Σ
and Sk can be regarded as covariance matrices of two competing models. Taking
the constraints of orthonormality of the tangent vectors with respect to Σ−1

into account, we obtain the following result [5, pp. 400ff.]: The class specific
tangent vectors µkl maximizing Eq. (12) have to be chosen such that the vectors
Σ−1/2µkl are those eigenvectors of the matrix Σ−1/2Sk(Σ−1/2)T with the largest
corresponding eigenvalues.

As the above considerations show, two different models have to be deter-
mined for the covariance matrices Σ and Sk. While Sk is defined as a class
specific scatter matrix, a globally pooled covariance matrix is a suitable choice
for Σ in many cases. Using these models, the effect of incorporating the tan-
gent distance into the Mahalanobis distance is equivalent to performing a global
whitening transformation of the feature space and then using the L class specific
eigenvectors with the largest eigenvalues as tangent vectors for each class. This
reduces the effect of those directions of class specific variability that contribute
the most variance to Σ. While the maximum likelihood estimate leads to results
similar to conventional principal component analysis (PCA), the estimated com-
ponents are used in a completely different manner here. In conventional PCA,
the principal components are chosen to minimize the reconstruction error. In
contrast to that, these components span the subspace with minor importance in
the distance calculation in the approach presented here. This can be interpreted
as reducing the effect of specific variability, motivated by the fact that it does not
change class membership of the patterns. The tangent distance has the property
that it also works very well in combination with global feature transformations
as for instance a linear discriminant analysis (LDA), since Σ can be assumed as
a global covariance matrix of an LDA-transformed feature space.
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4 Experimental Results

To show the applicability of the proposed learning approach, we present results
obtained on two real-world classification tasks. The performance of a classifier
is measured by the obtained error rate (ER), i.e. the ratio of misclassifications
to the total number of classifications. For speech recognition a suitable measure
is the word error rate (WER), which is defined as the ratio of the number of
incorrectly recognized words to the total number of words to be recognized.
The difference to the correct sentence is measured using the Levenshtein or
edit distance, defined as the minimal number of insertions (ins), deletions (del)
or replacements of words necessary to transform the correct sentence to the
recognized sentence. The sentence error rate (SER) is defined as the fraction of
incorrectly recognized sentences.

4.1 Image Object Recognition

Results for the domain of image object recognition were obtained on the well
known US Postal Service handwritten digit recognition task (USPS). It contains
normalized greyscale images of size 16×16 pixels, divided into a training set of
7,291 images and a test set of 2,007 images. Reported recognition error rates
for this database are summarized in Table 1. In our preliminary experiments,
we used kernel densities to model the distributions in Bayes’ decision rule and
we applied appearance based classification, i.e. no feature extraction was applied.
The use of tangent distance based on derivatives (6 affine derivatives plus line
thickness) and virtual training and testing data (by shifting the images 1 pixel
into 8 directions, keeping training and test set separated) improved the error

Table 1. Summary of results for the USPS corpus (error rates, [%]).

∗: training set extended with 2,400 machine-printed digits
method ER[%]

human performance [Simard et al. 1993] [15] 2.5

relevance vector machine [Tipping et al. 2000] [17] 5.1
neural net (LeNet1) [LeCun et al. 1990] [14] 4.2
invariant support vectors [Schölkopf et al. 1998] [13] 3.0
neural net + boosting [Drucker et al. 1993] [14] ∗2.6
tangent distance [Simard et al. 1993] [15] ∗2.5

nearest neighbor classifier [9] 5.6
mixture densities [2] baseline 7.2

+ LDA + virtual data 3.4
kernel densities [9] tangent distance, derivative, one-sided (µ) 3.7

one-sided (x) 3.3
two-sided 3.0

+ virtual data 2.4
+ classifier combination 2.2

kernel densities tangent distance, learned, one-sided (µ), L = 12 3.7
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Table 2. Results for learning of tangent vectors (ER [%], USPS, KD)

#references/class L = 0 L = 7 L = 12 L = 20 derivative tangent vectors (L = 7)
1 18.6 6.4 5.5 5.5 11.8

≈700 5.5 3.8 3.9 3.7 3.7

rate to 2.4%. This shows the effectivity of the tangent distance approach in
combination with prior knowledge. Finally, using classifier combination, where
different test results were combined using the sum rule, we obtained an error
rate of 2.2% [9].

