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Abstract. This paper describes an approach to handle multivariate
training data which contain outliers. The aim is to analyze the train-
ing patterns and to detect anomalous patterns. Therefore we explicitly
model the existence of outliers in the training data using a widespread
outlier distribution. Indicator variables assign each pattern to either the
outlier distribution or the distribution of normal patterns. Thus we can
estimate the data distribution using the EM-algorithm or Data Augmen-
tation. We present the general approach as well as a concrete realization
where we use Gaussian mixture models to describe the patterns’ distri-
bution. Experimental results show the applicability of this approach for
practical studies.

1 Introduction

Novelty detection is concerned with the identification of anomalous patterns
in data sets. These patterns are often faulty values generated by flaws in data
ascertainment. Possible reasons are faulty measurement instruments or mistakes
when feeding the computer with data, among others.

Furthermore outlying patterns may influence the analysis of data a lot. Stan-
dard approaches for regression analysis like the least sum of squares approach
or for density estimation like the method of moments suffer a lot from their
sensitivity to outliers. Even an outlier rate fewer than one per cent may corrupt
the result of such a statistical analysis. Some examples illustrating this problem
are given in [11]. Therefore it is necessary to detect outlying patterns and to
eliminate them from the training data.

Several approaches have been proposed to tackle the task of novelty detec-
tion. Almost all approaches are based on the idea to learn a model of the data
distribution and afterwards classify the patterns according to a density level.
Two types of approaches can be distinguished: a) approaches working only with
outlier-free training sets which are designed to find outliers in test data and b)
approaches working on training data with a known number of outliers. The mod-
els which are used for data description are Gaussian mixture models (GMMs)
[10,9], auto-associating neural networks [6,15], self organizing maps [16,8] and a
class of sets based on support vector representation [12,2], among others.
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In this paper we want to extend the approach based on GMMs for the use
of training data which contain outliers themselves. Up to now GMMs were only
used to estimate the density of a data distribution from outlier-free training data.
Afterwards these estimates can be used to find anomalous patterns in other data
sets which are taken from the same distribution but which contain supplementary
outliers. Our approach is more robust against outliers so that it tolerates even
a small amount of outliers in the training data. To calibrate the algorithm we
need to have either classified validation patterns or a rough knowledge of the
outlier proportion in the training data. But in contrast to the above mentioned
approaches we do not need to know the exact number of outliers.

2 Key Idea

We start from the presumption that the training data contain a small amount
of outliers. Thus we can model the pattern distribution as the composition of
a) a big percentage of normal patterns1 and b) a small proportion of corrupted
patterns. If we denote the proportion of anomalous patterns with λ, the distri-
bution of normal patterns with PN and the distribution of outliers with PO we
can describe the distribution of the whole training set by:

P (x) = (1 − λ) · PN (x) + λ · PO(x) (1)

λ can be interpreted as the prior probability for outlying patterns. The modeling
described in (1) is called the “mixture alternative” in [1].

The learning task can now be split up into three steps:

1. estimate P (x) from the given training set
2. decompose P (x) into PN (x) and PO(x)
3. decide whether x is an outlier given the probabilities PN (x), PO(x) and the

prior probability λ

The second step is a delicate task since there are many possibilities to decom-
pose P (x) into two parts. Additionally we neither know which training patterns
are outlying nor the exact number of anomalous patterns. If we assume an outlier
percentage of ≤ 1% and a number of training patterns ≤ 1000 the number of out-
liers is anyway too small to estimate the distribution PO(x) reliably. Therefore
we cannot perform the second step directly.

Instead we assume that we know the outliers’ distribution PO and the outlier
proportion λ or at least have a rough idea which we can use as an approximation
for PO and λ. We focus on the special problem of determining appropriate PO

and λ in sect. 5. Then we can derive the distribution of normal patterns from
(1):

PN (x) =
1

1 − λ
P (x) − λ

1 − λ
· PO(x) (2)

1 We use the term “normal pattern” as complement to “outlier” or “anomalous pat-
tern”, not in the sense of a pattern derived from a Gaussian distribution.
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The second step is now to estimate PN (x) from the training patterns. The rough
knowledge of PO(x) and λ will help to restrain the outliers’ influence on the esti-
mation of PN (x). Thus we can work with training data which contain anomalous
patterns.

