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Abstract. This paper investigates the use of meta-learning to estimate
the predictive accuracy of a classifier. We present a scenario where meta-
learning is seen as a regression task and consider its potential in connec-
tion with three strategies of dataset characterization. We show that it
is possible to estimate classifier performance with a high degree of con-
fidence and gain knowledge about the classifier through the regression
models generated. We exploit the results of the models to predict the
ranking of the inducers. We also show that the best strategy for perfor-
mance estimation is not necessarily the best one for ranking generation.

1 Introduction

The practice of machine learning often involves the estimation of how well a
classification learning algorithm would perform in a dataset. There is no classifier
that can be predictively successful in every dataset. In addition, any device that
selects the most appropriate classifier for a dataset based on its properties is
bound to fail in some area of the dataset space [23]. However, there may exist a
sub-area of the dataset space that is small enough for such a device to have high
performance, compensated by bad performance elsewhere, and yet large enough
to include all the datasets we are actually interested [22,17]. Machine learning is
possible only if this sub-area exists. Within this sub-area it is possible to estimate
the performance of different learners according to the nature of the dataset.

Currently, this estimation is done through the expertise of the machine learn-
ing practitioner. The practitioner, of course, brings her previous experience with
classifiers as well as her preferences to the estimation process. As a consequence,
the estimation is often vague, in many cases unprincipled and always relying on
the human expert. Often, the practitioner can appeal to a well established tech-
nique in the field, cross-validation, to help the estimation or at least to establish
which classifiers are likely to work best. Cross-validation is a priori justifiable
because it works for a large enough area of the dataset space [22]. It is, however,
too costly. Moreover, it provides no insight concerning the relations between
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the performance of a classifier and the properties of the domain. In this sense
it provides no principled basis for an analysis of what lies behind successful
performance estimations.

Meta-learning is the endeavour to learn something about the expected per-
formance of a classifier from previous applications. In any scenario, it depends
heavily on the way we choose to characterize the datasets. Meta-learning has of-
ten concentrated on predicting whether a classifier is suitable for a dataset [11]
and on selection of the best option from a pool of classifiers[1,13]. In the former,
we ask whether a good performance is to be expected from a classifier given the
properties of a dataset. In the latter, given a pool of classifiers, we attempt to
establish which ones are the best. In both cases meta-learning is constructed as
a classification task. Little work has been reported on direct estimation of the
performances of classifiers.

In this paper we propose and examine an approach to the direct estimation
of classifiers’ performances via meta-learning. We face meta-learning tasks as
regression tasks whereby we look for relationships between the properties of
a dataset and the performance of the classifier. This direct approach is more
flexible than meta-learning for model selection since the estimations are not
relative to a specific pool of classifiers.

2 How Can We Predict Accuracies

The idea of using regression to predict the performance of learning algorithms
was first used by Gama and Brazdil in [7], were they continued on the framework
adopted in STATLOG. They tried to directly predict the error of an algorithm
for a specific dataset based on the characteristics of the dataset, as these were
defined in the STATLOG project. For each of the learners they evaluated various
regression models like linear regression, instance based regression and rule based
regression. They report poor results in terms of the Normalised Mean Squared
Error (NMSE).

Sohn in [19] uses the results of STATLOG (i.e. same data characterization,
same learning algorithms and same datasets) and constructs linear regression
models that predict the errors of the learning algorithms on unseen datasets.
As she is using the results of STATLOG, the study is limited to 19 datasets
To overcome the small number of datasets she used bootstraping resampling
to estimate the parameters of the regression models. The models were used to
provide a ranking of the available learning algorithms. The results show that
the statistical models produced, exhibit high performance. However they must
be interpreted cautiously because of the limited number of datasets used in the
study.

A recent paper provided some initial results related to the use of estimated
performances for model selection [10]. It shows that estimating performances
leads to a better result in selecting a learner from a pool than learning through
a repository of datasets classified in terms of the best performing algorithm in the
pool. Using a pool composed by three classifiers, the paper indicates that regres-
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sion (by M6), when used to estimate the error of the three classifiers, selects the
classifier with least error with better performance than using classification (with
C5.0) to decide the best algorithm for a dataset. The experiments, however, were
preliminary and concentrated only on one strategy of dataset characterization,
on only three classifiers and were performed on artificially generated datasets.