For our experiments on learning of variability, we used two different settings.
First, we used a single Gaussian density, i.e. one reference per class, and varied
the number of estimated tangents. As shown in Table 2, the error rate can
be reduced from 18.6% to 5.5% with the estimation of tangent vectors from
class specific covariance matrices as proposed above. Using only L = 7 tangent
vectors, the result of 6.4% compares favorably to the use of the derivative, here
with 11.8% error rate. This is probably due to the fact that the means of the
single densities are the average of a large number of images and therefore very
blurred, which is a disadvantage for the derivative tangent vectors. Here, the
estimated tangent vectors outperform those based on the derivative.

Interestingly, when using all 7,291 training patterns in a kernel density based
classifier, the result obtained without tangent model is the same as for a single
density model with 12 estimated tangents. In this case, the single densities with
estimated tangent subspace obtain the same result using about 50 times fewer
parameters. In the second setting with about 700 references per class (KD), the
error rate can be reduced to 3.7% for 20 estimated tangents. Fig. 3(a) shows
the evolution of the error rate for different number of tangent vectors. Here,
the tangent vectors were estimated using a local, class specific covariance ma-
trix obtained from the set of local nearest neighbors for each training pattern.
Therefore, the method is only applied to the one-sided tangent distance with
tangents on the side of the reference. The obtained error rate is the same as for
the derivative tangents, although somewhat higher for the same number of tan-
gents. This shows that the presented method can be effectively used to learn the
class specific variability on this dataset. Note that using the tangents on the side
of the observations resp. on both sides, the obtained error rate is significantly
lower (cf. Table 1).

Fig. 3(b) shows the error rate with respect to the subspace standard deviation
γ for derivative tangents and estimated tangents using L = 7 each. It can be seen
that, on this data, no significant improvement can be obtained by restricting the
value of γ, while there may be improvements for other pattern recognition tasks.

So far we have not discussed the computational complexity of the tangent
method. Due to the structure of the resulting model, the computational cost of
the distance calculation is increased approximately by a factor of (L + 1), in
comparison with the baseline model that corresponds to the Euclidean distance.
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Fig. 3. (a) ER w.r.t. number of estimated tangents (USPS, KD). (b) ER w.r.t. sub-
space standard deviation γ for L = 7 derivative and estimated tangent vectors (USPS,
KD).

4.2 Automatic Speech Recognition

Experiments for the domain of speech recognition were performed on the SieTill
corpus [4] for telephone line recorded German continuous digit strings. The cor-
pus consists of approximately 43k spoken digits in 13k sentences for both training
and test set. In Table 3 some information on corpus statistics is summarized.

The recognition system is based on whole-word Hidden Markov Models
(HMMs) using continuous emission densities. The baseline system is charac-
terized as follows:

– vocabulary of 11 German digits including the pronunciation variant ‘zwo’,
– gender-dependent whole-word HMMs, with every two subsequent states be-

ing identical,
– for each gender 214 distinct states plus one for silence,
– Gaussian mixture emission distributions,
– one globally pooled diagonal covariance matrix Σ,
– 12 cepstral features plus first derivatives and the second derivative of the

first feature component.

The baseline recognizer applies maximum likelihood training using the Viterbi
approximation in combination with an optional LDA. A detailed description of
the baseline system can be found in [18]. The word error rates obtained with the

Table 3. Corpus statistics for the SieTill corpus.

corpus female male
sent. digits sent. digits

test 6176 20205 6938 22881
train 6113 20115 6835 22463
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baseline system for the combined recognition of both genders are summarized
in Table 4 (in the lines with 0 tangent vectors (tv) per mixture (mix)). In this
domain, all densities of the mixtures for the states of the HMMs are regarded as
separate classes for the application of learning of variability. The Sk were trained
as state specific full covariance matrices. Note that the Sk are only necessary in
the training phase.

For single densities, the incorporation of TD improved the word error rate
by 18.1% relative for one tangent vector and 21.6% relative using four tangent
vectors per state. In combination with LDA transformed features the relative
improvement was 13.8% for the incorporation of one tangent vector and increased
to 28.6% for five tangent vectors per state. Fig. 4(a) depicts the evolution of the
word error rates on the SieTill test corpus for different numbers of tangent
vectors using single densities that were trained on LDA transformed features.
For this setting the optimal choice for gender dependent trained references was
five tangent vectors per state.

