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Abstract. Importance Sampling is a modified Monte Carlo technique applied to
the estimation of rare event probabilities (very low probabilities). In this paper,
we propose and develop the use of Importance Sampling (IS) techniques in
neural network training, for applications to detection in communication
systems. Some key topics are introduced, such as modifications of the error
probability objective function, optimal and suboptimal IS probability density
functions (biasing density functions), and experimental results of training with a
genetic algorithm. Also, it is shown that the genetic algorithm with the IS
technique attains quasi-optimum training in the sense of minimum error
probability (or minimum misclassification probability).

1 Introduction and Preliminaries

Importance Sampling is a modified Monte Carlo technique [1] commonly applied to
the performance analysis of radar and communication detectors [2-9]. In
communications detectors, the error probability (Pe) is estimated by Importance
Sampling (IS) techniques for very low Pe (e.g. Pe<10-5). In radar detectors, the very
low false-alarm probabilities are also estimated by IS techniques. In paper [10] we
have applied IS techniques to neural network detectors for testing performances,
where the first part of [10] presents IS as a Monte Carlo technique for computer
simulations, and the second part presents false-alarm probability estimations of neural
detectors (in the testing phase) applied to radar.

Now, in this paper we propose as a novelty the application of IS techniques in the
training phase of neural network detectors. For this purpose, we have to modify
adequately the objective functions of our neural networks, as we shall explain in
Section 2. Some computer results are presented in Section 3, and conclusions are
summarized in Section 4.

Throughout the paper, we shall refer to Fig. 1, where x= (x1, x2 , ..., xn) is the input
vector of the Rn-space,  y=g(x) is the scalar output, g(¼) is a nonlinear system (e. g. a
neural network), T0 is the detection threshold, and z=u(g(x)-T0) is the detector output,
where u(¼) is the unit-step function (i.e. u(t)=1 if t>0  and u(t)=0 if t<0). We denote
X=(X1, X2, ..., Xn) as a random vector and � �

L
I _ +
;
[  as the probability density function

(pdf) of X under a hypothesis Hi ,  i=1, 0 (binary hypotheses), where H0 is the null
hypothesis  or symbol “0” and H1 is the alternative hypothesis  or symbol “1”. P(Hi) is
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the “a priori” probability of the hypothesis Hi , i= 1, 0, and P(Dj|Hi) is the conditional
probability of deciding Hj ,  j=1, 0, under the true hypothesis Hi ,  i=1, 0. If g(x) > T0

(or z=1), the decision is H1; if g(x) < T0 (or z=0), the decision is H0.  Finally,

{ }
L

= _ + �( is the expectation of the random variable Z conditioned by Hi ,  i=1, 0, and

( {g(X)} is the expectation of g(Â��ZLWK�UHVSHFW�WR�WKH�SGI�RI�X  (i.e. � �I
;
[ ).

Fig. 1. Binary detector structure

2 Error Probability as Objective Function for Training

To supervise neural network (NN) training, estimations of an objective function (or
risk function) have to be performed. The value of this function decreases as the
training progresses; then, the number of test patterns required for an accurate
estimation has to be increased. Consequently, the training computational cost is
unaffordable for very low objective function values, and the use of Importance
Sampling (IS) techniques becomes indispensable.

To illustrate the use of IS techniques in the training phase of a NN, let us consider
the misclassification probability as an objective function for applications in
classifications (or the error probability for detection in communications [11-13]).
According to the notation given above, the error probability (Pe) can be expressed as
follows

� � � � � �
� � � � � � � �

H
3 3 + 3 ' + 3 + 3 ' += | + | (1)
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Also, in order to save space, let us define

� � � � � �
� � � � � � � � � � � � � � � � ��� QK 3 + I _ + X J 7 3 + I _ + X 7 J 5= - + - ³

; ;
[ [ [ [ [ [ (3)

where all items have been defined above.
Now, if we consider a new probability density function (pdf) 
 � �I

;
[ , such that
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;
[  wherever h(x)�0,  then from (1), (2) and (3) we have
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where ( *{¼} means expectation with respect to 
 � �I
;
[  (known as the Importance

Sampling pdf).
The last equality in (4) is the key of the Importance Sampling technique. From the

statistical inference theory applied to (4), an estimator of Pe is given by
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where   xk
*,  k=1, 2, ..., N,  are independent sample vectors whose  pdf  is 
 � �I

;
[ .

