
A Framework for Learning Rules from Multiple
Instance Data

Yann Chevaleyre and Jean-Daniel Zucker

LIP6-CNRS, University Paris VI,
4, place Jussieu,

F-75252 Paris Cedex 05, France
{Yann.Chevaleyre,Jean-Daniel.Zucker}@lip6.fr

Abstract. This paper proposes a generic extension to propositional rule learn-
ers to handle multiple-instance data. In a multiple-instance representation, each
learning example is represented by a \bag" of fixed-length \feature vectors". Such a
representation, lying somewhere between propositional and first-order representa-
tion, offers a tradeoff between the two. Naive-RipperMi is one implementation of
this extension on the rule learning algorithm Ripper. Several pitfalls encountered
by this naive extension during induction are explained. A new multiple-instance
search bias based on decision tree techniques is then used to avoid these pitfalls.
Experimental results show the benefits of this approach for solving proposition-
alized relational problems in terms of speed and accuracy.

1 Introduction

In most ML applications, the choice of knowledge representation for a learning example
is between a fixed-length "feature vector" and a first-order representation. The motiva-
tion for using first-order representation is that it is the natural extension to propositional
representation. However, a known drawback of using first-order logic is that its expres-
sivity is so high that in order to learn efficiently, strong biases such as determinacy, are
often required on the hypothesis space. Giordana et al. have recently shown that there
is a phase transition in relational learning [10] linked to the exponential complexity of
matching. They argued that relational learners could hardly search in practice for target
concepts having more than four non-determinate variables. The difficulty of learning re-
lations has stimulated attempts towards extending Attribute/Value representation rather
than directly using first-order logic based representation. Multiple-instance representa-
tion, where each example is represented by a "bag" of fixed-length "feature vectors" [8],
is an extension that offers a good tradeoff between the expressivity of relational learning
and the low complexity of propositional learning. Data represented as bags of vectors
may either be found naturally in chemical domains [8], in images classification tasks
[12], or be produced after multiple-instance propositionalization of first-order data [17,
1].

Much work has been done on multiple-instance learning. Unfortunately, available
learners are not able to efficiently generate easily interpretable rule sets or decision
trees. Also, the generated models cannot be reformulated into first-order theories; these

L. De Raedt and P. Flach (Eds.): ECML 2001, LNAI 2167, pp. 49–60, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

50 Y. Chevaleyre and J.-D. Zucker

learners can therefor not be used to solve relational learning problems with multiple-
instance propositionalized data. Because propositionalization based relational learners
(such as Still [14]) often outperform classical relational learners, relational learning
based on multiple-instance propositionalization (which is much more adapted to non-
determinate domains than standard propositionalization [17]) is a promising field for
which efficient multiple-instance rule learners will be needed.

This paper proposes a framework for extending propositional rule learners to handle
multiple-instance data. A first extension is presented and implementated in the Ripper
rule learning algorithm. The resulting algorithm, called Naive-RipperMi, is evaluated
and analysed on artificial datasets. Several pitfalls encountered by this naive extension
are then characterized before showing that a modification of the refinement procedure
implemented in RipperMI avoid these pitfalls. Experiments on artificial datasets are
used to validate these improvements. The last section presents experiments on relational
data and shows the benefits of a multiple-instance learner for relational learning. As our
algorithms generate rule sets, it is possible to use them on relational learning problems
reformulated into multiple-instance learning tasks, to generate first-order rules. Naive-
RipperMi and RipperMi are compared against three popular relational learners on the
mutagenesis prediction problem.

2 The Multiple Instance Learning Problem

2.1 Definition and Notation

In the traditional setting of machine learning, an object is represented by a feature vector
x, to which is associated a label f(x). LetX be a feature vector space, andY the finite set
of labels or classes. For the sake of simplicity, we will restrict ourselves to the two-class
case, i.e. Y = {⊕,	}. The goal then, typically, is to find a classifier h : X → Y which
minimizes the probability that f(x) 6= h(x) on a newly observed example (x, f(x)).

Within the multiple instance framework, objects are represented by bags of vectors
of variable size. Vectors are also called instances. As in the traditional setting, they can
contain numeric as well as symbolic features. The size of a bag b is noted σ(b). Its
instances are noted b1 . . . bσ(b). The multiple instance induction task consists of finding
a classifier H : 2X → Y , which accurately predicts the label F (b)1.

The multiple instance learning problem has been associated to a bias introduced by
[8], which will here be refered to as the single-tuple bias, as opposed to the multi-tuple
bias proposed by [13]. It can be formally defined as follows:

Definition 1 The single-tuple bias is a restriction on the set of functions H :
2X → {⊕,	} to those for which there exists a function h : X → {⊕,	} such that
H(b) ≡ ∃i, h(bi).