A work on a similar direction is that of instance-based ranking of classifiers
through meta-learning, also called zooming[18]. The goal there is to determine a
preference order over a pool of classifiers, based on predictive accuracy and com-
putational cost. The ranking for a new dataset is built by inspecting a number
of k-nearest neighbours in a collection of reference datasets, that form a meta-
dataset. The produced ranking is based on a preference function that weights
cost and accuracy. This approach cannot be used as it is to estimate accuracies
of learners, but only to provide a relative ranking of them.

Our goal was to broaden this research by considering a greater number of
classifiers and different strategies of dataset characterization. We therefore con-
centrate primarily on performance estimation. Our approach was to construct
meta-datasets for regression so that any technique could then be used for per-
formance estimation. A meta-dataset is constructed for each classifier. In order
to do that, each dataset needs to be characterised by a dataset characteriza-
tion stategy that produces meta-attributes. The meta-attributes produced are
then the attributes for the meta-learning problem where each data-point cor-
responds to a dataset. Each data-point contains the description of the dataset
by the meta-attributes and the performance of the classifier in the dataset. The
meta-dataset can then be treated as an ordinary regression dataset.

In this paper we concentrate on 8 classifiers: two decision tree learning meth-
ods (Ltree [6] and C5.0tree [14]), Naive Bayes [4], two rule methods (Ripper [3]
and c5.0rules [14]), linear discriminant, nearest neighbor [4] and a combination
method, c5.0boost [15,5]. These classifiers are representative of different types of
induction procedures and are among the most popular non-parametric classifiers
in machine learning.

3 Strategies of Dataset Characterization

The characterization of datasets is the touchstone of meta-learning. Its success
depends on how well can the meta-attributes support generalization. We aim at
dataset characteristics that produce accurate estimates and insightful regression
models. We will make use of three different strategies of dataset characterization:

– A set of information-theoretical and statistical features of the datasets that
were developed as a sequel to the work done in STATLOG [11]. We refer to
this strategy as dct. We used the extended set of characteristics given in
[20].

– A finer grained development of the STATLOG characteristics, where his-
tograms were used to describe the distributions of features that are com-
puted for each attribute of a dataset, thus preserving more information than
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the initial mean based approach of STATLOG. We refer to this strategy as
histo. A detailed description of the histograms can be found in [9].

– Landmarking, a characterization technique where the performance of sim-
ple, bare-bone learners in the dataset is used to characterise it [13]. In this
paper we use seven landmarkers: Decision node, Worst node, Randomly cho-
sen node, Naive Bayes, 1-Nearest Neighbour, Elite 1-Nearest Neighbour and
Linear Discriminant. We refer to this dataset characterisation strategy as
land. Obviously, when we want to predict the error of an algorithm that
is also a landmarker, this landmarker is omited from the description of the
dataset.

Of the three approaches landmarking has a completely different philosophy since
it is using the performance of simple learners to characterize datasets. dct and
histo are both based on a description of datasets in terms of their statistical
and information based properties although using a different set of characteristics,
with histo trying to exploit the full information contained in the distribution
of these characteristics.

4 Regression on Accuracies

Regression was used to estimate the performance of classifiers using the dif-
ferent strategies of dataset characterization. Since the quality of the estimate
depends on its closeness to the actual accuracy achieved by the classifier, the
meta-learning performance is measured by the Mean Absolute Deviation (MAD).
MAD is defined as the sum of the absolute differences between real and predicted
values divided by the number of test items. It can be seen as measure of the dis-
tance between the actual values and the predicted ones.

In order to compare the estimation capabilities of the three strategies of
dataset characterization we used Cubist [16] and a kernel method [21] to per-
form regression on the meta-dataset. Kernel methods work in an instance-based
principle and they fit a linear regression model to a neighborhood around the
selected instance. It is straightforward to alter their distance metric in order
to make better use of the semantics of the non-applicable values that occur in
meta-attributes of dct and histo. The drawback of kernel methods is that they
do not produce a model that can be used to improve our knowledge of the rela-
tionships between performance and dataset. Cubist, on the other side, produces
models in the form of rulesets and therefore is more suitable for our analysis of
the insight gained about a classifier by the process of estimating its accuracy.
The disadvantage of Cubist, on the other hand, is that it can make no direct
use of the non-applicable values found in the meta-features of dct and histo.
To be able to use the algorithm we had to recode those values to new ones that
lie outside the domain of definition of the dataset characteristics we use. Since
at least one of these limitations would apply to every existing regression sys-
tem, we remedy the situation by applying both the kernel method and Cubist
to all meta-datasets. We do that while bearing in mind that the kernel methods



Estimating the Predictive Accuracy of a Classifier 29

Table 1. Kernel on estimating performance.