Estimator 


H
3 , given in (5), must be computed in order to perform the neural network

training (i.e. to find g(Â��IRU�PLQLPXP 


H
3 ).
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Then, 


H
3  is an unbiased and consistent estimator of Pe (i.e. 


H H
3 3�  as 1 �� ).
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Because the variance is not a negative number, from (6) we have
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The equality case in (8) is satisfied if



�

� � � � � Q

H

I K 5
3

= ³
;
[ [ [ (9)

that it can be proved by taking (9) into (8); then, the estimator variance in (6) is zero
for any value of N, i.e. only one sample vector (N=1) is required for estimating Pe

without error (estimation error (7) is zero). Expression (9) is the unconstrained
optimal solution for 
 � �I

;
[ . Note that � � �� QK 5� ³[ [ (from definition (3)), then

expression (9) is a pdf  because of (4).
By taking (3) into (9), the unconstrained optimal solution for 
 � �I

;
[  can be

expressed for future references as follows
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The optimal solution for 
 � �I
;
[  given in (10) is not realistic, because Pe is not

known “a priori” (it has to be estimated by (5)). Furthermore, in the training phase,
g(¼) is changing from one iteration to the other.

A suboptimal solution for 
 � �I
;
[  is obtained in a way similar to that done in [10].

Usually � �� �� ��
L

I _ + L =
;
[  depends on a parameter q  (e.g. the signal-to-noise ratio)

[12,13] and we can write � � �� �� ��
L

I _ + Lq =
;
[  if q=0 there is only noise (both pdf’s

are identical to the noise pdf);  if q is too large, both hypotheses are highly separate
(and corresponding to very low error probability). Now, we consider the following
(suboptimal) density function as the Importance Sampling pdf
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where q* is the q-value that minimizes the variance (6) of the estimator 


H
3 . Note that

(11) satisfies the necessary condition for the unbiasedness of 


H
3 , i.e. 
 � � �I �

;
[  as

h(x)�0, x³Rn, where  h(x) is given  by (3).
The optimal q*-value is obtained experimentally by computing an estimator of (6).

An estimator of (6) is given by
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where 


H
3  is given by (5) and h(x) is given by (3). Then, q* can be estimated

experimentally and corresponds to the q-value that minimizes (12). However, a better
statistical parameter for this purpose is the relative error of 


H
3  given by (7). An

estimator of the relative error (7) (denoted as 
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where  h(x), 
 � �I
;
[  and 


H
3 are given by (3), (11) and (5), respectively.

Expressions (5) and (13) are computed at the same time for a given q  (fixed during
the training), N  (that can be adjusted in each iteration), and g(Â��ZKLFK�FKDQJHV�DV�WKH
training progresses. At the end of the training, 


H
3  and 



Ö

H
3

e are good estimations of Pe

and 



H
3

e , respectively. After some computer runs with different q-values, the optimal

q* of minimum 



Ö
H
3

e can be obtained by inspection.
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In a general application, where parameter q can be a vector, the minimization of
(13) have to be performed by an adequate optimization algorithm like stochastic
gradient descent algorithms [4,5] or, alternatively, by genetic algorithms. Nowadays,
this subject is under consideration by our research group.

Finally, we have to point out that (11) is a suboptimal solution of 
 � �I
;
[  (optimum

expressed by (10)), if the neural network is already trained (or quasi-trained), as is
stated and fulfilled in [10], because Importance Sampling was applied there for testing
performances.  Nevertheless, (11) can be used also in the first iterations of the training
because the error probability (Pe) is high and the error probability estimation 
� �

H
3  is

also high (although inaccurate). In the last iterations of the training (network quasi-
trained), both Pe and 


H
3  are low (or very low) and close each other. These facts were

also tested by means of computer simulations.