The underlying idea is that for certain learning tasks, if a bag is labeled positively,
then at least one of its instances must be responsible for this.

1 Note that functions on the instance space (resp. bag space) will be noted lower case (resp. upper
case).

A Framework for Learning Rules from Multiple Instance Data 51

This idea can be particularly well illustrated in an example on which this bias has
been extensively used: the task of predicting whether molecules smell musky or not [8].
Dietterich chooses to represent molecules as bags of vectors, each vector describing a
steric configuration of the molecule. It is well known by chemists that a molecule is
musky iff at least one of its configurations has given properties, which make the entire
molecule smell musky. Thus, there exists a function h representing these properties,
such that the function H(b) - which is derived from h as shown earlier - is an accurate
classification function for this learning task.

2.2 Related Work

Previous work on learning from multiple-instance examples has focused on the problem
of learning axis-parallel rectangles (APR) under the single-tuple bias. In particular, Di-
etterich et al. [8] have designed APR algorithms to solve the task of predicting whether
a molecule is musky or not. Other APR algorithms such MultiInst [3] have been tested
on this learning task, and many interesting learnability results have been obtained [5,
2]. More recently, Maron et al. proposed a new multiple-instance algorithm called Di-
verse Density [12], which they applied to image classification. Finally, the lazy learning
approach to multiple-instance learning has been investigated by Jun et al. [16].

The algorithms mentioned here do not generate interpretable hypotheses such as rule
sets, which is our purpose. In the following, a method for inducing multiple-instance
rules with a modified traditional rule learner will be presented. Note that Blockeel and
De Raedt [4] already presented a method for extending propositional learners to handle
relational data. The extension of a propositional learner to the multiple-instance case
is less complex, and yields specific multiple-instance issues, as will be shown in the
following.

3 Extending a Propositional Learner

3.1 Motivation

This section presents a method for the extension of a propositional learner to handle
multiple-instance data using the single-tuple bias. Our choice to adapt a propositional
learner instead of designing new multiple-instance algorithms is justified by the three
following points. First, the two learning problems are very similar. In fact, multiple-
instance data can easily be represented by a single set of vectors, and under the single-
tuple bias, the multiple-instance and the single-instance search spaces are identical. Thus,
the extension may be simple. Secondly, the existing multiple-instance learners [8,3,12]
do not generate interpretable rules or decision trees. Note that an MI learner able to
generate rule sets can be used to solve relational learning problem with an appropriate
reformulation algorithm such as Repart [17]. This will be detailed in the final section.
Finally, propositional learning is a mature field, and many of the available algorithms
can efficiently handle large databases, while achieving low error rates. The extension of
such a learner to the multiple-instance case will thus benefit from this maturity.

Extending a decision tree induction algorithm to the multiple-instance case raises
several algorithmic problems, due to the divide-and-conquer aspect of the learner. These

52 Y. Chevaleyre and J.-D. Zucker

issues are beyond the scope of this paper and will be addressed elsewhere. Fortunately,
these problems are not encountered in the rule learning coverage algorithms. We have
therefore chosen to propose an extension of propositional rule learners using a coverage
algorithm.

3.2 A Single-Tuple Naive Extension of Ripper

Let us now study the modifications needed by a single-instance (i.e. traditional) rule
learning algorithm in order to incorporate the single-tuple bias. Let us consider a generic
single-instance rule learner using a coverage algorithm. It can be seen as an algorithm
iteratively searching for a function h under a given bias, such that this function will
minimize a given criterion related to the prediction error of h on the training dataset
D. This criterion varies from one algorithm to another. Ripper [7] and C4.5 both use
a criterion based on the information gain. To compute the value of this criterion, the
learners first evaluate count(h, D,⊕) and count(h, D,), which denote the number of
positive (resp. negative) examples from D covered by h.

In order to adapt a single-instance learner to the multiple instance case, we first need
to transcribe a multiple instance bag set into a simple set of vectors, without any loss
of information. This can be done by adding to each instance two attributes, the first
one named bagid identifying the bag it belongs to and the second one named bagclass
encoding the class of its bag.