Classifier dct histo land dMAD
c50boost 0.112 0.123 0.050 0.134
c50rules 0.110 0.121 0.051 0.133
c50tree 0.110 0.123 0.054 0.137
lindiscr 0.118 0.129 0.063 0.137
ltree 0.105 0.113 0.041 0.132
mlcib1 0.120 0.138 0.081 0.153
mlcnb 0.121 0.143 0.064 0.146
ripper 0.113 0.128 0.056 0.145

are more likely to produce good results for dct and histo meta-datasets while
Cubist is being run for the rulesets it produces.

Experiments were done with 65 datasets from the UCI repository [2] and
from the METAL project [8]. For each classifier meta-dataset, we run a 10-fold
cross-validation to assess the quality of performance estimations. The quality of
the estimation is assessed by the MAD in the 10 folds, and it is compared with
the default MAD (dMAD). The latter is the MAD obtained by predicting that
the error of a classifier in a test dataset is the mean of the error obtained in the
training datasets. dMAD is a benchmark for comparison. We expect regression
to produce a smaller MAD than the dMAD. We have to note here that, in the
case of landmarkers, when ever we build a model to predict the performance
of a classifier that is a member of the set of landmarkers the corresponding
landmarker is removed.

The quality of the estimation with the kernel method using different dataset
characterization strategies is shown in table 1. The table presents the MAD
in the 10 folds for every regression problem and the dMAD. Using the three
dataset characterization strategies, the MAD obtained by the kernel method is
smaller than the dMAD, showing that regression is worth trying. Landmarking
outperforms the other two strategies by far and produces estimated accuracies
with a MAD smaller than 0.081 for every classifier. This means that the average
error of the estimated accuracy in unseen datasets will be in the worst case (that
of mlcib1) 8.1%. The table shows that a great deal of meta-learning is taking
place. Histo and dct do not produce estimates as good as the ones produced
by landmarking. One could suspect that this is because the meta-dataset is
relatively small when compared to the large number of meta-attributes used
by these two strategies of dataset characterization. To check whether reducing
the dimensionality of the problem would significantly improve the estimates, we
performed feature selection through wrapping in the dct and the histo meta-
dataset. The estimates, however, were not greatly improved. We conclude that
landmarking performs best in performance estimation using kernel.

With Cubist, the situation is similar. Table 2 shows that land still performs
better than dct and histo. The table also gives figures for land-, a strategy
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Table 2. Cubist on estimating performance.

Classifier dct histo land land- dMAD
c50boost 0.103 0.128 0.033 0.079 0.134
c50rules 0.121 0.126 0.036 0.077 0.133
c50tree 0.114 0.130 0.044 0.078 0.137
lindiscr 0.118 0.140 0.054 0.127 0.137
ltree 0.114 0.121 0.032 0.054 0.132
mlcib1 0.150 0.149 0.067 0.077 0.153
mlcnb 0.126 0.149 0.044 0.052 0.146
ripper 0.128 0.131 0.041 0.061 0.145

Table 3. P-values of paired T-tests of significance comparing with the dMAD (Kernel).

Classifier dct histo land
c50boost tie (0.112) tie (0.361) + (0.00)
c50rules tie (0.075 tie (0.319) + (0.00)
c50tree + (0.045) tie (0.242) + (0.00)
lindiscr tie (0.110) tie (0.548) + (0.00)
ltree + (0.030) tie (0.115) + (0.00)
mlcib1 + (0.037) tie (0.269) + (0.00)
mlcnb + (0.036) tie (0.807) + (0.00)
ripper + (0.024) tie (0.217) + (0.00)

of dataset description where only decision node, random node, worst node, elite
nearest neighbour and linear discriminants are used as landmarkers. The reason
for this is that with less landmarkers we obtain more insightful models. Also,
the loss in MAD is not extreme and land- still performs well when compared
to the dMAD.

