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Abstract. Conventional work on scientific discovery such as BACON
derives empirical law equations from experimental data. In recent years,
SDS introducing mathematical admissibility constraints has been pro-
posed to discover first principle based law equations, and it has been
further extended to discover law equations from passively observed data.
Furthermore, SSF has been proposed to discover the structure of a si-
multaneous equation model representing an objective process through
experiments. In this paper, SSF is extended to discover the structure
of a simultaneous equation model from passively observed data, and is
combined with the extended SDS to discover a quantitative simultaneous
equation model reflecting the first principle.

1 Introduction

Langley and others” BACON [6] is the most well known pioneering work to
discover a complete equation representing scientific laws governing an objective
process under experimental observations. FAHRENHEIT [4], ABACUS [3], etc.
are the successors of BACON that use basically similar algorithms. However,
a drawback of the BACON family, that is their low likelihood to discover the
equations representing the first principle underlying the objective process, is re-
ported. To alleviate the drawback, some systems, e.g., ABACUS and COPER [3],
utilize the information of the unit dimensions of quantities to prune the mean-
ingless terms. However, many of these conventional scientific equation discovery
systems have the following limitations.

(1) The information of the unit dimension of each quantity in the data is needed
to discover the first principle based equation.

(2) The data must be acquired under “active observations” where the values of
some quantities representing the objective process are observed for various
process states by controlling the values of the other relevant quantities.

(3) A complex equation model, especially a “simultaneous equation model’, to
represent the process consisting of multiple mechanisms is hardly discovered
due to the complexity of the search space.
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To alleviate the first limitation, a law equation discovery system named SDS
based on the mathematical constraints of “scale-type” and “identity’ is proposed
for the active observations [10]. Since the knowledge of scale-types of quantities
is widely obtained in various domains, SDS is applicable to non-physics domains.
The equations discovered by SDS are highly likely to represent the first princi-
ple underlying the objective process. To address the second limitation, SDS has
been further extended by introducing a novel principle named “quasi-bi-variate
fitting” [12] for the application to the “passive observations” where the quan-
tities of the objective process can only be partially or even hardly controlled.
Moreover, to overcome the third limitation, a simultaneous structure finding
system named SSF has been proposed to discover a valid simultaneous equation
structure under the active observations [I1]. SSF identifies the number of equa-
tions needed to represent the objective process, and further identifies the sets
of quantities to appear in the respective equations of the model while excluding
quantities irrelevant to the equations. The combination of SDS and SSF enables
the discovery of the first principle based simultaneous equation model for the
objective process under active observations.

One of the important unexplored studies of the scientific law equation dis-
covery is to propose a practical framework to discover a simultaneous equation
model reflecting the first principles from passively observed data. This study
tries to address all aforementioned limitations at once. If SSF can be extended
to be applicable to the passively observed data, the second and the third lim-
itations in the discovery of the structure of the simultaneous equation model
are removed. Once the sets of quantities appearing in respective equations are
derived, the aforementioned extended SDS which addresses the first and the sec-
ond limitations is applicable to figure out the equation formula governing each
quantity set. Accordingly, the extension of the applicability of SSF to the passive
observations is the main issue in this study. The objectives of this paper are (i)
to propose a practical principle to discover the first principle based simultaneous
equation structure from passively observed data, (ii) to provide an algorithm of
the “extended SSF” based on the principle, (iii) to evaluate the basic perfor-
mance of the combination of the extended SSF and the extended SDS through
simulations and (iv) to demonstrate its practicality through a real application.

