
Induction of Qualitative Trees

Dorian Šuc1 and Ivan Bratko1

Faculty of Computer and Information Science, University of Ljubljana,
Tržaška 25, 1000 Ljubljana, Slovenia

{dorian.suc, ivan.bratko}@fri.uni-lj.si

Abstract. We consider the problem of automatic construction of qual-
itative models by inductive learning from quantitative examples. We
present an algorithm QUIN (QUalitative INduction) that learns qualita-
tive trees from a set of examples described with numerical attributes. At
difference with decision trees, the leaves of qualitative trees contain qual-
itative functional constraints as used in qualitative reasoning. A quali-
tative tree defines a partition of the attribute space into the areas with
common qualitative behaviour of the chosen class variable.
We describe a basic algorithm for induction of qualitative trees, improve
it to the heuristic QUIN algorithm, and give experimental evaluation of
the algorithms on a set of artificial domains. QUIN has already been
used to induce qualitative control strategies in dynamic domains such
as controlling a crane or riding a bicycle (described elsewhere) and can
be applied to other domains as a general tool for qualitative system
identification.

1 Introduction

Various studies in recent years showed that for some tasks qualitative models are
more suitable than classical quantitative (numerical) models. These tasks include
diagnosis [1], generating explanation of the system’s behaviour [7] and designing
novel devices from first principles [17]. Qualitative reasoning about processes
(QPT-Qualitative Process Theory) [8] and qualitative simulation (QSIM) [9]
with Qualitative Differential Equations enable a kind of commonsense reasoning
by abstracting numerical values into qualitative values and real functions into
qualitative constraints.

Besides qualitative reasoning and qualitative simulation, qualitative models
can also be used to guide machine learning [3] and offer a space for solution op-
timization [16,12]. However, building a qualitative model for a complex system
requires significant knowledge and is a time-consuming process. For this reason,
many researchers are addressing the problem of automatic generation of quali-
tative models. One approach is to build models from existing libraries of model
fragments [8]. Another approach is to learn a model of a physical system from
behaviours using existing knowledge of processes and mechanisms commonly
found in physical systems [5]. Less knowledge-intensive approaches [4,2,6,10] use
inductive learning of qualitative differential equations from a set of qualitative
behaviours.

L. De Raedt and P. Flach (Eds.): ECML 2001, LNAI 2167, pp. 442–453, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Induction of Qualitative Trees 443

In this paper we present algorithm QUIN for induction of qualitative con-
straint trees from examples described with numerical attributes. At difference
with decision trees, the leaves of qualitative trees contain qualitative functional
constraints that are inspired by qualitative proportionality predicates Q+ and
Q− as defined by Forbus [8]. This is a novel approach to automatic generation of
qualitative models. To our knowledge, no study has yet addressed the induction
of similar tree-structured qualitative constraints from numerical examples.

The motivation for learning of qualitative trees came from applications in
reconstruction of human skill to control dynamic systems, such as a plane or a
crane. Our experiments in controlling a crane [12] and double pendulum called
acrobot [13], showed that qualitative strategies are suitable as explanatory mod-
els of human control skill and can be used as spaces for controller optimization.
These qualitative strategies were obtained as abstractions of quantitative control
strategies induced from the logged data from skilled human operators. The learn-
ing of qualitative trees directly from numerical examples is a natural extension
of that approach.

The structure of the paper is as follows. First we give the learning problem de-
scription for induction of qualitative trees and define monotonicity constraints,
called qualitatively constrained functions. Then we describe how qualitatively
constrained functions are learned from a set of numeric examples. This provides
the basis for induction of qualitative trees in Section 4. Finally, we give experi-
mental evaluation of the algorithms on a set of artificial domains and conclude.

2 Learning Problem Description

2.1 Qualitative Trees

We consider the usual setting of classification learning, but in our case the hy-
pothesis language involves qualitative constraints. Let there be N learning ex-
amples. Each example is described by n + 1 continuous variables X1, . . . , Xn+1.
The variable Xn+1 is called the class, and the others are called attributes.

