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Abstract. Most evaluation metrics in classification are designed to re-
ward class uniformity in the example subsets induced by a feature (e.g.,
Information Gain). Other metrics are designed to reward discrimina-
tion power in the context of feature selection as a means to combat the
feature-interaction problem (e.g., Relief, Contextual Merit). We define
a new framework that combines the strengths of both kinds of met-
rics. Our framework enriches the available information when considering
which feature to use to partition the training set. Since most metrics
rely on only a small fraction of this information, this framework enlarges
the space of possible metrics. Experiments on real-world domains in the
context of decision-tree learning show how a simple setting for our frame-
work compares well with standard metrics.

1 Introduction

Evaluation metrics play a critical role in the operation of decision-tree learning
algorithms and other symbolic methods for classification, such as rule-based
learning and decision lists. An evaluation metric measures the quality in the
partitions induced by each of the available features (or functions of features) on
a set of training examples; a decision tree is constructed by choosing the highest-
quality feature at each tree node. Selecting the right features has strong impact
on the final decision tree [8[146], contrary to results on earlier studies [9].

Evaluation metrics can be divided in two kinds. The most common kind,
traditional or purity-based, use the proportion of classes on the example subsets
induced by each feature; the best result is attained if each example subset is class
uniform (i.e., comprises examples of the same class). Examples of traditional or
purity-based evaluation metrics are Information Gain and Gain Ratio [I1]12], G
statistic [9], x? [914], Laplace [13], Gini Index [1]. A different class of metrics,
discrimination-based, quantifies the ability of a feature to separate examples
of different class [3J4lf7]; most research in this area is found in the context of
feature selection as a pre-processing step to classification. Discrimination-based
metrics deserve particular attention because of their ability to address the high
interaction problem, in which the relevance of a feature can be observed only in
combination with other features.
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This paper introduces a unified framework for evaluation metrics in classifica-
tion. Our framework is based on a set of parameters and a function of the distance
between examples. We show how varying the choice of parameters and distance
function allows more emphasis to be placed on either the class uniformity or the
discrimination power of the induced example subsets. Our framework, therefore,
enables us to combine the strengths of both traditional (or purity-based) and
discrimination-based metrics. Furthermore, we show how existing metrics can
be defined as instances of this unified framework.

The unification of evaluation metrics in a single framework unveils a space
with more metrics than those currently known. This richer characterization of
metrics opens the gates to a further understanding of the effects that different
splitting functions have during decision-tree learning. Experiments in real-world
domains show that the unified framework produces results comparable to using
the best of a set of standard evaluation metrics.

The organization of the paper follows. Section [2 provides background infor-
mation on classification and decision-tree learning. Section Bl reviews the differ-
ences between purity and discrimination-based metrics. Section [ describes our
unified framework for evaluation metrics. Section Bl shows experiments on real-
world domains using decision trees. Finally, Section [B] presents our conclusions
and future work.

2 Preliminaries

A classifier receives as input a set of training examples Tirain : {(Xi,c)}.
X is a _feature vector characterized as a point in an n-dimensional feature
space, X = (X1,Xa,---,X,,). Each feature Xj can take on a different num-
ber of values {V,,}. We refer to the value of feature X; on vector X; as T,
X; = (2f, b, 2l). X; is labeled with class ¢; according to an unknown target
function or concept C', C(X;) = ¢; (we assume a deterministic target function,
i.e., zero-bayes risk). Tirain consists of independently and identically distributed
(i.i.d.) examples obtained according to a fixed but unknown joint probability
distribution @ in the space of possible feature-vectors X. The goal of the classi-
fier is to produce a hypothesis h that best approximates C, i.e., that minimizes
a loss function (e.g., zero-one loss) in the input-output space X x C according to
distribution @.

In decision-tree learning, each hypothesis takes the form of a tree graph. In
its most simple form, the algorithm proceeds top-down; the root of a decision
tree is formed by selecting the feature X with highest score on T ain according
to an evaluation metric M. The selected feature splits the training set Ti;ain
into mutually exclusive subsets {7}, }, one for each possible feature value. The
same methodology is recursively applied to each induced subset, resulting in new
subtrees. A node is terminal (i.e., a leaf) if the set of examples T" covered by that
node are all of the same class, or if the number of examples in T is less than a
(user-defined) threshold. A new vector X; is classified by starting at the root of
the tree and following the branches which match the feature values of X; until
a leaf is reached.
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3 A Review of Evaluation Metrics