After having done this, we must now modify the evaluation criterion, such that
H(b) = ∃i, h(bi) is evaluated instead of h. To do so, we will replace the function
count(h, D, c) by countsingle−tuple(h, D, c) evaluating the number of bags of class c
encoded in D covered by H . Note that because of the single-tuple bias, if h covers a
single vector x, then the bag identified by bagid(x) will be considered as covered by H .
Thus, we have:

countsingle−tuple(h, D, c) =
|{bagidx(x); x ∈ D ∧ h(x) ∧ bagclass(x) = c}|

We have chosen to implement these modifications in Ripper, a fast efficient rule
learner designed by Cohen [7] which has been shown to be as accurate as C4.5 on
classical datasets. In addition, the rule sets induced by Ripper are usually very short,
thus being easily interpretable. Ripper includes several functionalities such as pruning
and rule optimization, which also had to be adapted to handle single-tuple hypotheses.
The rule refinement strategy of Ripper consists in greedily adding the best literal without
any backtracking. The optimization phases are thus important to improve the accuracy
of the rules induced. The resulting algorithm, which we call Naive-RipperMI, inherits
most of Ripper’s qualities, such as the ability to efficiently handle large datasets in nearly
linear time with the number of examples and the number of features.

3.3 Evaluating Naive-RipperMI

In order to compare Naive-RipperMI to the other multiple-instance learners, we chose
to run experiments on the musk datasets, already presented in section 2.2. For a detailed

A Framework for Learning Rules from Multiple Instance Data 53

description of these datasets, see [8]. Table 1 presents the results of Naive-RipperMI
measured using a tenfold cross-validation on the data.

On the musk1 dataset, the hypotheses generated by Naive-RipperMi contain an
average of seven literals. This is primarily due to efficient pre-pruning and post-pruning
techniques implemented in Ripper. In addition, the average induction time is less than
sixty seconds on a Sun SparcStation 4 computer. The two algorithms which are here
more accurate than Naive-RipperMi on musk1 generate models which are not directly
interpretable. Both Iterated-discrim-APR and All-pos-APR have been specifically
designed for this learning task [8]. In contrast, the ILP algorithms such as Tilde which
give comprehensible theories are slower than our learner on this specific task.

On the musk2 dataset, Naive-RipperMi obtains an accuracy of 77%, which is far
from the results on the musk1 dataset. In the former, the average number of instances per
bag is much bigger than in the latter. More precisely, during cross-validations, Naive-
RipperMi generates from the musk2 dataset concise hypotheses achieving low error
rates on the training data, but whose error rates on the test data are significantly higher.
This may be due to the large number instances and attributes, which causes some non
predictive hypotheses to be consistent with the training data. Instance selection algo-
rithms based on prototype selection techniques are currently under investigation by the
authors to overcome this problem. Finally, note that because the musk datasets only
contain numerical attributes, we do not expect our algorithms to compete with fully
numerical methods such as APR learners.

In the following, the relation between consistency on training data and predictive
power will not be addressed. Hence, our goal will not be to improve the accuracy of our
learner on the musk datasets. Instead, we will focus on the ability of naive-RipperMi to
find consistent hypotheses. Considering that naive-RipperMi is a simple MI extension
of an optimized single-instance algorithm, it is likely to be sub-optimal. For example
the greedy search procedure of Ripper may not be adapted to finding consistent MI
hypotheses on datasets containing many instances. In the following section, the behavior
of our algorithm will be analyzed carefully on artificial datasets, in order to design
improvements.

Table 1. Compared accuracy of MI learners on both musk datasets.

Learner Musk1 Musk2 Model
Iterated-discrim-APR [8] 0.92 0.89 Axis-parallel Rectangle
Citation-kNN [16] 0.92 0.86 k-nearest neighbour
Diverse Density [12] 0.89 0.82 Points in X
RipperMI 0.88 0.77 rule set
Naive-RipperMI 0.88 0.77 rule set
Tilde [4] 0.87 0.79 horn clauses
All-pos-APR [8] 0.80 0.73 APR
MultiInst [3] 0.77 0.84 APR

54 Y. Chevaleyre and J.-D. Zucker

4 Analysis of RipperMi Algorithms

The purpose of this section is to analyze and to understand the behavior of the algorithm
presented earlier as Naive-RipperMi. This analysis will enable us to discover potential
drawbacks, which we will try to solve. The following questions will guide our research.
When the number of instances is equal to one, Naive-RipperMi is equivalent to Ripper;
how, therefore, does the algorithm react when the number of instances increases? Is
the search procedure of Naive-RipperMi adapted to large numbers of instances? When
does the algorithm fail to induce a theory? Considering that a multiple-instance learner
can be viewed as a biased ILP learner [13], how well does an ILP algorithm compare to
ours?

To answer these question, we need datasets on which all is known, in order to run
several experiments. We have therefore decided to design a simple artificial dataset
generator. The following subsection presents the generation of these datasets and their
use.