To examine whether the results presented are significant we performed t-
paired tests of significance. In Table 3 we give the results of the t-paired test
between each model and the dMAD. We present results only for the kernel based
models, but the situation is similar for the cubist based ones. In this table and
in the following ones, “+” indicates that the method is significantly better than
the default, tie signifies that there is no difference, “−” that the method is
significantly worse then the default. The table shows that the performance of
landmarkers is always significantly better then the default. dct is significantly
better in 5 out of the 8 cases, and histo performance is not statistically different
than the default. Furthermore, landmarking is always significantly better than
dct and histo for all the eight different learning algorithms. Between dct and
histo the differences are not significant for any of the 8 learners.

Concluding we can say that the use of landmarkers to perform accuracy
estimation is a method with very good performance and low estimation error,
significantly better from histo and dct. The reason for that is: landmark based
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Table 4. Average Spearman’s Correlation Coefficients with the True Ranking

models
Rankings Kernel Cubist Zooming
default 0.330 0.330 0.330
dct 0.435 0.083 0.341
histo 0.405 0.174 0.371
land 0.180 0.185
land- 0.090 0.190

characteristics are better suited for that type of task. They provide a direct
estimation of the hardness of the problem since they are themselves performance
estimations. On the other side dct and histo, give an indirect description of
the hardness of the problem, through the use of characteristics like attributes
correlations, which are more difficult to directly associate with accuracy.

5 Using Estimates to Rank Learners

An obvious way to use the accuracies predicted by regression is to provide a rank-
ing of the learners based on these predictions. In this section we give results for
various ways of predicting rankings. We validate their usefulness by comparing
them with the true ranking, and the performance of a default ranking.

To evaluate the different approaches, the rankings produced for a dataset are
compared to the true ranking of the learners on this dataset. The true ranking is
known since we know the accuracies of all the learners on the 65 datasets that we
are using. As a measure of similarity of the rankings, we used Spearman’s rank
correlation coefficient [12]. We also compare our method with zooming [18]. The
results in terms of the average Spearman rank correlation coefficient are given in
table 4. Zooming cannot be applied to the full set of landmarkers, since that will
mean using the performance of lindiscr, mlcib and mlcnb to predict their ranking.
This is why the corresponding combination, (zooming+land) is not included in
the table. We also give the average Spearman’s rank correlation coefficient of
the default ranking with the true ranking. The default ranking is a ranking
that remains the same no matter what the dataset under examination is. It is
computed on the basis of the mean accuracies that the learners achieve over all
the datasets. The default ranking, starting from the best learner, is : c50boost,
c50rules, c50tree, ltree, ripper, mlcib1, mlcnb, lindiscr. A ranking method is
interesting if it performs significantly better than this default ranking: in this
case it is worth applying the meta-learning method to discover a suitable ranking
for a given dataset. Table 5 gives the results of the statistical significance tests,
between the different models and the default ranking. We concentrate on kernel
since the rankings produced by cubist perform always worse than the default.

Surprisingly enough the only case that a model is significantly better than the
default ranking is the combination of Kernel and dct, even ranking with zoom-
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Table 5. P-values of paired t-tests, between the rank correlation coefficients of the
models and the rank correlation coefficient of the default ranking

Dataset models
Characterization Kernel Zooming
dct +(0.05) tie(0.862)
histo tie(0.147) tie(0.482)
land −(0.010)
land- −(0.018)

ing a method specifically created to provide rankings is not significantly better
then the default. Although landmarking constructs regression models that have
a very low MAD error, it fails to provide a good ranking of the classifiers. The
predictions provided by Kernel and dct, while worse than the ones provided
by landmarking based models, systematically keep the relative order of the ac-
curacies of the classifiers. So although they do not estimate the performances
accurately, they do rank the classifiers well. A reason for the poor performance
of landmarking in ranking is that landmarking based regression models give the
error as a function of the error of simple learners. This can lead to models where
the error of an inducer is proportional to the error of another inducer resulting
in a more or less fixed ranking of the available inducers, a fact that explains the
poor performance of landmarkers when it comes to ranking inducers.

6 What Regression Models Can Tell Us about Classifiers

An advantage of using regression for meta-learning is that we can extract useful
knowledge about the classifiers whose performance we are trying to estimate.
The generated models refer to a specific classifier. They associate characteristics
of the datasets, classifier error. Examining them will give us an idea of what are
the dataset characteristics that affect the performance of classifiers.