3.1 Traditional Metrics

An evaluation metric M quantifies the quality of the partitions induced by a
feature Xy, over a set of training examples T'. Traditional or purity-based metrics
define M by measuring the amount of class uniformity gained by decomposing
T into the set of example subsets {T,,} induced by Xj. Let P be the vector
of class probabilities estimated from the data in the complete set T, let P, be
the corresponding vector of class probabilities estimated from the data in the
induced subset T},, and let I be a measure of the impurity of a class probability
vector. M is typically defined as follows:

M(Xy) = I(P ||TT ZI (1)

Different variations of M can be obtained by changing the impurity function
I. For example, for Information Gain [TTIT2], impurity is defined in terms of
entropy:

Icntropy(f’) = - ZleOgﬂ?z (2)

Another example is Gini Index [I], where impurity is defined as follows:
Lini(P) =1-) " p} (3)

Equation 1 covers most traditional metrics. Other metrics exist in which the
class probability vectors are compared with each other, rather than assessed in
isolation (e.g., to maximize their degree of orthogonality [2]). Thus, in a general
sense, a characterization of traditional metrics can only be obtained by defining
M as an arbitrary function over the class probability vector

Traditional metrics exhibit two major limitations. First is a tendency to
favor features with many values. Inducing many example subsets increases the
probability of finding class-uniform subsets, but at the expense of overfitting.
Several solutions have already been proposed for this problem [1416].

We focus on a second limitation - the inability to detect the relevance of a
feature when its contribution to the target concept is hidden by combinations
with other features, also known as the feature-interaction problem [3[10]. As
an illustration, Figure 1 shows a three-dimensional boolean space where each
example can take one of two classes, {+, —}. The target concept is the Exclusive-
OR X; ® X, and X3 is irrelevant (the double arrows will be explained in the
next section). Features X; and X» exhibit high interaction because the class
label of an example can be determined only if both features are known.

! Strictly speaking M is also dependent on the size of the example set T, |T'|. For ex-
ample both the G and x? statistics depend on |T'| in addition to the class probability
vectors.
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Fig.1. A 3-dimensional boolean space for target concept F' = X; @ X, feature X3
is irrelevant. Features X; and X2 exhibit high interaction: both features are always
needed to determine the class label of an example.

In the example above, purity-based metrics fail to give more merit to X; and
X3 as compared with X3, because the class probability vectors are the same for
each feature (P = Py, = (0.5,0.5)). To attack the feature-interaction problem
additional information besides class probabilities is required.

3.2 Discrimination-Based Metrics

A different kind of evaluation metric considers the discrimination power of each
feature, i.e., the ability of a feature to separate examples of different class. Let
X; and X be two examples lying close to each other according to some distance
measure D. Feature X is awarded some amount of discrimination power if it
takes on different values when the class values of X; and Xj differ, i.e., when
zy # 3 and C(X;) # C(X;j). The more often this condition is true for pairs of
nearby examples, the higher the quality of feature Xj.

Let us illustrate how this works for the example in Figure 1. Assume that
a feature scores a unit amount whenever the condition z§ # z7 and C(X;) #
C (XJ) is true. As a further simplification, consider only pairs of examples at unit
Hamming distance. The double arrows in Figure 1 indicate pairs of neighboring
examples where feature X; differs in value. Since every time this happens the
class of the examples differs, feature X; scores a total value of 4. Feature X,
gets the same score as X7, whereas X3 scores a value of 0. Thus discrimination-
based metrics take advantage of the distribution of examples in the training set
to handle the feature-interaction problem.

Two representative examples of discrimination-based metrics are Contextual
Merit [3] and Relief [4J5]. Before describing them, we define the distance between
two examples as follows:

D(X;,X;) :Zd:ck,:rk (5)
=1



A Unified Framework for Evaluation Metrics 507

For nominal features d(z%, mfc) is defined as

o 1 ifai #ad
d(zt,zl) = k7" "k 6
e ={} poZ ©)
For numeric features d(z}, xfc) is defined as
J jj, — i
d(zy, a3,) = " (7)
TH(z%, z7.)
where TH is a normalization factor, e.g., MAX(X}) — MIN(X}) (difference
between the maximum and minimum values observed for feature Xy, in T').
Figure 2 describes the logic behind discrimination-based metrics in a single
frameworK3. The algorithm returns a vector of feature scores Q = (q1,92, s qn)-
For every pair of nearby examples, g, the score for feature Xy, is updated as a
function of D(Xj, Xj) (equation 5) and d(x},x},) (equations 6 and 7). Different

metrics are obtained by varying the update function (lines 5-6). The Relief
algorithm, for example, updates score ¢; as followsH:

%:{%+%%%>ﬁ0@o¢m%> ®)
qx — d(:c}c, 1776) if C(Xl) = C(XJ)

Thus Relief updates g, whenever the feature values of two neighbor examples
differ; the score increases if their class values differ and decreases if they are the
same. Contextual Merit updates ¢ when both feature values and class values
differ; it uses the update function:

_ d(xfc’x@ i <. <.
dk = qk + D(Xi,XJ)Q f C(Xl) 7é C(XJ) (9)

In this case the score of a feature decreases quadratically with the distance
between two examples.

Discrimination-based metrics have proved effective in the context of feature
selection as a pre-processing step to classification. Their design is particularly
suitable for domains exhibiting high degree of feature interaction such as protein-
folding prediction, board games, parity, etc. These type of metrics, however,
ignore the degree of class uniformity of the examples subsets induced by a feature;
discrimination power is the only criterion used. We now propose a framework
that combines the strengths of both traditional and discrimination-based metrics
during classification.

2 We encourage reviewing the references on Relief and Contextual Merit for a detailed
understanding of their mechanism. Our description is over-simplified.

3 The original description of Relief uses the update function d(z}, )/l where [ is the
number of neighbor examples. Since [ is a constant we can dispense with it without
affecting the final feature ranking.
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Algorithm 1: Discrimination-Based Metric
Input: Example set T’ _
Output: Vector of feature scores Q
COUNT-DISCRIMINATION-POWER(T)

(1) Initialize Q = (q1,92," -, qx)

(2) foreach example X; € T _
(3) foreach example X; close to X;
(4) foreach feature Xy

(5) Update g, as a function of
(6) D(X;,X;) and d(z},2])
(7) return Q

Fig. 2. A general algorithm describing the logic behind discrimination-based metrics.

4 A Unified Framework

To evaluate the quality of feature X in our unified framework we extend the
strategy of discrimination-based metrics by exploiting additional information
between any pair of examples. Recall that feature X divides the training set T
into a set of subsets {7}, }, one for each feature value. Figure 3(a) illustrates the
possible scenarios in terms of the class agreement between any pair of examples
X; and Xj. The two examples may fall in the same subset (e.g., T1) and either
agree in their class values or not (cases 1 and 2 respectively), or the examples
may belong to different subsets (e.g., 71 and T5) and either agree in their class
values or not (cases 3 and 4 respectively). Although Figure 3(a) shows two
classes only, we assume any number of possible classes. Our general approach
consists of storing counts for each of these four possible cases separately. Ideally
we would like to see high scores for cases 1 and 4, and low scores for cases 2
and 3, since case 1 (2} = =z}, and C(X;) = C(Xj)) and case 4 (z} # =z and
CO(X;) # C(X;)) ensure the properties of class uniformity and discrimination
power respectively, whereas case 2 (z}, = 3, and C(X;) # C(X;)) and case 3
(zi # 2], and C(X;) = C(X;)) work against them.

Our approach works as follows. For each induced example subset T, we
associate a count matrix R,,. If p is the number of possible class values, each
T, is characterized by a matrix R,, of size p x 4, where row 7 is a count vector
Z, = (211, 2r2, #r3, 2r4) Which stores the counts for each of the four cases involving
examples in class r, as shown in Figure 3(b). In addition we define a weight vector

0 = (01,65,03,04), ; € [0,1], that modulates the contribution of the four counts.

We now explain how to update Z.. Given an example X; in class r, for every
other example Xj, exactly one of the four counts z; is updated, depending on
which of the four cases applies to that pair of examples. The appropriate z.; is
updated as follows. Given the vector 6 and the function f, explained below:
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Matrix R,
1 2 3 4
C1 | z11| 212|213 | 214
+ —
LS
IVQ . — Ca | 221 | 222 | %23 | 224
+ <
\ﬁ _
T T Cp | 2p1| 2p2| 2p3 | Zpa
(a) (b)

Fig. 3. (a) All four possible scenarios in terms of class agreement for a pair of examples
(Xi,X;). (b) Each count matrix has 4 columns corresponding to the four cases in (a);
each row corresponds to a different class.