The main technical contribution of this study is to propose a principle named
“quasi-experiment on dependency’ which checks the dependency among quanti-
ties in the passively observed data without performing actual experiment. The
quasi-experiment probes the influence propagation from a quantity to some other
quantities while virtually fixing the values of some extra quantities by a data
sampling technique. The repetitions of this probing figure out the entire depen-
dency structure among quantities in form of a simultaneous equation model.
The quasi-experiment on dependency is different from the quasi-bi-variate fit-
ting used in the extended SDS since the latter assumes that the quantities un-
der consideration are governed by a complete equation, and focuses only on
the binary relation between every pair of quantities. The approach to combine
the extended SSF and the extended SDS requires three assumptions, which are
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Fig. 1. An circuit of parallel resistances.

allowable in many practical applications. One is that the scale-types of all ob-
served quantities are known. The scale-types of the measurement quantities are
widely known based on the measurement theory [10]. The second assumption
is that the observed data are uniformly distributed over the possible states of
the objective system [12]. The lack of the uniform distribution of the data over
a certain value range of a quantity implies the low observability of the quan-
tity [7]. Any approaches such as the linear system identification and the neural
network do not derive valid models under low observability. This limitation is
generic, and further discussion on this issue is out of scope of this paper. The
third assumption is that the simultaneous equation model under consideration
is not over-constrained where the number of the equation is not more than the
number of quantities in the model. This assumption always holds for the models
in scientific and engineering domains, since the over-constrained state does not
exist in any real world process.

2 Structure of a Simultaneous Equation Model

The principle to discover the simultaneous equation structure from passively ob-
served data is based on some fundamental and generic characteristics of simul-
taneous equation models presented in the past work [IT]. These characteristics
are briefly explained though an example electric circuit depicted in Fig. [l This
can be represented by the following simultaneous equation model.

Vi=1LR1 #1, Vo =12Res #2, Ve = V1 #3 and V., = Vo #4, (1)

where R;, Ro: two resistances, Vi, Va: voltage differences across resistances,
1, I5: electric current going through resistances and V,: voltage of a battery. We
consider a thought experiment to externally control some values of the quantities
in this model. For example, the quantities R; and V, can be externally controlled
by the specification of the resistance and the battery. If we specify these values
in Eq.(), the values of the other quantities, V;, V4 and Iy, that are involved in
the first, the third and the forth equations, #1, #3 and #4, are determined since
the number of the quantities which are not externally specified is equal to the
number of the equations. But, this external control does not determine the val-
ues of Ry and I through the equation #2. Thus, the equation set {#1, #3, #4}
is considered to represent a mechanism which determines the state of a part of
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the objective process. We introduce the following definition to characterize this
mechanism in the simultaneous equation model.

Definition 1 (complete subset) Given a set of equations, E, let the set of all
quantities be @ appearing in the equations in E. Given a quantity set RQ(C Q)
for external specification, when the values of all quantities in NQ = CQ — RQ
are determined where CQ (RQ C CQ C Q) is a set of all quantities appearing in
a set of equations CE(C E), CE is called a “complete subset”. The cardinality
|CE| =|NQ| is called the “order” of the complete subset.

The equation set {#1, #3,#4} is a complete subset of the order 3. Under any
external control of two quantities among Ry, Ve, V1, Vo and Iy, {#1, #3, #4} al-
ways determines the values of the remained three quantities. Thus, the complete
subset is “invariant’ for the selection of the externally controlled quantities.

The complete subset gives an important foundation to discover the structure
of the simultaneous equation model which appropriately reflects the dependency
embedded in the observation of quantities. For example, the circuit in Fig. [[]can
be represented by the following different simultaneous equation formula.

LRy =Ry #1', Vo = IRy #2, Vo = Vi #3 and V. = Vo #4. (2)

If the same specification on V, and R; is made in Eq.(2), a different complete
subset {#3, #4} is obtained, and any complete subset to determine the value of
I; does not exist since the equation #1’ cannot determine the value of I; without
the constraint of #2. #1’ and #2 that include the undetermined quantities I
and Ry do not satisfy Definition [Il In the real observation on the electric circuit,
the value of I; is physically determined, and this fact contradicts the consequence
derived by the analysis on Eq.(@). In contrast, the model of Eq.(d) always gives
correct answers on the determination of quantities for any external specifications
of quantities. The model having the complete subsets which are isomorphic with
the actual dependency among quantities is named a “structural form”.

Conversely, if we identify all complete subsets from the observation of quan-
tities in the objective process, and compose a simultaneous equation model con-
sisting of these complete subsets, the model is ensured to be the structural form.
The following theorem provides a basis for the composition [11].