If we would omit to consider the outlier distribution PO(x) and try to esti-
mate PN (x) directly from the training patterns we would actually learn P (x)
which can be substantially different from PN (x). In particular P (x) will be much
more widespread than PN (x). If we assume the patterns to be distributed ac-
cording to a parameterized model, e.g. a Gaussian distribution, the estimated
parameters will be corrupted by the outliers, e. g. the variances of the Gaus-
sian will be too large. Thus the explicit modeling of an outlier distribution PO

preserves the estimate from being corrupted by outliers.
The third step of classifying patterns according to PN (x), PO(x) and λ is

an application of the Bayesian classification approach. λ is the prior probability
for outliers, PO(x) and PN (x) are the distributions for anomalous and normal
patterns, respectively. Thus a new pattern x is classified as outlier if the proba-
bility of belonging to the set of outliers is larger than the probability of being a
normal pattern, i.e. equation (3) holds:

x is classified as outlier if and only if λ · PO(x) > (1 − λ) · PN (x) (3)

3 Implementation of the Outlier Detection Approach

So far we have described the general approach. Now we want to show how to
estimate the probability distribution PN (x). In this paper we want to concentrate
on the use of parameterized models. Thus the estimation of PN (x) becomes the
determination of a distribution’s parameters. Firstly we want to show how to
use an arbitrary parameterized distribution for PN (x) and afterwards we will
describe the case of Gaussian mixture models as a special choice.

Now we assume that the distribution PN is parameterized by a parameter
vector ϑ which we want to estimate from the given training patterns x1, . . . , xn.
Unfortunately we do not know which patterns are normal and which are anoma-
lous. Therefore we introduce an indicator variable zi for every training pattern
xi which is either one if xi is anomalous or zero if the respective pattern is nor-
mal. If we knew the indicator variables zi we could use a standard estimation
procedure like maximum likelihood or another appropriate approach to estimate
the parameter ϑ from the normal training patterns indicated by zi = 0.

Since we do not know the zi we have to estimate them in parallel with the
parameter ϑ, i.e. we have to estimate the vector (ϑ, z1, . . . , zn). Thereto we can
use the EM-algorithm [4] or Data Augmentation [14].

Both algorithms split up the vector (ϑ, z1, . . . , zn) into ϑ and (z1, . . . , zn).
Alternately the EM-algorithm estimates the indicator variables’ distribution by
its expectation value given a current estimate of ϑ and the parameter ϑ given
a current estimate of the indicator variables. A convergence theorem guarantees
that the EM-algorithm converges into a local maximum of the likelihood function
for a large number of iterations. It is therefore a maximum likelihood estimator.



A Mixture Approach to Novelty Detection 303

In contrast the Data Augmentation algorithm is a Bayesian approach. It
alternately samples parameters ϑ given current indicator variables (z1, . . . , zn)
and the indicator variables given the current parameter ϑ. Although the current
parameters are random it can be shown that they are anyhow samples from the
distribution of parameters given the training data P (ϑ|x1, . . . , xn). Taking the
expectation value of this distribution yields an estimate for ϑ.

The approach based on indicator variables can be interpreted as the estima-
tion of the parameters of a mixture distribution composed of two components,
namely the distribution of normal patterns PN (x|ϑ) and the outlier distribution
PO(x) weighted by 1−λ and λ, respectively. The indicator variables assign each
pattern to one of the mixture components, either to the outlier component or
to the component of normal patterns. The only difference from the standard
applications of mixture distributions is the fact that the outlier component has
no parameters to estimate.

4 Gaussian Mixture Models

In this section we want to describe a special choice for the distribution PN (x),
namely Gaussian mixture models (GMMs). They are a very flexible class of
probability distributions and thus they are well suited for the modeling of un-
known data. Subsequently we will give a brief review of GMMs and explain the
peculiarity of GMM fitting in our framework.