Given the learning examples, our problem is to learn a hypothesis that sep-
arates the areas of attribute space which share a common qualitative behaviour
of the class variable. We learn such hypotheses in the form of qualitative trees. A
qualitative tree is a binary tree with internal nodes called splits and qualitatively
constrained functions in the leaves. The splits define a partition of the state
space into areas with common qualitative behaviour of the class variable. A split
consists of a split attribute and a split value. Qualitatively constrained functions
(abbreviated QCFs) in leaves define qualitative constraints on the class variable.

Fig. 1 shows an example of qualitative tree induced from a set of example
points for the function z = x2 − y2.

2.2 Qualitatively Constrained Functions

Qualitatively constrained functions are inspired by the qualitative proportional-
ity predicates Q+ and Q− as defined by Forbus [8] and are also a generalization

444 D. Šuc and I. Bratko

z=M
-,+(x,y) z=M

-,-(x,y) z=M
+,+(x,y) z=M

+,-(x,y)

££££ 0> 0 > 0

££££ 0 > 0

££££ 0

y

x

y

Fig. 1. A qualitative tree induced from a set of examples for the function z = x2 − y2.
The rightmost leaf, applying when attributes x and y are positive, says that z is strictly
increasing in its dependence on x and strictly decreasing in its dependence on y.

of the qualitative constraint M+, as used in [9]. We use QCFs to define qualita-
tive constraints on the class variable. A QCF constrains the qualitative change
of the class variable in response to the qualitative changes of the attributes.

A qualitatively constrained function Ms1,...,sm : <m 7→ <, si ∈ {+,−} repre-
sents an arbitrary function with m ≤ n continuous attributes that respect the
qualitative constraints given by signs si. The qualitative constraint given by sign
si = + (si = −) requires that the function is strictly increasing (decreasing) in
its dependence on the i-th attribute. We say that the function is positively re-
lated (negatively related) to the i-th attribute. Ms1,...,sm represents any function
which is, for all i = 1, . . . , m positively (negatively) related to the i-th argument,
if si = + (si = −).

Note that the qualitative constraint given by sign si = + only states
that when the i-th attribute increases, the QCF will also increase, barring
other changes. It can happen that a QCF with the constraint si = + de-
creases even if the i-th attribute increases, because of a change in another at-
tribute. For example, consider the behaviour of gas pressure in a container:
Pres × V ol/Temp = const. We can express the qualitative behaviour of gas
by QCF Pres = M+,−(Temp, V ol). This constraint allows that the pressure de-
creases even if the temperature increases, because of a change in the volume. Note
however, that gas qualitative behaviour is not consistent with Pres=M+(Temp).

QCFs are concerned with qualitative changes and qualitative change vectors.
Qualitative change qj is the sign of change in continuous variable Xj , where qj ∈
{pos, neg, zero}, corresponding to positive, negative or zero change. A qualitative
change vector is a vector of qualitative changes of the variables. We define QCF-
prediction P (si, qi) as:

P (si, qi)=




pos, if (si=+ ∧ qi=pos) ∨ (si=− ∧ qi=neg)
neg, if (si=+ ∧ qi=neg) ∨ (si=− ∧ qi=pos)
zero, otherwise

A qualitative change vector q = (q1, . . . , qn+1) is consistent with a given QCF
Ms1,...,sm , if the QCF does not reject the qualitative change of the class variable,
that is, if either (a) class qualitative change is zero, (b) all attribute’s QCF-

Induction of Qualitative Trees 445

predictions are zero, or (c) there exists an attribute whose QCF-prediction is
equal to the class’s qualitative change.

A QCF does not always uniquely predict the class’s qualitative change given
the qualitative changes of the attributes. Qualitative ambiguity, i.e. ambiguity
in the class’s qualitative change appears whenever there exist both positive and
negative QCF-predictions or whenever all QCF-predictions are zero. In this case
any qualitative class change is consistent with the QCF.

3 Learning Qualitatively Constrained Functions

When learning a QCF from a set of numerical examples we are interested in a
QCF that is consistent with most of the examples, i.e. in the “minimal cost”
QCF. For this reason we define error-cost E(g) of a QCF g (defined later in Eq.
3) that penalizes g with inconsistent and ambiguous qualitative change vectors
at every example. The “minimal cost” QCF is learned from a set of numerical
examples by first forming qualitative change vectors from examples and then
minimizing error-cost of a QCF over all possible QCFs.