Zri = Zri +0; - fo() (10)

where z = D(f(i, Xj) is the distance between the two examples. We assume
all features are nominal such that the distance between two feature values may
be either zero or one (equation 6). The function f, decreases with x and may
have one of several forms [3]:

fol) = = or fule) = 51 (1)

Large values for « narrow our attention to only the closest neighboring ex-
amples. Small values for o extend our attention to examples lying far apart. In
the extreme case where o = 0 all examples are considered equally, irrespective
of distance. Thus « enables us to vary the relative importance of the distance
between any two examples.

The vector 6 modulates the degree of contribution of each of the four cases
in Figure 3. In particular, setting 6; to zero nullifies the contribution of the ith
case. We will show how varying the values of € allows us to put more weight on
either class uniformity or discrimination power.

Figure 4 describes the computation of the set of matrices {R,,}. In essence,
every example is compared against all other examples in 7', while the counts
for each matrix R,, are updated. For simplicity the algorithm is described for a
single feature X, but the double loop in lines 2 —3 can be done over all features.
We select a matrix R,, according to the value of feature Xy, in Xj. The row index
corresponds to the class value of X;, C'(X;). The column index corresponds to
the case to which X; and X; belong (Figure 3(a)). Once the matrix entry is
located, the corresponding z; is updated according to equation 10.

Lines 2 — 3 in Figure 4 cycle through all examples in T'. There is no need
to limit the second loop to the closest examples (as in Algorithm 1) because
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Algorithm 2: Unified Framework
Input: Example set T', Feature Xy
Output: Set of matrices {R,,}
UPDATE-MATRICES(T, X},)

(1) Initialize all matrices in {R,,}
(2) foreach example X; € T

(3) foreach example X; € T

(4) Let C(X;) = ¢, and i, =V,
(5) Update R,,[r, ] using the
(6) corresponding z,. in eq. 10
(7) return {R,,}

Fig. 4. Logic describing how to compute the set of count matrices for feature vector
X on example set T'.

the update function depends on distance and is regulated by parameter o (we
explain later why we allow comparison of pairs of identical examples).

The training set T' also gives rise to a matrix R, as a function of the set
{R,.}, but because examples in T cannot be compared to different example sets
all columns in R corresponding to cases 3 and 4 must equal zero. Our evaluation
metric evaluates the quality of a feature X as a function of the matrix R for
the training set 7' and the matrix R, for each of the induced subsets {T,}
(computed as shown in Figure 4):

M(Xy) = F(R, {Rn}) (12)

Finally, our unified framework for evaluation metrics I7 is a 4-tuple containing
all the parameters necessary to define a metric of the form defined in equation 12:

= (F,6,a, fa) (13)

Complexity Analysis. The algorithm in Figure 4 runs in time O(n t2), where n
is the number of features and ¢ = |T};ain| is the size of the training set. If the algo-
rithm is used at every node of a decision tree, the complexity is O(l n t?) where
is the number of nodes in the tree. This contrasts with traditional metrics where
the complexity is usually O(l n t). One natural extension is to pre-compute, for
each example, an ordered list of examples based on distance, with a complexity
of O(t? log t). Then, during decision-tree learning, one can find the (fixed) k clos-
est examples to each example within the induced partition in time O(l n t\/t).
The solutionf] is feasible only for small k. Another solution for large datasets
(t ~ 10% — 10%), is to use only a sample S of the training set to compute the
count matrices. Let s = |S|, the complexity is reduced to O(I n s?).

* The v/t term is derived from a worst case analysis (using the best of two different
methods) for obtaining the k closest examples.
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4.1 Instances of the Unified Framework

We now show how our unified framework for evaluation metrics covers tradi-
tional, or purity-based metrics (Section 3.1), and also discrimination-based met-
rics (Section 3.2).

Proposition 1. For a specific setting on the parameters of framework 17, it
is possible to derive all traditional metrics.

Proof. Function F' in equation 4 is left undefined; F' defines how to measure
the quality of a feature based on class proportions. We simply show that for a
specific setting of I we can derive all class proportions. Consider the result of
running Algorithm 2 with 8 = (1,0,0,0). Since we care about class uniformity
only (Figure 3, Case 1), we consider only pairs of examples with the same class
value and the same feature value. Assume f,(z = 0) = 1 and fo(x #0) =0
(2 is the distance D(X;,X;) between the two examples). Since fu(z) = 1 only
when the distance between examples is zero, our comparisons are limited to
pairs of identical examples. Therefore, the counts on each matrix R, are zero
in columns 2 — 4, and column 1 reflects the number of examples of each class
when the feature value is fixed. These counts are sufficient to compute F': class
counts can be easily converted into class proportions by dividing over the sum
of all entries in column 1, i.e., by dividing over >, R, [z, 1]. This completes the
proof.