Given d-variate patterns the density of a GMM is defined as:

p(x) =
k∑

j=1

wj√
(2π)d · det(Σj)

exp
(

−1
2
(x − µj)T Σ−1

j (x − µj)
)

(4)

A GMM can be understood as the combination of k Gaussian distributions. Each
component j is described by its mean vector µj , its covariance matrix Σj and its
contribution to the mixture wj ≥ 0 which we name the mixing weight. wj can be
understood as the prior probability of a pattern belonging to the j-th component.
Thereto the mixing weights have to fulfill the condition

∑k
j=1 wj = 1. The

complete parameter vector of a GMM contains the mixing weights, means and
covariances of each component: ϑ = (w1, . . . , wk, µ1, . . . , µk, Σ1, . . . , Σk). The
number of components k controls the amount of distributions which can be
approximated by a GMM. A survey of the topic of mixture models is given in
[7].

Up to now the modeling is a two-level approach: on the top level the com-
plete data distribution P (x) is a mixture with two components, the distribution
of normal patterns and the outlier distribution. On the second level the distri-
bution of normal patterns is again modeled as a mixture, i.e. a GMM. These
two mixtures can be unified such that the overall distribution P (x) is a sin-
gle mixture distribution with a) a single fix component modeling the outliers
and b) several Gaussians which constitute the distribution of normal patterns.
The mixing weight of the outlier component is λ and the mixing weights of the
components of normal patterns sum to 1 − λ.
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The estimation of the parameters of the complete mixture can again be done
using either the EM-algorithm or Data Augmentation. The necessary extension
from the 2-component case described above and the case with k components is
that the indicator variables can now take on values in the range of 1, . . . , k.

The EM-algorithm has two disadvantages: a) the dependency of the result
from the initialization and b) the danger of overfitting. Both problems are not
really serious if the parameters of all components are adapted and the number of
components is chosen adequately. But the first difficulty becomes a snare when at
least one component is not adapted to the data. This phenomenon is explained
by the fact that the EM-algorithm locally maximizes the likelihood-function
and that the existence of the outlier component bounds the log-likelihood be-
low. Think of a training pattern x lying in an area of input space where the
density of the outlier component is much greater than the density of the other
components according to a current parameter vector ϑt. Then there are two
aspects to consider: 1.) the influence of the pattern x onto the non-outlier com-
ponents is very small and 2.) changing the parameter vector does not reduce the
contribution of pattern x to the log-likelihood function since its contribution is
bounded below by the logarithm of the the outlier component’s density at x.
Thus the next parameter vector ϑt+1 is computed without considering x. If x is
an outlier this behavior is desired but if x is a normal pattern at the edge of the
distribution this behavior leads to a GMM fitting that treats x by mistake as an
outlier.

Due to the described problem we used Data Augmentation for all experi-
ments. It has the advantage to search the parameter space globally. Therefore it
does not get stuck in local optima and the result does not depend so much from
the initial choice of parameters.

As priors for Data Augmentation we used non-informative priors which do
not bias the resulting parameters. Additionally we used Data Augmentation to
control the number of components k of the mixture distribution: we started with
a large number of components and examined in every iteration whether there is
a component j without assignments, i.e. all indicator variables zi are 6= j. Then
this component was deleted. A similar proceeding is described in [5].

5 Determining the Outlier Distribution

An essential of our approach is the use of an explicit outlier distribution PO and
an outlier rate λ. They cannot be estimated from the training data but have to
be derived from a model of outlier generation.

If there is no explicit model of outlier generation we have to determine PO

and λ as plausible as possible. E. g. in an application working on measured
data a typical outlier is generated by an erroneous shift of a decimal point when
copying the measured value. Thus a plausible outlier distribution is normal with
ten times the standard deviation of the normal data.

But, however, the determination of the outlier distribution and the outlier
rate is delicate. A change in these parameters may influence the result a lot.
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Fig. 1. Influence of λ onto the result of the outlier detection. The pattern set contains
1000 normal patterns indicated by “+” and 50 outliers indicated by “o”. The dashed
line shows the computed contour discriminating outliers from normal patterns for λ =
0.01 while the solid line shows the discriminating contour for λ = 0.05. The assumed
outlier distribution PO was set to be Gaussian with covariance equal to 100 times the
estimated covariance of the pattern set. Further increasing λ would lead the algorithm
to classify normal patterns by mistake as outliers.

In any case, the outlier distribution should be widespread since we expect the
outliers to lie widespread in the data space.