First, every pair of examples e and f 6= e is used to form a qualitative change
vector with qualitative changes q(e,f),j ∈ {pos, neg, zero}, j = 1, . . . , n+1 defined
as:

q(e,f),j =




pos, if xf,j > xe,j + Tzeroj

neg, if xf,j < xe,j − Tzeroj

zero, otherwise
(1)

where Tzeroj denotes a user-defined steady threshold defining negligible changes
of j-th attribute. The default value of Tzeroj is 1% of the difference between
maximal and minimal value of j-th attribute. Typically, many pairs of examples
map into the same qualitative change vector. A qualitative change vector is either
consistent or not consistent with a given QCF. Note that a consistent qualitative
change vector can also be ambiguous for a given QCF.

We illustrate the method to find the “minimal cost” QCF by an example
of gas in the container. Fig. 2 gives five numerical examples described with at-
tributes Temp and V ol and class Pres, giving gas temperature, volume and
pressure according to equation Pres = 2 Temp/V ol. There are five numerical
points, each with four qualitative change vectors with respect to other points.
Fig. 2 illustrates qualitative change vectors q1, q2, q3 and q4 at the circled point
e=(Temp=315, V ol=56, Pres=11.25). To find the “minimal cost” QCF at point
e, qualitative change vectors that are inconsistent and ambiguous with each pos-
sible QCF are counted. Consider for example QCF Pres = M+(Temp). Qualita-
tive change vector q3=(qTemp=neg, qV ol=neg, qPres=pos) is not consistent with
this QCF since the QCF-prediction of the only attribute (P (+, qTemp)=neg) is
different than the qualitative class change qPres=pos. Qualitative change vector
q1=(qTemp=zero, qV ol=pos, qPres=neg) is ambiguous with respect to this QCF.

The table in Fig. 2 gives qualitative change vectors at point e that are incon-
sistent with and ambiguous for each possible QCF. QCF M+,−(Temp, V ol) is

446 D. Šuc and I. Bratko

1: (zero,pos,neg)

4: (neg,neg,neg)

2: (pos,neg,pos)

Qual. change vectors at point e=(Temp=315, Vol=56, Pres=11.25)
Numeric examples

3: (neg,neg,pos)

P
re

s

qTemp=neg
qVol =neg
qPres =pos

Numeric examples:

 Temp Vol Pres

315.00 56.00 11.25

315.00 62.00 10.16

330.00 50.00 13.20

300.00 50.00 12.00

300.00 55.00 10.90

Temp

Vol

q

q

q

q

QCF Inconsis. Ambig. QCF Inconsis. Ambig.

Pres=M+(Temp) q3 q1 Pres=M+,+(Temp, V ol) q1, q3 q2

Pres=M−(Temp) q2, q4 q1 Pres=M+,−(Temp, V ol) / q3, q4

Pres=M+(V ol) q1, q2, q3 / Pres=M−,+(Temp, V ol) q1, q2 q3, q4

Pres=M−(V ol) q4 / Pres=M−,−(Temp, V ol) q4 q2

Fig. 2. Gas in the container example: five numerical examples are represented as
points in the attribute space. The arrows denote the qualitative change vectors at the
circled point e. For example, the point (Temp=300, V ol=50, Pres=12) gives quali-
tative change vector q3=(qTemp=neg, qV ol=neg, qPres=pos) with point e. The table
bellow gives qual. change vectors that are inconsistent and ambiguous for each possible
QCF.

the only QCF consistent with all qualitative change vectors and is the “minimal
cost” QCF. It also minimizes the error-cost (defined below) over all QCFs.