Proposition 2. Both Relief and Contextual Merit can be defined as instances
of framework 7.

Proof. We begin with Contextual Merit. Consider the result of running Al-

gorithm 2 with 8 = (0,0,0,1), « = 2, and f, = x% = ;12 We now care about
discrimination power exclusively (Figure 3, Case 4), and compare examples with
different class value and different feature value. The counts on each matrix R,,
are zero on columns 1 — 3; the sum of the values along column 4 over all {R,,},
Yo O (Rimli, 1]), is exactly the output produced by Contextual Merit when
each example in T is compared against all other examples (i.e., when lines 2-3
in Algorithm 1 run over all examples).
_ We now look into Relief. Consider the result of running Algorithm 2 with
0 =1(0,0,1,1) and f,(x) =1if x < o and 0 otherwise; a takes the role of defin-
ing a threshold that allows comparison of only the a-nearest neighbors. Since
6 = (0,0,1,1), we favor discrimination power but penalize working against it.
We compare examples with different feature value irrespective of class value.
The counts on each matrix R,, are zero in columns 1 — 2; the sum of the val-
ues along column 4 over all {R,,} minus the respective sum along column 3,
Yo O (Rii 4] — Ry 4, 3]), is the output produced by Relief for the appropri-
ate value of «. This completes the proof.

The unified framework II adds versatility to our new family of metrics by
enabling us to modulate how much emphasis should be placed on class uniformity
(or lack thereof) and discrimination power (or lack thereof). We now measure
empirically the effects of a simple settings for IT in decision-tree learning.
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5 Experiments

Our experiments measure the performance accuracy for a simple setting of IT
and compare it to the performance of a set of standard evaluation metrics. We
adopt a simple model for F' by adding the values, over all matrices in {R,,}, in
columns 1 and 4, and subtracting the values in columns 2 and 3. We do this for
each feature value and then take the weighted average according to the number
of examples in each example subset:

'|TT| > Gt (14)

G(R,,) is defined as follows:

P
G(Rm) = Z(Rm[lv 1] + Rm[zv 4} - R, [ia 2] - Rm[ia 3] (15)

i=1
_ where p is the number of classes. The definition for G(Ry,) corresponds to
6 = (1,1,1,1), which can be regarded as a compromise between class purity

and discrimination power. For the update function, we consider f, = and
a=0.1.

1
2a-w

5.1 Methodology

We test our model using a decision-tree learning algorithm. An initial discretiza-
tion step on all numeric features divides each feature domain into ten equally-
sized intervals. We stop growing a tree if the number of examples on a node is
less than 3 = 3 or if all examples are class uniform. The final tree is pruned
using a pessimistic-pruning method [12].

All experiments use real-world domains extracted from the UCI repository.
Predictive accuracy is estimated by averaging over five repetitions using 10-fold
cross validation. Tests of significance use a two-sided Student-t distribution at
the p = 0.05 level.

5.2 Results on Real-World Domains

Our experimental results are depicted in Table 1 (numbers enclosed in parenthe-
ses represent standard deviations). For each row, the best score is highlighted in
bold style; an asterisk on the left implies a significant difference. Among the set
of standard metrics, the subset corresponding to purity-based metrics (Gini and
Information Gain; columns 2 and 3 respectively) tend to perform, on average
(last row), slightly better than the subset corresponding to discrimination-based
metrics (Contextual Merit and Relief; columns 4 and 5 respectively). This may
simply indicate that most domains in the UCI repository exhibit a low degree of
feature interaction. Our framework scores best on eight of the eighteen domains,
outperforming the second-best metric significantly on 4 of these. Performance
is, on average, better than other metrics (not significantly).



A Unified Framework for Evaluation Metrics

Table 1. A comparison of decision-tree accuracy using different evaluation metrics.
Numbers enclosed in parentheses represent standard deviations.