Theorem 1 (modular lattice theorem) Given a model of an objective pro-
cess consisting of equations E, the set of all complete subsets of the model, i.e.,
L = {VCE; C E}, forms a modular lattice of the sets for the order of the
complete subsets, i.e., VOE;,CE; € L, CE; UCE; € L, CE;NCE; € L and
n(CE; UCE;) = n(CE;) + n(CE;) — n(CE; N CE;) where n is the order of a
given complete subset.

For instance, the following four complete subsets having the modular lattice
structure can be found in the example of Eq.().

{#3, #4}(n = 2), {#1,#3,#4}(n = 3),
{#2,#3, #4}1(n = 3), {#1,#2,#3, #4}(n = 4). ®3)
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Because the complete subsets of an objective process mutually overlap in the
modular lattice, the redundant overlaps must be removed in the model compo-
sition by introducing the following definition of independent component.

Definition 2 (independent component of a complete subset) The inde-
pendent component DE; of the complete subset C'E; is defined as

DE; = CE; — U CE,
VCE;CCE;and CE;EL

where L is the set of all complete subsets of the model. The set of essential
quantities DQ; of CE; which do not belong to any other complete subsets but
are involved only in CE; is also defined as

DQ: = CQ; — U CQ;,

VCE;CCEjand CE;€L

where CQ; is the set of all quantities in CE;. The order dn; and the freedom
om; of DE; are defined as

on; = |DE;| and ém; = |DQ;| — |DE;]|.

For instance, the following independent components can be found for Eq.(d).

DEy = {#3,#4} — ¢ = {#3,#4}, on1 =2-0=2,
DEs = {#2, #3, #4) — {#3, #4} = {#2}, ns =3 -2 = 1.

Because the independent components do not overlap, their collection represents
the structure of the simultaneous equation model.

However, the issue on the ambiguity of the representation of the structural
form still remains. For example, the set of equations {Vi = L Ri#1,V. =
Vi#3,V. = Va#4} in Eq.(Il) which is a complete subset of order 3 can be trans-
formed by the linear transformation as follows.

2Ve + Vi + Vo =461 Ry #1, 2V =2V1 — Vo + 1 Ry #3,
and 3V, = —Vi + 2V + 211 Ry #4. (5)

This transformation preserves the complete subset, and the model remains as a
structural form. This ambiguity of the equation representation in a complete sub-
set can cause combinatorial explosion in the enumeration of the structural forms.
As indicated in the above example, if the set of all quantities, CQ, appearing
in a complete subset C'E is preserved through some transformation maintaining
quantitative equivalence, the complete subset is also preserved [11]. Accordingly,
only the following formulae of a complete subset is focused in the search.

Definition 3 (canonical form of a complete subset) Given a complete
subset CE, the “canonical form” of CE is the form where all quantities in C'Q
appears in each equation in CE.
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An example of the canonical form is Eq.(&]). Based on this definition, the struc-
tural canonical form of a simultaneous equation model is further defined.

Definition 4 (structural canonical form of simultaneous equations)
The “canonical form” of a simultaneous equation consists of the equations in
U?:IDEZ- where each equation in DE; is represented by the canonical form in
the complete subset C'E;, and b is the total number of DE;. If the canonical form
of a simultaneous equation is derived to be a “structural form”, then the form is
named “structural canonical form”.

The structural form of Eq.(d)) is shown as follows.

DE1 = {fll(‘/e7vl7‘/2) =0 #37 f12(V€7V17V2) =0 #4}7
DE; = {fQ(‘/fﬂVly‘/QaIl:Rl) =0 #1}’ DEs = {f3(‘/57‘/17‘/27[27R2) =0 #2}7 (6)

where f(e) = 0 is an arbitrary formula to represent a quantitative relation.
Because Eq.(I) is a structural form, Eq.(@) is the structural canonical form.