A possibility to determine the outlier distribution and λ is to choose PO to be
an arbitrary widespread distribution, e.g. a Gaussian with very large variances
or an improper distribution with constant density. Running our approach with
different values for λ and fix PO results in different outlier quota. Thus we can
determine λ so that the resulting outlier rate resembles the expected proportion.
Although this way of determining λ does not match the theoretical analysis
exactly it can successfully be used in practice. Certainly, λ cannot be interpreted
as the outlier rate anymore but rather as a parameter of the algorithm to adjust
the sensitivity against anomalous patterns.

Furthermore, if a validation set with tagged outliers is available or if we know
the outlier rate in a validation set we can use cross-validation to calibrate the
unknown λ. Figure 1 shows the outcome of the presented algorithm for different
values of λ on a 2-dimensional pattern set. Note that a modification of λ does
not only influence the classification of patterns given a fix distribution of normal
patterns but also influences the estimation of the distribution of normal patterns
itself: a smaller λ increases the number of training patterns which contribute to
the distribution of normal data.
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6 Experimental Study

Firstly we want to illustrate the algorithm’s behavior in the case where PN is a
Gaussian distribution. Therefore we used an artificial training set composed of
300 bivariate normal patterns distributed from a Gaussian distribution with zero
mean vector and diagonal covariance matrix with both entries 4. 15 outliers were
added derived from a Gaussian with also zero mean and a diagonal covariance
matrix with both entries 400.

We set the distribution PO to be Gaussian with the mean vector equal to
the estimated mean of the complete training data and the covariance matrix
equal to 100 times the estimated covariance of the complete training data. The
parameter λ varied between 0.01 and 0.999.

We trained two Gaussian distributions on the training data. The first one
was trained with the new approach described above and the second one was
fitted using a maximum likelihood approach. Of course the maximum likelihood
approach did not consider the existence of outliers and thus the second estimate
was corrupted by the outliers. In contrast the first estimate was very similar to
the original distribution of normal data for all λ ∈ [0.01, 0.9]. Larger values of
λ produced too many false outliers on a test set of normal patterns while very
small values did not avoid the estimate to be corrupted by the outliers. The
resulting estimates for the maximum likelihood estimate and the new approach
are illustrated by their covariance ellipses in Fig. 2. Although the choice of λ
was not critical in this example it is in general not easy to calibrate.

In a second experimental study we investigated the Biomed dataset [3] from
the StatLib archive [13]. This benchmark has already been used in [2] to analyze
the performance of a novelty detection algorithm.

The Biomed data are taken from a study of medical diagnosis. The aim is to
detect the carriers of a rare disease. The patterns consist of four measurements on
blood samples. 127 patterns of healthy patients and 67 of carriers are available.
We used 27 patterns of healthy patients and 57 patterns of carriers as test set
and the remaining patterns for training. The training sets were composed of

1. 100 patterns from healthy patients, no carriers
2. 100 patterns from healthy patients and 5 patterns from carriers
3. 100 patterns from healthy patients and 10 patterns from carriers

As model for PN we used a GMM with a variable number of components.
The training was performed by Data Augmentation. The outlier distribution was
set to be Gaussian with the mean equal to the mean of the training patterns
and the covariance equal to 100 times the covariance of the training patterns.

Figure 3 shows the error rates on the test sets for the model trained on the
second training set with various λ between 0.001 and 0.999. Comparing this
figure with Fig. 4 in [2] shows two important similarities:

– the rate of undetected outliers is less than 60% even if the parameters of the
algorithms are chosen inappropriate (small λ)
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Fig. 2. Estimated covariance ellipses for the training patterns derived from a Gaussian
distribution. The solid line shows the covariance ellipse of the true distribution while
the dashed line shows the estimated distribution computed with the above presented
new approach with λ = 0.5. The dash-dot line gives the maximum likelihood estimate.

– the point of intersection between the rate of misclassified normal patterns
and undetected carriers is about 15% in both approaches

These circumstances suggest that both algorithms lead to a comparable result.
But in contrast to the Linear Programming approach of [2] our algorithm was
trained on data which contained 5% anomalous patterns while the Linear Pro-
gramming approach was trained on outlier-free data. Figure 4 shows that even
an increase in the rate of anomalous patterns in the training set does not worsen
the results critically.

In a third experiment we want to show that our approach is also able to model
more complex data distributions. Thereto we used an artificial bivariate data set.
It consisted of 300 (1000) normal patterns which are distributed in the shape of
a horseshoe. Additional 15 (50) outliers were randomly generated according to
a uniform distribution in a square area of the two-dimensional plane.