‘ Domain H Gini ‘ Info Gain ‘ C. Merit ‘ Relief ‘ Instance of IT ‘
bupa 57.86 (0.31) | 58.54 (2.78) 57.40 (0.65) | 58.50 (1.80) | *62.32 (1.29)
cancer 93.64 (0.30) | 95.02 (0.15) 95.00 (0.25) | 93.10 (0.27) 92.56 (0.38)
credit 72.80 (1.35) | 67.80 (2.57) 66.56 (1.03) | 70.82 (1.89) | *74.74 (0.67)
heart *78.62 (1.48) | 76.06 (1.52) 66.14 (1.18) | 71.74 (2.48) 75.68 (1.26)
hepatitis 81.82 (1.41) | 81.90 (1.36) 82.66 (0.45) | 83.04 (2.23) | 83.26 (0.61)
ionosphere 90.32 (0.75) | 90.46 (0.48) 78.90 (0.50) | 81.64 (1.05) 86.62 (0.56)
chess-end 98.14 (0.52) | 98.42 (0.50) 97.38 (0.47) | 88.74 (1.48) 94.96 (0.72)
lymphography2|| 79.28 (1.69) | 81.88 (1.82) | 74.02 (2.13) | 74.44 (3.00) | 81.50 (1.89)
lymphography3|| 77.64 (2.03) | 78.90 (2.13) 73.30 (2.10) | 77.54 (3.02) 77.02 (1.31)
mushroom 98.36 (0.63) | 98.84 (0.27) 98.64 (0.16) | 99.50 (0.36) | 99.52 (0.48)
thyroid-hyper 89.22 (0.30) | 94.34 (0.33) 93.24 (0.77) | 92.96 (0.88) | 94.44 (0.29)
thyroid-hypo 86.08 (0.04) | 92.36 (0.48) 86.44 (0.69) | 89.68 (1.48) | *93.70 (0.35)
diabetes 64.68 (0.30) | 73.42 (0.25) | *74.28 (0.48) | 66.38 (0.66) 68.84 (0.73)
promoters 74.36 (2.15) | 74.94 (4.64) 73.20 (3.80) | 76.36 (2.68) 76.08 (3.29)
star-cluster 80.64 (0.46) | 80.64 (0.46) | 80.64 (0.46) | 78.32 (2.75) | 81.36 (0.82)
tic-tac-toe 82.96 (0.69) | 85.62 (1.26) 83.06 (1.07) | 79.42 (1.47) | *87.94 (0.23)
voting 95.20 (0.13) | 94.78 (0.31) | *95.44 (0.15) | 93.38 (0.88) 95.16 (0.08)
Z00 94.76 (0.78) | 95.16 (0.08) 95.16 (0.08) | 94.76 (0.78) 94.76 (0.78)
Average | 83.13 | 84.39 | 81.75 | 81.68 | 84.47 |
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Other empirical tests (not shown here for space considerations) illustrate the
effect of varying g (Section 4). Results show significant differences in accuracy,
but no single setting for 7] outperforms other settings consistently. In addition,
our framework is sensitive to function f,(z). Varying f,(x) while keeping other
parameters fixed results in significant differences in accuracy but to a lesser
degree than varying 6.

6 Conclusions and Future Work

We have defined a novel framework for evaluation metrics in classification. Our
framework enriches the information derived when a feature is used to partition
the training set T' by capturing all possible scenarios in terms of class agree-
ment (or disagreement) between pairs of examples in 7. Most metrics utilize
only a small fraction of the information contained in II; our framework, there-
fore, provides a broader view of the space of possible metrics. A limitation of
our approach is the complexity of the algorithm that generates count matrices
(Figure 4); proposed solutions include a pre-processing step, or using a sample
of the training set (for large datasets). Experiments using real-world domains
show our unified framework compares well in performance with the best of a set
of standard metrics in the context of decision-tree learning. Our results imply
that the best metric for any given problem may not be one of the few instances
previously studied. Placing them in a parameterized framework is important—it
delineates a much larger and richer space of alternatives.
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A line of future research is to explore whether there exists generally useful
instances in the new space of metrics that could be applied to a wider class
of learning tasks. Another line of research consists of trying to match domain
characteristics with the appropriate parameter settings in IT (equation 13). The
flexibility inherent in our unified framework in finding a balance among several
criteria suggests guiding the parameter settings according to the characteristics
(i.e., meta-features) of the domain under analysis. For example, meta-features
could be functions of the counts in the matrix R over the set T, where T corre-
sponds to the whole training set Tiyain (Section 4). Those counts provide infor-
mation about the domain itself and relate directly to I1.
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