Using mixture densities, the performance gain in word error rate decreased
but was still significant. Thus the relative improvement between the baseline
result and tangent distance was 6.7% (16 densities plus one tangent vector per
mixture) for untransformed features and 13.6% for LDA transformed features
(16 dns/mix, 1 tv/mix). The same applies for the optimal number of tangent
vectors which was found at one tangent vector per mixture. Consequently, a
larger number of densities is able to partially compensate for the error that is
made in the case that the covariance matrix is estimated using the conventional
method. The best result was obtained using 128 densities per mixture in com-
bination with LDA transformed features and the incorporation of one tangent
vector per state. Using this setting, the word error rate decreased from 1.85%
to 1.67% which is a relative improvement of 5%. Fig. 4(b) depicts the evolution
of word error rates for conventional training in comparison with TD using equal

Table 4. Word error rates (WER) and sentence error rates (SER) on the SieTill corpus
obtained with the tangent distance. In column ’tv/mix’ the number of used tangent
vectors per mixture is given. A value of 0 means that the conventional Mahalanobis
distance is used. ’dns/mix’ gives the average number of densities per mixture.

without LDA
dns/mix tv/mix error rates [%]

del - ins WER SER

1 0 1.17-0.83 4.59 11.34
1 1.17-0.52 3.76 9.22
4 0.69-1.07 3.60 9.10

16 0 0.59-0.83 2.67 6.92
1 0.54-0.58 2.49 6.56
4 0.46-0.80 2.60 6.76

128 0 0.52-0.54 2.24 5.87
1 0.50-0.48 2.12 5.75
4 0.55-0.49 2.13 5.71

with LDA
dns/mix tv/mix error rates [%]

del - ins WER SER

1 0 0.71 -0.63 3.78 9.74
1 0.97 -0.49 3.26 8.46
5 0.48-0.88 2.70 7.18

16 0 0.44 -0.68 2.28 5.92
1 0.58 -0.40 1.97 5.06
4 0.38 -0.55 1.97 5.35

128 0 0.45 -0.39 1.85 4.94
1 0.42-0.34 1.67 4.50
4 0.39 -0.41 1.76 4.81



Learning of Variability for Invariant Statistical Pattern Recognition 273

numbers of parameters. Even though the incorporation of tangent vectors into
the Mahalanobis distance increases the number of parameters, the overall gain
in performance justifies the higher expense.
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Fig. 4. (a) Word error rates as a function of the number of tangent vectors on the
SieTill test corpus for single densities using ML training on LDA transformed features.
(b) Comparison of WER for mixture densities on the SieTill test corpus using equal
overall model parameter numbers.

5 Discussion and Conclusion

In this paper we presented an approach for modelling and learning variability for
statistical pattern recognition, embedding tangent distance into a probabilistic
framework. In contrast to principal component analysis based methods like [12]
the model disregards the specific variability of the patterns when determining
the distance or the log-likelihood, respectively, which leads to an incorporation of
transformation tolerance and therefore improves the classification performance.
This is due to the basic difference between the distance in feature space and the
distance from feature space, which seems to be more appropriate for classifica-
tion [11]. The presented model in its local version is adaptive to specific local
variability and therefore similar to [7]. Note that the presented model assigns to
the subspace components a weight γ that was found to be usually larger than
the corresponding eigenvalue, which is a main difference to subspace approx-
imations to the full covariance matrix based on eigenvalue decomposition like
e.g. [10]. The overrepresentation of estimated variational subspace components
may lead to an increased transformation tolerance. The new model proved to
be very effective for pattern recognition, including the combination with glob-
ally operating feature transformations as the linear discriminant analysis. Thus,
theoretical findings are supported by the experimental results. Comparative ex-
periments were performed on the USPS corpus for image object recognition and
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on the SieTill corpus for continuous German digit strings for automatic speech
recognition. On the USPS corpus, single density and kernel density error rates
could be significantly improved, and the obtained results were well compara-
ble to the use of tangents based on prior knowledge. Using the one-sided TD,
a relative improvement in word error rate of approximately 20% was achieved
for single densities on the SieTill corpus. For mixture densities we could gain a
relative improvement of up to 13.6% in word error rate. Incorporating the TD
we were able to reduce the word error rate of our best recognition result based
on maximum likelihood trained references from 1.85% to 1.67%. Note that the
probabilistic modelling technique may also be used for other tasks like clustering,
where first results show that the formed clusters respect the transformations.
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