The error-cost of a QCF is based on the minimum description length principle
[11]. Basically it is defined as the number of bits needed to code the QCF plus
the number of bits to code the inconsistent and ambiguous qualitative change
vectors as follows. Let Ce(q) and ne(q) denote respectively the set and the number
of all examples f that form, with e, qualitative change vector q (with qualitative
changes qj):

Ce(q) = {f |∀j = 1, . . . , n + 1 : q(e,f),j = qj}, ne(q) = |Ce(q)| (2)

In the above gas in the container example, the circled point e and qualitative
change vector q3 give Ce(q3) = {(Temp=300,Vol=50,Pres=12)} and ne(q3)=1.
The error-cost E(g) of a QCF g that mentions m out of all n attributes is:

E(g) = log2 n + m(log2 n + 1) +

log2 Nnonamb + Nreject(log2 Nnonamb) + log2 Namb + Namb

(3)

Here Nreject denotes the number of example pairs (e,f), f 6= e, that form a
qualitative change vector that is not consistent with QCF g and is computed as
the sum of ne(q) over all examples e and over all qualitative change vectors q that
are not consistent with g. Similarly, Namb and Nnonamb denote the sum of ne(q)

Induction of Qualitative Trees 447

of vectors q that are respectively ambiguous and not ambiguous for g. This error-
cost is based on the following encoding: we code the QCF, the indexes of Nreject

inconsistent qualitative change vectors (each index requires log2 Nnonamb bits
since ambiguous qualitative change vectors are always consistent) and one bit
for each ambiguous qualitative change vector. Note that we specify just the signs
of class changes for ambiguous qualitative change vectors and we do not need
to specify which qualitative change vectors are ambiguous, since all qualitative
change vectors of particular forms are ambiguous for a given QCF.

The given error-cost penalizes inconsistent and ambiguous qualitative change
vectors formed from every pair of examples. We later define (Eq. 7) a different
error-cost and refer to here defined error-cost also as ep-QUIN error-cost (ep
standing for every pair).

4 Learning Qualitative Trees

Here we describe how a qualitative tree is learned from a set of numeric examples.
The algorithm uses top-down greedy approach and is guided by error-cost of a
QCF. We define two learning algorithms that use different error-costs. First
we give ep-QUIN algorithm that uses error-cost defined in Section 3. Then we
present an example showing the myopia of ep-QUIN algorithm and (in Section
4.3) give an improvement of ep-QUIN, i.e. QUIN algorithm.

4.1 Algorithm ep-QUIN

Algorithm ep-QUIN uses top-down greedy approach similar to the ID3 algo-
rithm. Given the examples, ep-QUIN chooses the best split by comparing the
partitions of the examples they generate: for every possible split, it splits the
examples into two subsets, finds the “minimal cost” QCF in both subsets, and
selects the split which minimizes the tree error-cost (defined below). It puts the
best split in the root of the tree and recursively finds subtrees for the correspond-
ing example subsets, until the best split does not improve the tree error-cost.

The tree error-cost of a leaf is the error-cost E(g) (Eq. 3) of the QCF g that
is induced from the examples in the leaf. The tree error-cost of an internal node
is the sum of error-costs of both subsets plus the cost of the split, i.e. the number
of bits needed to encode the split:

Etree = Eleft + Eright + SplitCost

SplitCost = log2 n + log2(Splitsi − 1)
(4)

Here Eleft and Eright denote the error-costs in both subsets, n is the number of
variables and Splitsi is the number of possible splits for the split variable, i.e.
the number of different values of the variable Xi.

4.2 An Example

Here we give a simple example showing the myopia of ep-QUIN’s error-cost.
Fig. 3 shows the learning dataset consisting of 12 learning examples with one

448 D. Šuc and I. Bratko

y=M
-
(x)y=M

-
(x)

y=M
+(x)

y=M
+(x)

x
££££ 21 > 21

> 11££££ 11
0

2

4

6

8

10

12

14

0 5 10 15 20 25
x(attribute)

y
(c

la
ss

)
££££ 1 > 1

x

x

Fig. 3. Example partition and a qualitative tree induced by ep-QUIN. The points on
the left figure give 12 learning examples with attribute x and class y. The vertical lines
correspond to the example partition from the qualitative tree on the right.

attribute x and class y. The examples correspond to 3 linear functions that are
increasing in its argument x:

y =




2x + 7, x= 0, 1, 2, 3
2x − 16, x= 10, 11, 12, 13
2x − 39, x= 20, 21, 22, 23

(5)