The main motivation behind the application of Cubist, was the construction
of a set of rules in order to see how datasets characteristics associate with learn-
ers’ performances, and more important, whether the associations that pop up
make sense. Below we can see typical examples of rules constructed by Cubist
to estimate the error of Naive Bayes. For each rule, we give the number of the
cases (i.e. datasets) that are covered by the rule, and the mean error of Naive
Bayes on the cases covered by the rule. Every rule consists of two parts, an IF
and a THEN part. The IF part specifies the precondictions that must hold in
order for the rule to apply, these preconditions are conditions on specific dataset
characteristics which are determined by cubist. The THEN part of a rule is the
regression model constructed by cubist to predict the error of Naive Bayes on
the datasets covered by the preconditions of the rule. Below we are going to
review the produced rules in terms of their agreement with expert knowledge.
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*DCT rules:
a)7 cases, mean error 0.06 b)17 cases, mean error 0.10

IF MAXAttr_Gini_sym > 0.245 IF MAXAttr_Gini_sym <= 0.245
AVGAttr_gFunction > -0.91 AVGAttr_gFunction > -0.91

THEN mlcnb_error = -0.0748 THEN mlcnb_error = -0.0965
- 0.1528 Cancor - 0.252 AVGAttr_gFunction
+ 0.1479 Frac - 0.1706 Cancor
- 0.1179 AVGAttr_gFunction + 0.1613 Fract

* HISTO rules:
a)29 cases, mean error 0.22 b)11 cases, mean error 0.46

IF conc_hist_4 <= 0.0032 AND IF num_attributes > 7
conc_hist_with_class_0 <= 0.68 con_histo_4 <= 0.0032

THEN mlcnb error = 0.2074 conc_histo_class_0 > 0.68
- 0.25 correl_hist_4 THEN mlcnb_error = 0.4235
+ 0.21 correl_hist_5 - 0.25 correl_hist_4
+ 0.04 correl_hist_2 + 0.21 correl_hist_5
+ 0.02 conc_hist_class_0 + 0.04 correl_hist_2
- 0.01 conc_hist_class_1 + 0.026 conc_histo_class_0
- 0.01 con_histo_4 - 0.021 con_histo_4

- 0.016 conc_histo_class_1
* LAND rules:
a)34 cases, mean error 0.218 b)16 cases, mean error 0.385

IF Rand_Node <= 0.57 IF Rand_Node > 0.57
Elite_Node > 0.084 THEN mlcnb = 0.339

THEN mlcnb = 0.167 - 1.099 Worst_Node
+ 0.239 Rand_Node + 0.792 Dec_Node
- 0.18 Worst_Node + 0.292 Rand_Node
+ 0.105 Elite_Node + 0.105 Elite_Node

If we examine the two rules of dct, we see that they define two sets of datasets
based on the MAXAttr Gini Sym. The first one containing seven datasets, with
the mean error of Naive Bayes on these to be 6%, and the second set containing
seventeen datasets, with a mean error of 10%. MAXAttr Gini Sym is the maxi-
mum gini index, that we compute between one attribute and the class variable.
If this characteristic has a high value, this means that there exists one attribute
on the dataset that has high information content for the class attribute. The
higher the value of this characteristic is, the easier the prediction of the class.
By examining the two rules we can see that on the datasets with a smaller value
of MAXAttr Gini Sym, Naive Bayes has higher mean error. Examining now the
regression models constructed for the two rules we see that they are quite sim-
ilar, they have the same set of dataset characteristics and the same signs on
coefficients, with just a slight difference on the magnitute of the coefficients.
Cancor is the first canonical correlation between the attributes and the class. As
this increases we expect the error to decrease and this is indeed the case, since
on the regression models it has a negative sign. Frac is the proportion of total
class variation explained by the first canonical discriminant. It seems that this
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feature has a negative effect on the error of Naive Bayes, since the corresponding
regression coefficient has a positive sign. The gFunction is a measurement for
the probability of finding the joint distribution of classes and attribute values
for a specific attribute. AVGAttr gFunction is the average overall the attributes,
the higher the value of the characteristic the easier the problem it is, and indeed
the error of Naive Bayes decreases when AVGAttr gFunction increases.