3 Computer Simulations

In order to show how Importance Sampling works in neural detectors, consider a
detection of binary symbols in Gaussian noise. The hypotheses are 

�
�+ = +[ D  and

�
�+ = -[ D , where 
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D L Qm= =  and m is a real constant

(for simulations m=2), 
� �

� � ����� �
Q

h h h=  is a Gaussian noise vector of independent

and identically distributed zero-mean components of unit variance. Then, the pdf’s
under each hypothesis are normal distributed with means a and –a, respectively, i.e.
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Also, we suppose for simulations that P(H1) =P(H0)=1/2 (the symbols are equally
likely).

Referring to Fig. 1, a Multi-Layer Perceptron (MLP) is the NN used as nonlinear
system g(x). The parameters for the MLP are 5�5�1 (i.e. number of input nodes: n=5,
number of hidden-layer nodes: 5, number of outputs: 1) and the threshold T0=0.5. A
genetic algorithm [14] is used for training the MLP. Genetic algorithms for
optimization are very close to Monte Carlo techniques, so Importance Sampling is
well tailored for training neural networks by genetic algorithms. Computer programs
for implementing both genetic algorithm and Importance Sampling are independent,
and a main program calls each one. Although our genetic algorithm (with elitism) is
not the subject of this paper (in fact, here it is only considered as a tool), we give the
parameters used in our training. These are the following: number of MLP’s in genetic
set: 20; mutation probability: 0.1; crossover probability: 0.1; fitness function:


ORJ� �
H
3- ; number of iterations (generations): 100. The number of patterns (input

sample vectors) for estimating 


H
3  by IS technique is N (102<N<103); in fact, it is
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required N>200 for efficient training. Finally, for this application, back-propagation
training does not work well because the objective function (5) is discontinuous (due to
the unit-step function in (3)).

In this example, after numerical computations of (13) with q=m, we obtain the
solution q*=0 which minimizes expression (13); consequently, from (11) we have that
the noise pdf is the suboptimal solution for the IS pdf, i.e.

�
 � �

�

�
� � �� � H[S

�

Q

Q

L

L

I [p -

=

Ë Û= -Ì Ü
Í Ý

Ê;
[ (15)

In Fig. 2, we show the results of the error probability estimations ( 


H
3 ) versus

iteration number. Also, for q*=0 in (11), we have (15) as our IS pdf to generate
patterns for training. We have used a number of patterns N=200 in the first iterations
of the training process, and N=103 in the last ones (N increases from 200 to 103,
following a cubic parabola as the training progresses). So, N increases slowly at the
beginning of the training, and very fast at the end. In Fig. 3, we present the relative
error 



Ö

H
3

e  computed from (13) at the same time that 


H
3  is computed from (5). In the

first iterations of the training, both 


H
3  and 



Ö

H
3

e  are high, and inaccurate estimations of

Pe and 



H
3

e , respectively, because of two reasons. The first reason is the low number

of vector samples (N=200) in the computations of 


H
3  and 



Ö

H
3

e ; the second reason is

that 
 � �I
;
[  (corresponding to q*=0) departs from the optimum one. In the last

iterations of the training, N=103 and 
 � �I
;
[  corresponds to the optimum (q*=0), then

both 


H
3  and 



Ö

H
3

e  are highly accurate ( 
 �� ��
H
3 -  ¼  with an error 



Ö �

H
3

e   %  from Figs.

2 and 3, respectively, and the iteration number equals 100).
We can see a quick convergence of the training (less than 60 iterations) and the

quasi-optimality of the resultant neural detector with 
 �� ��
H
3 -  ¼ , which is close to

the optimal Bayes’ detector (linear detector) with �

%D\HV� � ���� ��
H
3 -= ¼ . On the other

hand, if we use a standard Monte Carlo simulation for estimating Pe (denoted as Ö
H
3 ),

we need more than N=107 patterns (compare with N=103 of the Importance
Sampling). For the case of a Monte-Carlo simulation with N=107 we have obtained an

error probability estimation � 
Ö ��� ��
H H
3 3-= ¼    (within a precision of 15%).