Given these examples ep-QUIN algorithm proceeds as follows. It first finds
the “most-consistent” QCF for the whole attribute space and then tries to reduce
the error-cost by splitting the attribute space into subregions. There are 12
examples, therefore ep-QUIN forms 12×(12−1)=132 qualitative change vectors.
With x as the only attribute there are only two possible QCFs: QCF y = M+(x)
that is consistent with 50 (out of 132) qual. change vectors and y = M−(x) that
is consistent with 82 qual. change vectors. Split minimizing ep-QUIN error-cost
is x ≤ 1, splitting the examples into two subsets. In the first subset (x ≤ 1) there
are only two examples, forming two qualitative change vectors, both consistent
with y = M+(x). The second subset (x > 1) is then further divided, resulting
in the qualitative tree given in Fig. 3. Note that the split at x = 11 splits the
examples into two leaves with the same QCF y = M−(x). A split giving the
same leaves would be unusual for decision trees, but is correct for qualitative
trees since the split divides the examples into monotonic areas.

Clearly the induced qualitative tree is not optimal. We would prefer a qual-
itative tree with 3 leaves (each with QCF y=M+(x)), that would divide the
attribute space into 3 regions corresponding to definition areas of 3 linear func-
tions. One reason is that ep-QUIN does not consider the locality of qualitative
changes. A human observing Fig. 3 might notice 3 groups of near-by exam-
ple points and consider the proximity of examples when estimating qualitative
changes at a particular example point. In this way a qual. change of nearby
points (x=1 and x=2 for example) would be weighted more than a qual. change
of far-away points (x=1 and x=13). One might also consider the consistency of
qualitative class change for a particular vector of qualitative attributes changes.
One way to asses the consistency of qual. class change for a particular vector of

Induction of Qualitative Trees 449

qual. attributes changes qx is to consider 3 nearest neighbors (ignoring the class
distance) of a given point that form qx with this point. Then the confidence in
the positive class change (qy=pos) for vector of qual. attributes changes qx=pos
at the point at x=0 would be higher than at the point at x=2 since all three cor-
responding neighbors (with qx=pos) of the first point give positive class change,
whereas the second point has one neighbor giving positive class change (point at
x=3) and two neighbors giving negative class change (points at x=10,11). Here
only neighbors giving qx=pos with the reference point are considered since this
is confidence for vector of qualitative attributes changes qx=pos.

An improvement of ep-QUIN, algorithm QUIN follows this idea, i.e. it con-
siders also the locality and consistency of qualitative change vectors. Note that
QUIN algorithm, from this learning dataset, induces the above mentioned qual-
itative tree with 3 leaves, each with QCF y=M+(x).

4.3 Algorithm QUIN

QUIN is an improvement of the ep-QUIN algorithm that follows the ideas de-
scribed in the example above. The algorithms differ in their error-cost. ep-QUIN’s
error-cost (Eq. 3) uses only counts of inconsistent and ambiguous qualitative
change vectors. QUIN’s error-cost (defined later in Eq. 7) uses heuristic confi-
dence estimates of qualitative change vectors that take into account the proxim-
ity of examples and the consistency of qualitative change vectors.

The proximity of the examples e and f is evaluated by Gaussian weight
w(e, f) = e

−d(e,f)
2K2 , where d(e, f) is the normalized Euclidean distance of the

examples that considers only the attributes of the two examples and K is a
user-defined parameter with the default value computed as 10 % of maximal
Euclidean distance of two examples from the learning dataset. By changing K,
more (smaller K) or less importance is assigned to the distance between examples
and therefore more local (smaller K) or more global estimates are used.

We say that example f is a q-neighbor of example e if the qualitative change
vector q(e,f) is equal to q in all the qualitative attribute changes (but not neces-
sarily in the qualitative class change). Let Ne(q) denote the set of all q-neighbors
of e and N k

e (q) the set of k nearest q-neighbors of example e. The confidence es-
timate we(q) of the qualitative change vector q at example e takes into account
the proximity of the k nearest q-neighbors and the consistency of qualitative
class change w.r.t. the k nearest q-neighbors. The intuition in estimates we(q)
is in modelling the local probability of qualitative class change qn+1 given the
attribute’s changes qi, i = 1, . . . , n:

Ne(q) = {f |∀j = 1, . . . , n : q(e,f),j = qj}
N k

e (q) = set of k examples f ∈ Ne(q) minimizing d(e, f)

Ck
e (q) = {f ∈ N k

e (q)|q(e,f),n+1 = qn+1}
we(q) =

1
|N k

e (q)|
∑

f ∈Ck
e (q)

w(e, f)

(6)

450 D. Šuc and I. Bratko

Here Ck
e (q) denotes the set of k nearest q-neighbors of e with the qualitative class

change equal as in q and k is a user-defined parameter with the default value
5. Note that using

∣∣N k
e (q)

∣∣ in denominator penalizes estimate we(q) if nearest
q-neighbors of e differ in qualitative class change.