3 Principle and Algorithm

3.1 Quasi-Experiment on Dependency

If actual experiments are applicable, the algorithm of SSF can search the com-
plete subsets in which quantities are mutually constrained through the control
to fix the values of the other quantities. However, when only the passively ob-
served data are available, a novel principle, “quasi-experiment on dependency,”
proposed in this study is needed to enable virtual experiments under the afore-
mentioned assumption that the observed data are uniformly distributed over the
possible states of the objective process. Given a set of quantities representing
the objective process, Q = {q1, ..., qw }, and the set of their passively observed
data, OBS = {Xy, ..., X;} where X is the i-th observation of @, we consider to
virtually control each quantity g in a subset Q.(C @). As depicted in Fig. 2] a
datum X, (€ OBS) is chosen, and the data of OBS involved in the vicinity of
X, in the subspace defined by Q). are sampled as OBS.,4. The vicinity is defined
as follows for every ¢x(€ Q.).

Agr = |qr — qrg| < €, (7)

where €, is a parameter to define the size of the vicinity. €; is determined as
5% of the total value range of ¢, upon an extensive parameter survey in this
paper. This vicinity is shown as a rectangular parallelepiped in Fig. 2] (a). This
operation is called “quasi-control’ and Q. “quasi-controlled quantity set’.
Furthermore, for a quantity g,, in @ —@Q., the following correlation coefficient
between ¢, and each gq(€ Q—Qc—{gm}) is calculated within the data of OBS.,.

Smd

/Smmm ) (8)

Tmd =
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Fig. 2. Quasi-experiment on dependency
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If r,,q shows significant correlation as depicted in Fig. 2 (b), ¢, and g4 may
be mutually constrained under the quasi-control of @), in the equation structure
embedded in the given data. This process is considered to virtually manipulate
the value of g, by using the scatter of g,,’s values in OBS., and to check if the
value of gy is determined. The operation on ¢, is called “quasi-manipulation”
and ¢, “quasi-manipulated quantity’. The determination of ¢, is called “quasi-

determination” and qq “quasi-determined quantity”.
The significance of 7,4 must be tested by the following index and criterion
based on the one-sided interval of ¢-distribution, t(|OBS.4| — 2, ), under the

freedom |OBS.4| — 2 and a significance level a(= 0.05),

t(|OBSeq| — 2, @)
V10BSeg| =2+ {t(|0BSeq| — 2,0)}2

r(|OBScy| —2,a) =

[”md| = 7(|OBSeg| — 2, ) = 1pnq is significant. 9)

The test may fail when the relation between ¢,, and ¢4 has strong non-
monotonicity. However, this possibility is not very problematic, since the first
principle law equations do not contain very strong nonlinearity in most of
cases [6/10]. Furthermore, this test is repeated for multiple OBS,4s defined by p
different X s to confirm the stability of the ¢-test consequences. p is set to be 10
in this work which is sufficient to check the stability. Let s be the number of the
test satisfying the condition Eq.(]). Because s follows the binomial distribution
B(p,1 — a), the following condition should be met, if ¢, and gq is mutually
constrained.

s/p>(1—a)—2ya(l—a)/p(~0.8). (10)

The principle of the quasi-experiment on dependency seems similar to the
quasi-bi-variate test of the extended SDS. However, the latter assumes that
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(S1) Let Q = {qrlk = 1,...,w} be a set of quantities to appear in the model of an objective
process, and let OBS be a given data set for Q. Set DEQ = ¢, DQ=¢, N=¢, M=
¢, h=1andi=1.

(82) Choose C; C DQj; € DQ for some DQj; and also Cq C Q, and take their union Cp; =
...UC; U...UCq, while maintaining |C;| < dm; and |Chi| = h. For every qm € Chi,m =
1,...,|Chil, let Qe = Chi — {gm}, and apply quasi-ezperiment on dependency under the
quasi-controlled quantity set Q., quasi-manipulated quantity ¢., and OBS. If qa(€ Q—Chi)
has significant correlation with any qm, q4 %S quasi-determined.

(S3) Let a set of all quantities which are quasi-determined be Dp; C (Q — Cp;). Set
DEQhi = Chi + Dni, DQni = DEQni — UvDEQ,,,;/cDEQ); DEQyu/ i, dnni = |Dhil —

DEQ,,1€DEQ

ZVDEQh’i/CDEth 6nh/i/, and 6m;”' = |DQ}”‘ — 5”;”. If 571;” > 0, then add DEth
DEQ,,;/EDEQ

to the list DEQ, DQp; to the list DQ, dnp; to the list N, dmp; to the list M and

Q=Q —DQn;.