In Figs. 4 and 5 we have considered the same conditions and parameters to those of
Figs. 2 and 3, except for the number of patterns (N). Now, N=103 for each iteration
number (the same number of patterns in the first iterations and in the last ones). As it
can be seen, Figs. 2 and 3 are noisier than Figs. 4 and 5, respectively; however, Figs.
2 and 4 converge to the same value (§� �Â��-6) with the same precision (5% of
precision from Figs. 3 and 5), whenever the 80th iteration is reached. On the other
hand, the time required for Figs. 2 and 3 was 3 minutes in a Pentium III-PC at 800
Mhz, and 9 minutes for Figs. 4 and 5 (programs were written in Matlab).
Consequently, it is better to use: 200<N<103 in an adjustable way, depending on the
training iteration number.
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Fig. 2. Error Probability (Pe) versus iteration number for the neural detector training, using the
Importance Sampling technique. An MLP of 5�5�1 nodes, and a genetic algorithm for training
with 200 patterns (input sample vectors) in the first iterations and 1000 patterns in the last ones.
The IS parameter q*=0 (optimum for the IS pdf).

Fig. 3. Relative Error (



Ö
H
3

e ) of Pe (corresponding to Fig. 2) versus iteration number for the

neural detector training, using the Importance Sampling technique. An MLP of 5�5�1 nodes,
and a genetic algorithm for training under the conditions of  Fig. 2.
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Fig. 4. Error Probability (Pe) versus iteration number for the neural detector training, using the
Importance Sampling technique. An MLP of 5�5�1 nodes, and a genetic algorithm for training
with 1000 patterns (input sample vectors) in each iteration. The IS parameter q*=0 (optimum).

Fig. 5. Relative Error (



Ö
H
3

e ) of Pe (corresponding to Fig. 4) versus iteration number for the

neural detector training, using the Importance Sampling technique. An MLP of 5�5�1 nodes,
and a genetic algorithm for training under the conditions of  Fig. 4.
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Fig. 6. Error Probability (Pe) versus iteration number for the neural detector training, using the
Importance Sampling technique. An MLP of 5�5�1 nodes, and a genetic algorithm for training
with 1000 patterns (input sample vectors) in each iteration. The IS parameter q =1 (which is
non-optimum for IS pdf).

Fig. 7. Relative Error (



Ö
H
3

e ) of Pe (corresponding to Fig. 6)  versus iteration number for the

neural detector training, using the Importance Sampling technique. An MLP of 5�5�1 nodes,
and a genetic algorithm for training under the conditions of  Fig. 6.
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In Figs. 6 and 7 we have considered the same conditions and parameters to those of
Figs. 4 and 5, except for the IS parameter q. Now, q =1 is non-optimum for the IS pdf
given by (11), because (13) is high (



Ö ��

H
3

e   %  in Fig. 7, and compare with Fig. 5).

Similar conclusions can be obtained for other MLP structures (e.g. 8�8�1 or
8�4�1, 10�5�1, etc.), trained under the conditions given above. For example, for the
case 8�8�1, we have 
 �� ��

H
3 -  ¼ ; for the case 8�4�1, we have 
 ���

H
3 -  ; then both

are quasi-optimum, because �

%D\HV� � ��� ��
H
3 -= ¼ (the optimal Bayes detector). Finally,

another issue is the analysis of the robustness of these neural detectors, i.e. testing our
neural detectors against hypotheses slightly different from the training hypotheses
(analysis of departures from the assumptions).

4 Conclusions

Importance Sampling (IS) techniques have been presented in order to drastically
accelerate “low error probability” estimations, needed to supervise the Neural
Network training in detection applications.

Adequate modifications on the error probability objective function were realized in
order to use standard training algorithms for neural detector training. This approach is
useful in communications systems, where very low error probabilities are concerned.
Also, generalizations to other types of objective functions are straightforward.

The suboptimal IS probability density function (biasing density function)
corresponding to the trained conditions is useful for all the training process. From
empirical examples, we have shown that the number of 107 (or more) input sample
vectors (patterns) per iteration, required by standard Monte Carlo techniques, is
reduced to 103 (or even less) patterns per iteration with the IS method. This reduction
is independent of the training algorithm type. Note that back-propagation algorithm
requires continuity of the objective function, so that its use is problematic in our
application (due to the unit-step function appears in our objective function).

Finally, further work is required to consider adaptive IS probability density
functions in the training (a technique that consists of improving the IS probability
density function as the training progresses). Also, the training of neural detectors
under Neyman-Pearson’s criterion and Importance Sampling is now under
consideration in our research group.
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