Lets consider the example in Fig. 3. Suppose that e0 and e2 are respectively
the points at x=0 and x=2. Then for qualitative change vector q=(pos, pos) the
set N 3

e2
(q) are the examples at x=3,10,11 and C3

e2
(q) is the example at x=3.

The confidence estimate we2(q) is one third (1/
∣∣N 3

e2
(q)

∣∣) of the Gaussian weight
w(e2, f) that evaluates the proximity of examples e2 and the example at x=3.
The sets N 3

e0
(q) and C3

e0
(q) are the examples at x=1,2,3. Therefore qualitative

change vector q=(pos, pos) has higher confidence estimate at e0 than at e2.
QUIN’s error-cost is similar to ep-QUIN’s error-cost, but with QUIN’s error-

cost the qualitative change vectors q are weighted according to their confidence
estimates we(q) (Eq. 6). Because of this weighting QUIN’s error-cost is heuristic
and does not correspond to a particular coding of examples. The error-cost E(g)
of a QCF g that mentions m out of all n attributes is:

E(g) = log2 n + m(log2 n + 1) +

log2 Wnonamb + Wreject(log2 Wnonamb) + log2 Wamb + Wamb

(7)

Here Wreject denotes the sum (over all examples e) of estimates we(q) of qual-
itative change vectors q that are not consistent with g. Similarly Wamb and
Wnonamb denote the sum of estimates we(q) of vectors q that are respectively
ambiguous and not ambiguous for g.

Besides the improved error-cost, QUIN uses also a more efficient algorithm for
selecting the “minimal cost” QCF. ep-QUIN finds the “minimal cost” QCF by
a simple exhaustive search algorithm that forms all possible QCFs and selects
the one with the smallest error-cost. This requires the number of error-cost
computations that is exponential in the number of attributes. Instead of the
exhaustive search, QUIN uses a greedy heuristic algorithm that requires the
number of error-cost computations that is quadratic in the number of attributes,
but does not guarantee the “minimal cost” QCF. The idea is to start with the
QCF that minimizes error-cost over all QCFs that use only one attribute, and
then use error-cost to refine the current QCF with another attribute.

5 Experimental Evaluation of QUIN Algorithm

Here we experimentally evaluate learning qualitative trees from numerical ex-
amples on a set of artificial domains. Since the usual error measures, such as
accuracy or mean squared error, are not suitable for qualitative models, we de-
fine qualitative tree performance as a measure of qualitative tree prediction error.
Then we describe the details of our experiments and give results.

We define qualitative tree performance as a pair of qualitative consistency
and qualitative ambiguity, that are the percentages of qualitative change vectors
that are respectively consistent with, and ambiguous for a qualitative tree. The
examples are partitioned according to the splits of the tree and for each example

Induction of Qualitative Trees 451

Table 1. Experimental results: the second column gives the description of the domains,
i.e. the class variables c as the function of uniformly distributed attributes. The third
column gives qualitative performance of the optimal qualitative tree. The fourth and
the fifth column give qualitative performance of trees induced by ep-QUIN and QUIN.