(S4) If all quantities are quasi-determined, i.e., Dy, = Q — Cp;, then go to (S5), else if any
more Cp; where |Cp;| = h does not ezist, h = h+1,i =1 and go to (52), else i =i+ 1 and
go to (52).

(S5) The contents of the lists DEQ, DQ, N and M represent the sets of quantities involved in
independent components, the sets of essential quantities of independent components, their
orders and their degrees of freedom respectively. SCF is a list of all fjr(qx € DEQj) =
0(r=1,...,dn;) for every DEQ;(€ DEQ) and its order dn;(€ N).

Fig. 3. Algorithm for structural canonical form

the set of quantities @ = {q1,...,qw} are governed by a complete equation
f(q1,.--yqw) = 0, and searches feasible binary quantitative relations on some
pairs of quantities {g;, ¢;} € @ while quasi-controling the rest of the quantities,
ie., Qc=Q—{¢i,q;}, for each pair. On the other hand, the quasi-experiment on
dependency searches a simultaneous equation structure not limiting to a com-
plete equation. The quasi-controlled quantity set Q. can be an arbitrary subset of
@ not limiting to @ —{g;, ¢;}, and multiple pairs of quantities {¢m, s} € @ — Q.
can be found under the unique Q..

3.2 Algorithm for Structural Canonical Form

Based on the theory described in section [2 and the quasi-experiment on depen-
dency in subsection[3.1] we propose a novel algorithm shown in Fig. [3]to discover
the structure of a simultaneous equation from passively observed data. The no-
tations in Fig. [3 follows Definition [ It takes a list of quantities @ and their
observed data OBS, and outputs the structural canonical form SCF. Start-
ing from the small set Cp; which is a union of Q. and {gm,}, g4 for the g, is
searched. Though the quasi-experiment on dependency for a ¢, can derive all
elements of Dy; in principle, the experiment is repeated while selecting every
quantity in Ch; as ¢,,. This is because some quantity g,, may not have enough
sensitivity to change the value of its ¢4, and does not show the significant cor-
relation even if they are mutually constrained. The resultant Dj,; together with
Chi = Qc + {gm} forms a set DEQp; of quantities belonging to the indepen-
dent component of a complete subset. Then its set of the essential quantities
DQy;, its order dny; and its freedom dmy; are derived. Based on the modular
lattice structure of a simultaneous equation, the |Cp;|(= h) quantities for quasi-
control and quasi-manipulation are taken from the union of dm; quantities in
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each independent component D@); and the quantities not included in any inde-
pendent components. The constraint of D@; does not miss any complete subset
in the search due to the monotonic lattice structure among complete subsets.
By repeating this procedure, all independent components are found and stored
in the list DEQ. Though the complexity of this algorithm is non-polynomial in
the worst case, the search space is significantly reduced by D@;. At the final
step, the formulae where each indicates the quantities to appear in an equation
included in the structural canonical form are listed in SCF'.

The law discovery systems such as the extended SDS [12] for passively ob-
served data cannot directly accept SCF'. The values of the quantities within an
independent component are simultaneously constrained in the order dn;, and
the constraints disable the quasi-bi-variate fitting, if the order dn; is larger than
one. To remove this difficulty, the (én; — 1) quantities are eliminated by the
substitution of the other (én; — 1) equations within the independent component,
and the “maximally eliminated structural canonical form” M ESCF is derived.
The algorithm to obtain M ESCF has already been reported [T1]. Using the
resultant M ESCF, the extended SDS determines the quantitative formula of
each equation reflecting the first principle underlying the objective process.