4.1 Validation Protocol Using Artificial Datasets

In order to test and validate the multiple instance abilities of Naive-RipperMI, we con-
structed an artificial dataset generator which builds MI datasets according to parameters
provided by the user2.As stated above, we were primarily interested in understanding the
behavior of our algorithm as the number of instances per bag increases. For this reason,
we measured the accuracy of our algorithms on several randomly generated datasets
having a given number of instances per bag.

Each artificial dataset contains 200 bags, a given number of instances, and 12 boolean
attributes. The target concept is a boolean conjunction of three literals combining 3 at-
tributes out of 12. The distribution of the values of each attribute is chosen randomly by
the artificial dataset generator. The bags are then built by drawing a given number of in-
stances independently from this distribution, and labeled according to the target concept
chosen by the generator. The decision to use a conjunction of boolean attributes, and a
static number of instances per bag was intended to focus only on the multiple instance
aspect of Naive-RipperMI, without taking into account its capability of handling nu-
merical attributes or bags of variable size. Note that in the single-instance case this class
of target concepts is PAC-learnable, whereas in the multiple-instances case, it is not. In
the latter case, if viewed in the ILP setting, these concepts are 12-nondeterminate linked
horn clauses, which were proven not to be PAC-learnable [11]. Thus, the complexity
shift from one to more than one instances is very large.

Naive-RipperMI will finally be tested on the mutagenesis dataset containing both
numerical attributes and bags of variable size in the last section.

The different MI extensions of Ripper described in this paper were run on these
datasets with the default parameters, which consist of two optimization passes each
followed by a pruning phase. Hundreds of datasets containing a given number k of
instances per bag were generated; then, the accuracy of each algorithm was measured

2 the source code and further experimentation details can be found on
http://www-poleia.lip6.fr/˜chevaley/ART DAT GEN/

A Framework for Learning Rules from Multiple Instance Data 55

0

10

20

30

40

50

60

5 10 15 20 25

er
ro

r
ra

te
 (

%
)

number of instances per bag

Tilde
Foil

NaiveRipperMi
RipperMi

0.1

1

10

100

1000

10000

5 10 15 20 25

in
du

ct
io

n
tim

e
(in

 s
ec

s)

number of instances per bag

Tilde
Foil

NaiveRipperMi
RipperMi

Fig. 1. Classification error rate (left figure) and induction time (right figure) of Foil, Tilde, Naive-
RipperMi, RipperMi (see section 4.3), on artificial datasets with various numbers of instances per
bag

by averaging two-fold cross-validations over these datasets. The average classification
error is ploted on figure 1, as well as the corresponding learning time using a log-scale.
For example, on datasets containing 15 instances per bag, Naive-RipperMI obtains an
average classification error rate of 26.5%, and the induction phase lasts less than a three
seconds on a Sun SparcStation 4 computer.

The ILP learners Foil and Tilde [4] were also run on these datasets in order to
evaluate the ability of ILP tools on multiple-instance data. The top curve on the left
part of figure 1 shows their accuracy with various numbers of instances per bag. On
this particular task, they are outperformed by Naive-RipperMi in terms of accuracy.
However, Tilde’s induction time is very low, due to the "learning from interpretation"
framework it implements.

4.2 Pitfalls during Induction

In this section, Naive-RipperMi will be analyzed, its pitfalls will be described, and the
next section will propose algorithmic modifications to overcome them.

Let xj(bi) denote the jth attribute of the instance bi. For the sake of simplicity,
multiple-instance rules H(b) of the form ∃i, x1(bi) = 0∧x2(bi) = 1∧ . . .∧xj(bi) = 0
will be noted as (x1 = 0) ∧ (x2 = 1) ∧ . . . ∧ (xj = 0). A careful examination of
the theories induced on the artificial datasets revealed three pitfalls of Naive-RipperMi.
To illustrate these pitfalls, let us consider the four bags shown in table 2. The target
concept is (x1 = 1) ∧ (x2 = 0) ∧ (x3 = 1). Naive-RipperMi’s strategy to refine a
rule will be to examine each possible literal, and to add the one which brings the highest
gain. Here, starting with an empty rule, the candidate rules (x1 = 1), (x2 = 0), and
(x3 = 1) each cover all four bags, (x1 = 0) and (x3 = 0) both cover one positive and
two negative bags, and (x2 = 1) covers two positive and one negative. Thus the best
literal to start with, in terms of information gain, is (x2 = 1). This literal is misleading
w.r.t. target concept. Given a target concept F (b) ≡ ∃i, f(bi), a literal ` will be said
misleading iff ` ⇒ ¬f . We can easily show that with the artificial data sets used here,