Domain Class variable Optimal ep-QUIN QUIN
Sin c = sin(π × x

10) 100/6 100.0/6.4 100.0/5.8
SinLn c = x

10 + sign(x) × sin(π × x
10)) 100/4 96.2/11.8 98.7/3.1

Poli c = ln(104+|(x+16)(x+5)(x−5)(x−16)|) 100/10 96.9/27.4 96.4/6.3

Signs c =

{
sign(u + 0.5)(x − 10)2, if v ≥ 0
sign(u − 0.5)(y + 10)2, otherwise

100/2 93.2/19.4 97.4/8.1

QuadA c = x2 − y2 100/44 99.0/27.1 99.7/33.9
QuadB c = (x − 5)2 − (y − 10)2 100/44 98.3/17.4 99.7/27.2

SQuadB c = sign(u)((x − 5)2 − (y − 10)2) 100/38 96.6/32.7 98.0/31.1
Y SinX c = y sin(π × x

10) 100/39 94.0/62.0 81.6/12.4

partition the qualitative change vectors are formed. Consistency is the percentage
of qualitative change vectors that are consistent with QCFs in the corresponding
leaves. Ambiguity is the percentage of qualitative change vectors which give
ambiguous QCF-prediction in the corresponding leaves.

When giving the qualitative tree performance we use the notation c/a, where
c denote the consistency and a ambiguity of a qual. tree on the example set.
We prefer a qual. tree with high consistency and low ambiguity. However, low
ambiguity is not possible when many attributes are used in the same QCF.

Ambiguity is used in qualitative tree performance since consistency of the
qualitative tree does not give full information about the qualitative tree predic-
tion strength. Consider for example a dataset with two attributes x1 and x2 that
are pairwise equal for all the examples. Then QCF M+,−(x1, x2) is consistent
with all the examples, but is not useful in predicting qualitative class change,
since it is also ambiguous for any qualitative change vector from the dataset.
The qualitative tree performance would in this case be 100%/100%.

The learning algorithms were evaluated on a set of artificial domains with
uniformly distributed attributes x, y ∈ [−20, 20] and u, v ∈ [−1, 1]. The class
variables c, i.e. the variables to be predicted by a qualitative trees were computed
as given in Table 1. For learning we used just the relevant attributes plus 2
uniformly distributed (noise) attributes that do not affect the class value.

To compare qualitative performance of the trees produced by the two algo-
rithms we used learning sets consisting of 200 examples and a separate test set
consisting of 500 examples. The results in Table 1 are averages of 10 runs. The
table also gives the qualitative performance of the optimal qualitative trees, i.e.
the smallest trees with 100% consistency. An example of such optimal qualitative
tree for the domain QuadA is given on Fig. 1. Note that the ambiguity of the
optimal trees is not zero. This is either because QCFs in leaves use more than
one attribute or because of zero change of all the attributes used in a QCF.

452 D. Šuc and I. Bratko

On most of the domains, QUIN has better qualitative performance, i.e. higher
qualitative consistency and lower ambiguity. Usually QUIN induces a “near-
optimal” tree, i.e. small tree with consistency over 96%. The exception is the
domain Y SinX where the optimal tree has 16 leaves. ep-QUIN and QUIN fail
to find a “near-optimal” tree in this domain.

-20 -15 -10 -5 0 5 10 15 20

x
1000

1500

2000

2500

ep-QUIN tree error-cost
QUIN tree error-cost

Fig. 4. ep-QUIN’s and QUIN’s criterion of split goodness (i.e. tree error-cost) for
attribute x in domain Sin. Note that x values with minima of QUIN’s error cost
(x=5,-5,-15, 15) correspond to points dividing sin(πx/10) into monotonic areas.

When we compared the trees induced by ep-QUIN and QUIN, we observed
that QUIN trees are usually smaller and better correspond to the human intu-
ition. An example is the domain Sin where QUIN usually induces optimal tree
with 5 leaves, whereas ep-QUIN induces larger tree. Fig. 4 gives ep-QUIN’s and
QUIN’s tree error-cost for the only relevant attribute x in the domain Sin. Both
algorithms put the split that minimizes the tree error-cost in the root of the qual-
itative tree. Minima of QUIN tree error-cost (x=5,-5,-15, 15) correspond to splits
dividing sin(πx/10) into monotonic areas, whereas minimum of ep-QUIN tree
error-cost (x=0) is not a good split since it splits a monotonic area x ∈ [−5, 5].
QUIN puts the split x ≤ 5 in the root of the qualitative tree, whereas ep-QUIN
chooses a suboptimal split x ≤ 0 as the topmost split.