4 Performance Evaluation

The extended SSF has been developed and combined with the extended SDS on
a numerical processing shell named MATLAB in a PC of PentiumIIl 666MHz
and 128MB RAM. The performance has been evaluated through the following
artificial examples for certain combinations of data sizes and noise levels.
1) Two parallel resistances and a battery: This has been explained in Fig. [T}
Its model consists of 4 equations and 7 quantities as shown in Eq.(Tl).
2) Two parallel resistances and a battery: The objective process is identical
with the first example except that an extra equation Ry = R is added. Its model
consists of 5 equations and 7 quantities.
3) Heat transfer at walls of holes: A large solid material having two vertical
holes is considered. Gas goes into these holes, and condenses to its liquid phase
by providing its heat energy to the walls while flowing in the holes. The heat
transfer process is represented by the 8 equations involving 17 quantities.
4) A circuit of photometer: An electric circuit of photometer to measure the
rate of increase of photo intensity within a certain time period is considered. It
consists of 3 transistors, 3 resistance, 1 light Csd sensor, 1 capacitor and 1 current
meter. This system is represented by 14 equations involving 22 quantities.
Table[lis the summary of problem size, required computation time and error
rate for each example for the given OB.S consisting of 1000 observed data which
contain 5% Gaussian noise relative to the absolute value of each quantity in Q.
Tssy is the time to derive the M ESCF. Tsqs and Ty, are the total time and
the average time per equation required by the extended SDS. T4y shows strong
dependency on the parameter m and n, i.e., the size of the problem, since the
algorithm to derive a structural canonical form requires non-polynomial time
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Table 1. Computation time and failure rate

Ex. m n av Tssy Tsas Tov FR
1) 4 7 2.5 18 37 9 0.0
2) 5 7 2.4 15 46 9 0.0
3) 8 17 3.9 2,936 147 18 0.18
4) 14 22 2.6 13,992 142 10 0.16

m,n: numbers of equations and quantities, av: average number of quantities per
equation, Tssf, Tsqs: CPU time (sec) required by the extended SSF and the extended
SDS, Ty.: average CPU time (sec) per equation required by the extended SDS, F'R:
failure rate in the discovery of correct simultaneous equation in 100 trials.

Table 2. Failure rate for noise levels Table 3. Computation time and failure rate

failure rate (FR) Data Num. Toss Tsas FR

Ex. 0% 5% 10% 20% 100 2,583 79 0.96

1) 0.00 0.00 0.00 0.00 1000 2,936 147  0.18

2) 0.00 0.05 0.10 0.83 10000 3,288 207 0.11
3) 013 018 023 1.00
4) 011 016 024 1.00

to the size. Tss¢ also moderately depends on n — m, because the large number
of m — m represents the high degree of freedom of the objective simultaneous
equation model which exponentially increases the search space. Tsqs does not
seem to very strongly depend on the size of the problem. Because the extended
SDS handles each equation independently in M ESCF, the required time is
proportional to the number of equations in the model. The complexity of the
extended SDS is known to be around O(av?) [12]. This is almost consistent with
the relation between T,,, and av. Thus, T,4s may vary approximately in O(mav?).
Except the examples 1) and 2), we observed certain level of failure rates F'Rs in
the discovery. Especially when m and/or av are large, the extended SSF tends to
become erroneous. This is because the coupling of many quantities though the
equations increases the dependency among the quantities in the observation data,
and the required assumption that the observed data are uniformly distributed
over the possible states of the objective process becomes no more valid.

Table 2 shows F'Rs of each example under 0% — 20% relative noise levels
and OBS consisting of 1000 data. When the coupling of quantities is stronger,
the larger F'R is observed. This tendency is significant in the difference of F'Rs
between the examples 1) and 2). In the example 2), the coupling effect of the
extra equation R; = R, significantly increases F'R. In addition, the examples
containing tight coupling show high sensitivity to the increase of the noise level.
Table[Blshows the required computation time and the failure rates of the example
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3) for OBS of 100 — 10000 data and 5% relative noise level. Tysr and Tyqs seem
to be almost O(log|OBS|). This is because only a limited number of the data
sampled by Eq.([J) are used for the discovery even for the large amount of data.
FR shows the significant increase for small data size, because the statistical
stability is not ensured. In short summary, the computational complexity of the
extended SSF seems to be crucial for a very large-scale problem but not for the
large data size. The upper limit of the noise contained in the data is considered
to be 10% for the extended SSF. The performance of the combined use of the
extended SSF and SDS seems to work well for numbers of engineering problems.