The outlier distribution PO was again set to be Gaussian with 100 times
the covariance of the training patterns. As a model for normal patterns we used
a GMM with variable number of components. The Fig. 5 and 6 show the 315
(1050) training patterns and the computed contour discriminating outliers from
normal patterns. In both cases the algorithm recognized that the distribution
of normal patterns is not convex and it classified the anomalous patterns in the
inner of the horseshoe correctly as outliers.
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Fig. 3. Error rates (on the y-axis) for the Biomed data versus λ. The solid line shows
the rate of undetected outliers, the dotted line shows the rate of misclassified normal
patterns. Note that the labels on the x-axis are not equidistant.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 outliers
5 outliers

10 outliers

Fig. 4. Rate of misclassified outliers (x-axis) versus rate of misclassified normal pat-
terns on a test set in the Biomed data domain. The three models are trained on an
outlier-free training set (dotted line) of 100 patterns, a training set with additional 5
outliers (dashed line) and a training set with additional 10 outliers (solid line).



A Mixture Approach to Novelty Detection 309

-50

-40

-30

-20

-10

0

10

20

30

40

50

-50 -40 -30 -20 -10 0 10 20 30 40 50

Fig. 5. Training patterns of the horseshoe data. Outliers are indicated by “o” and
normal patterns by “+”. The solid line gives the contour which was computed to
discriminate outliers from normal patterns. λ was set to 0.05. The number of training
patterns was 300 normal and 15 anomalous patterns.

-50

-40

-30

-20

-10

0

10

20

30

40

50

-50 -40 -30 -20 -10 0 10 20 30 40 50

Fig. 6. Training patterns of the horseshoe data. Outliers are indicated by “o” and
normal patterns by “+”. The solid line gives the contour which was computed to
discriminate outliers from normal patterns. λ was set to 0.2. The number of training
patterns was 1000 normal and 50 anomalous patterns.
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7 Discussion and Future Work

In this paper we developed an approach to deal with outliers in training data.
The key idea is to explicitly model the occurrence of outliers with an outlier
distribution. Therefore we use indicator variables which assign every pattern to
either the set of normal patterns or the set of outliers. Since we do not know
the outliers we have to estimate the indicator variables. This modeling is closely
related to the estimation of a mixture distribution with two components: the
distribution of normal patterns and the distribution of outliers.

This allows us to estimate the distribution of the normal patterns from train-
ing data that contain a small amount of outliers: the outlying patterns are as-
signed to the outlier distribution and thus do not disturb the estimation of the
normal data distribution. In a second step we can use this distribution to detect
the anomalous patterns in the training set or in test data.

A difficult task is the determination of the outlier distribution and the outlier
rate. Mostly there are not enough outliers in the training data so that a reliable
estimation is not possible. Thus these parameters have to be set explicitly. We
propose the use of an arbitrary widespread distribution and to vary the outlier
rate. Cross validation helps to find a suitable parameter. In our future work
we hope to find a rule of thumb how to set these parameters depending on the
dimensionality of the data and the spread of the training patterns.

Another problem sometimes occurs when the normal pattern distribution is
modeled by a flexible class of distributions like GMMs. Then it may happen that
a component of the GMM specializes on the outlying patterns or on a subset
of the outliers. Especially if the GMM parameters are estimated with the EM-
algorithm such a component overfits the outlying data. Therefore these outliers
cannot be detected. If instead Data Augmentation with non-informative priors is
used this problem is not so serious because Data Augmentation does not overfit
the data but estimates a very broad component with a very small density which
is often smaller than the density of the outlier distribution. Thus the outliers
are found anyhow. In our future work we will focus on this phenomenon and
examine in which way the outlier distribution influences the occurrence of such
a component.

If we use a model for the distribution of normal patterns which is not so
flexible like a single Gaussian distribution the above described problem does not
occur since fitting the distribution of normal patterns to outliers would seriously
worsen the description of normal patterns.

The experimental results presented in this paper show that our approach
can successfully be applied in practical studies. It bounds the influence of the
outliers on the estimation of the distribution of normal patterns and it is able
to model even complex data distributions.

Acknowledgments. Thanks to Martin Riedmiller for helpful comments that
improved this paper.
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