6 Conclusions

We presented the QUIN algorithm for induction of qualitative trees and eval-
uated it on a set of artificial domains. To our knowledge, no study has yet
addressed the induction of similar tree-structured qualitative constraints from
numerical examples. QUIN, a heuristic improvement of the basic ep-QUIN al-
gorithm, usually produces preferable qualitative trees and is more time-efficient.
Our experiments described here and in [14] show that QUIN can handle noisy
data, and, at least in simple domains, produces qualitative trees that correspond
to human intuition.

In [14,15] QUIN has already been used to induce qualitative control strategies
in dynamic domains such as controlling a crane or riding a bicycle. In both

Induction of Qualitative Trees 453

domains some surprising and non-trivial aspects of human control skill have been
induced. QUIN can be applied to other domains as a general tool for qualitative
system identification.

Acknowledgements. The work reported in this paper was partially supported
by the European Fifth Framework project Clockwork and the Slovenian Ministry
of Education, Science and Sport.

References

1. Bratko, I., Mozetič, I., Lavrač, N.: KARDIO: a Study in Deep and Qualitative
Knowledge for Expert Systems. MIT Press (1989).

2. Bratko, I., Muggleton, S., Varšek, A.: Learning qualitative models of dynamic
systems. In Proc. of the 8th Int. Conf. on Machine Learning (1991).

3. Clark, P., Matwin, S.: Using qualitative models to guide inductive learning. In
Proc. 10th Int. Conf. on Machine Learning, 49–56. Morgan Kaufmann (1993).

4. Coiera, E.: Generating qualitative models from example behaviours. Technical
Report Technical report 8901, University of New South Wales (1989).

5. Doyle, R.: Hypothesizing Device Mechanisms: Opening Up the Black Box. Ph.D.
Dissertation, Massachusetts Institute of Technology (1988).

6. Džeroski, S., Todorovski, L.: Discovering dynamics. In Proceedings of the 10th
International Conference on Machine Learning 97–103. Morgan Kaufmann (1993).

7. Falkenhainer, B., Forbus, K.: Self explananatory simulations: an integration of
qualitative and quantitative knowledge. In Proceedings of the 4th International
Workshop on Qualitative Physics (1990).

8. Forbus, K.: Qualitative process theory. Artificial Intelligence (1984) 24:85–168.
9. Kuipers, B. J.: Qualitative simulation. Artificial Intelligence (1986) 29:289–338.

10. Richards, B., Kraan, I., Kuipers, B: Automatic abduction of qualitative models.
In Proc. of the National Conf. on Artificial Inteligence. AAAI/MIT Press (1992).

11. Rissanen, J.: Modelling by shortest data description. Automatica (1978) 14:465–
471.

12. Šuc, D., Bratko, I.: Symbolic and qualitative reconstruction of control skill. Elec-
tronic Transactions on Artificial Intelligence, Section B (1999) 3:1–22.
http://www.ep.liu.se/ej/etai/1999/002/.

13. Šuc, D., Bratko, I.: Skill modelling through symbolic reconstruction of operator’s
trajectories. IEEE Transaction on Systems, Man and Cybernetics, Part A (2000),
30(06):617–624.

14. Šuc, D: Machine reconstruction of human control strategies. Ph.D. Dissertation,
Faculty of Computer and Information Sc., University of Ljubljana, Slovenia (2001).
http://ai.fri.uni-lj.si/dorian/MLControl/MLControl.htm.

15. Šuc, D., Bratko, I: Qualitative induction. In Proceedings of the 15th International
Workshop on Qualitative Reasoning (2001). Accepted for publishing.

16. Varšek, A., Urbančič, T., Filipič, B.: Genetic algorithms in controller design and
tuning. IEEE Trans. on Systems, Man and Cybernetics (1993), 23(6):1330–1339.

17. Williams, B.: Interaction-based invention: designing devices from first principles.
In Proceedings of the 4th International Workshop on Qualitative Physics (1990).

	Introduction
	Learning Problem Description
	Qualitative Trees
	Qualitatively Constrained Functions

	Learning Qualitatively Constrained Functions
	Learning Qualitative Trees
	Algorithm ep-QUIN
	An Example
	Algorithm QUIN

	Experimental Evaluation of QUIN Algorithm
	Conclusions