In histo, datasets separated according to the value of con histo with class 0.
This characteristic gives the percentage of attributes that have a concentration
coefficient with the class attribute, between 0 and 0.1, (the concentration coeffi-
cient is a measure of association between two discrete characteristics, with 0 for
no association at all, and 1 for the highest association). A high value of it implies
low association between the attributes and the class attribute, thus one would
expect a high error, for the datasets that exhibit that property. The two rules
comply with this expectation. Datasets covered by the first rule (i.e. datasets
were less than 68% of the attributes have a concentration coefficient with the
class variable smaller than 0.1) have lower error, 0.22, than the datasets covered
by the complementary rule, 0.46.

In the case of landmarking, we used the smaller set of landmarkers to generate
the regression model with Cubist (that is, land-). In the two rules given above
using landmarking, two disjoint sets of datasets are established based on the
value of the Rand Node. Rand Node is the error of a single decision node created
from a randomly chosen attribute. If this node exhibits a high error, chances are
that the attributes have poor discriminating power. This situation is indeed
captured by the rules. As we may see the datasets covered from the first rule
(lower error of Rand Node), exhibit a lower mean error from the datasets covered
from the second rule.

7 Computational Cost

Setting up the different regression models, is a task that is performed only once.
After that the produced models can be used on new unseen cases. The main cost
of the method comes on the exploitation phase, from the characterization of a
new dataset. DCT and HISTO are information and statistical based approaches.
Their main cost is on the construction of the contigency tables and the covari-
ance matrixes of the datasets. These have a complexity of O(n), where n is the
number of examples of a dataset. Some of the characteristics used require the
computation of eigen values of the covariance matrixes, this has a complexity of
O(p3), where p is the number of attributes, so the computational complexity of
DCT and HISTO is O(n + p3) which is much smaller of that of cross validation.
In the case of landmarking the computational complexity is that of the cross
validation of the landmarkers. The most expensive landmarker used here is the
1-nearest neighbor, whose complexity is O(n2). We can reduce this complexity,
obtaining similar results, if we omit the nearest neighbor landmarker. In this case
the complexity is determined by linear discriminants that have a complexity of
O(n + p3).
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8 Conclusions

In this paper we invistigated the use of regression learners in order to directly
estimate the errors of classification inducers on specific datasets through the
use of three different ways of characterizing the datasets. Landmarking provided
by far the best predictions among the three different approaches. Using these
predictions we were able to provide a ranking of the inducers, with the results
being acceptable, on the limit, in only one of the examined cases.

Two are the main prerequisites for meta-learning to be effective, first a good
characterization of the datasets and second the morphological similarity of new
datasets to the ones used to construct the meta-models. This is not different
from the fact that in order, for learned models to be useful, the examples on
which they are applied should come from the same distribution as the training
examples. The ideal environment for successfull utilisation of the approach is
one where the analyst normally faces datasets of similar nature.

This is still an initial study and there is lot of work that has to be done,
especially in the area of datasets characterization, possibly with the use of new
characteristics, or with the combination of the existing ones to a single charac-
terization.

Acknowledgements. This work is part of the METAL project supported by
an ESPRIT Framework IV LTR Grant (Nr 26.357). Thanks to Carlos Soares for
providing with the results on zooming.

Appendix Datasets Used

abalone, acetylation, agaricus-lepiota, allbp, allhyper, allhypo, allrep, australian,
balance-scale, bands, breast-cancer-wisc,breast-cancer-wisc nominal, bupa, car,
contraceptive, crx, dermatology, dis, ecoli, flag language, flag religion, flare c,
flare c er, flare m, flare m er, flare x, flare x er, fluid, german, glass, glass2,
heart, hepatitis, hypothyroid, ionosphere, iris, kp, led24, led7, lymphogra-
phy, monk1, monk2, monk3-full, mushrooms, new-thyroid, parity5 5, pima-
indians-diabetes, proc-cleveland-2, proc-cleveland-4, proc-hungarian-2, proc -
hungarian-4, proc-switzerland-2, proc-switzerland-4, quisclas, sick-euthyroid,
soybean-large, tic-tac-toe, titanic, tumor-LOI, vote, vowel, waveform40, wdbc,
wpbc, yeast.
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