5 Application to Practical Problem

The proposed method has been applied to a real world problem to discover a
simultaneous equation model consisting of generic law formulae governing the
mental preference of people for social infrastructures based on their subjective
impressions. We designed a questionnaire sheet to ask the subjective evaluation
on the five infrastructures of aviation transport facilities, waste disposal facili-
ties, nuclear power plants, automobile transport facilities and oil power plants
from the viewpoints of affinity q1, unsafety ¢o, scale of facility ¢z, frequency of
daily contacts g4, benefit g5, availability of alternative measure g and genetic
influence g7. The last viewpoint may be meaningful only for the infrastructures
producing radio-active and/or chemical wastes, and may be evaluated as negli-
gible for the others. The former four viewpoints are asked in form of pair wise
comparisons, and the obtained categorical data are transformed to ratio scale
quantities by using the constant-sum method which is widely used in the ex-
perimental psychology [9]. The latter three are asked in form of the choice from
categorical degrees, and the data are transformed to interval scale quantities by
following the method of successive categories which is also widely used [1]. We
distributed this questionnaire sheet to 482 persons living in a district of a country
where the aforementioned facilities are located within a certain distance, and all
of the answer sheets have been collected back. Hence, OBS = { X1, Xo, ..., X482}
was obtained where Xz = [(Iu, Q2 s --ey q7i]-

The extended SSF was applied to OB.S, and the following structural canon-
ical form SCF and maximally eliminated structural form M ESCF were ob-
tained.

SCF = {fi11(q1,q1,45,96) = 0, f12(q1,q4,95,96) =0, f13(q1,q4,05,96) = 0,

f21(q2,43,97) = 0, fa1(q2,q3,97) = 0} (11)
MESCF = {f{I(qlqu) = 07 f{Q(q‘laqG) = 07 f{S(q5aq6) = Oa
f21(q2,q7) = 0, f31(g3,q7) = 0} (12)

Subsequently, the extended SDS was applied to OB.S based on M ESCF and
the scale-type information, and it derived the following model.

g6 = —0.591og g1 — 1.09, g6 = 1.041log qs + 1.34, g6 = 0.69¢5 + 0.57,
q7 = —0.90log g2 — 1.00, g7 = —0.47log g3 — 1.00. (13)
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The statistical tests on the goodness of fitting [12] indicated the sufficient accu-
racy of this model. The former three equations relate affinity, frequency of daily
contacts, benefit and availability of alternative measure, and can be interpreted
to represent a psychological mechanism developing the affinity on a social facil-
ity based on its benefit and necessity in people’s daily life. The latter two relate
unsafety, scale of facility and genetic influence. They seem to represent another
psychological mechanism developing the sense of danger on a social facility.

6 Discussion and Conclusion

Dzeroski and Todorovski developed LAGRANGE which discovers simultaneous
equation models from observed data [2]. However, the mathematical admissibility
is not considered in the discovery process, and many redundant representations
of simultaneous equations can be derived at an expense of high computational
complexity. They recently extended it to LAGRAMGE which allows the user
to explicitly define the space of possible equations [8]. But, it does not provide
definitions to efficiently prune the search space within the admissible equation
formulae. In contrast, COPER, which also discovers simultaneous equations, uses
very strong mathematical constraints based on the unit dimensions to prune the
meaningless terms [5]. However, it essentially requires the unit information which
is not frequently obtained in non-physical domains. The major advantages of our
proposing method in comparison with the past approaches are the efficiency of
the equation search, the soundness of the discovery in terms of the first principle
and the wide applicability not limited to the physical domain. These are achieved
by introducing the criteria of generic mathematical admissibility.

In this paper, we proposed the principle and the algorithm of a practical
method to discover the first principle based simultaneous equations from pas-
sively observed data. The satisfactory performance of the method has been con-
firmed through simulations. Moreover, its high practicality has been demon-
strated through a real application in socio-psychology. The application of the
proposed method to a real-world research project collaborated with socio-
psychologists is currently underway.
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