56 Y. Chevaleyre and J.-D. Zucker

bag class x1 x2 x3

bag1 ⊕ 1
1

0
1

1
0

bag2 ⊕ 0
1

1
0

1
1

bag class x1 x2 x3

bag3 	 0
1

0
1

0
1

bag4 	 0
1

0
0

1
0

Fig. 2. Two positive bags and two negative bag, with two instances each. Target: (x1 = 1)∧(x2 =
0) ∧ (x3 = 1)

rules containing misleading literals have the following property: whatever their empirical
error rate3 is, their true error rate is higher than that of the default rule. In addition, when
the number of instances per bag increases, the probability of having misleading literals
correlated with the target concept on the dataset also increases, so does the probability
that the induction algorithm chooses a misleading literal. Note that misleading literals
is a typical multiple-instance phenomenon which cannot appear in the single-instance
case. In the latter case, any rule containing a misleading literal would have an empirical
error rate of 100%. Thus, empty rules would always be preferred to rules with misleading
literals. In the following section, an algorithmic modification will be proposed to cope
with this pitfall. The second pitfall can again be observed on the examples of table 2.
From the six candidate rules proposed by Naive-RipperMi three rules cover the four
bags. These three rules are thus indistinguishable for the learner. To avoid this pitfall,
a new coverage measure has been developed. Due to space limitations, this measure
which is based on counting the number of instances per bag covered by a rule will
be described in a forthcoming paper. The last pitfall described in this paper consists in
irrelevant literals added to rules. Irrelevant literals are literals which do not belong to the
target concept, but which are not misleading. In single-instance rule learning, irrelevant
literals are generally added at the end of rules because of overfitting. In multiple-instance
learning, irrelevant literals may appear anywhere in a rule because candidate literals are
often indistinguishable, as explained earlier. Although this phenomenon appears very
often with multiple-instances, it can also appear with single-instance data.

4.3 Avoiding Pitfalls

Algorithmic modifications of Naive-RipperMi’s search procedure to avoid misleading
and irrelevant literals are now described. Suppose we are refining a rule R which is
known not to contain any misleading literal yet. Let ` be the best literal to add to R,
according to Naive-RipperMI’s greedy strategy. Of course, we cannot be sure that ` is
not a misleading literal. Yet, it is clear that at least one of the two literals ` and ¬` is
not misleading. Hence, by considering both R ∪ ` and R ∪ ¬`, at least one of the two
rules will not contain any misleading literal. The induction process thus undoubtedly
avoids this pitfall. Note that the process of examining two rules at each refinement step
can be seen as building a binary decision tree from which a single rule is extracted. In
such a tree, each node corresponds to a literal and paths from the root node to the leaves
corresponds to the candidate rules.

3 the empirical error rate of a rule is generally defined as fp
fp+tp

with tp and fp being the number
of covered examples which label is (resp. is not) that predicted by the rule

A Framework for Learning Rules from Multiple Instance Data 57

x2

1
1

=1 =0

x1
=1

x3
=1 =0

2 1

=0
x1

=1 2=0

1

Fig. 3. Decision tree induced from bags in table 2

Our new refinement procedure builds such a decision tree, starting with a root node.
Let {si} be the set of leaves of the current tree, and ri, the rule associated with the path
from the root node to the leaf si. Let gain(r, r∗), the gain function used by Naive-
RipperMi to evaluate the benefit of replacing the rule r by r∗. Let `i be the literal which
maximizes the gain gi = gain(ri, ri ∪ `i) for each rule ri. The leaf sj which has the
highest gain gj is chosen for expansion: the leaves corresponding to literals `j and ¬`j

are added to sj , which is now an internal node. This refinement process stops when all
gains gi are null. At last, the rule ri which brings the highest value of gain({}, ri) is
extracted from the tree.

Considering the worst case, the storage requirement of this algorithm is linear with
the total number of instances in the training set. In practice, small trees are generated
by this algorithm, as all gains gi become null rather quickly. This is due to the fact that
often in multiple-instance learning tasks, large parts of the instance space are of no use
to separate positive bags from negative ones. Note that the complexity of building this
tree is similar to building a single-instance decision tree, which is O(ma log m) where
m is the number of examples in the single-instance case and a the number of attributes.
In the multiple-instance setting, m represents the total number of instances. Assuming as
in [7,9] that the number of generated rules is approximately constant, the complexity of
RipperMi is thus O(ma log m). Further experiments conducted on the artificial datasets
confirmed that the algorithm’s runtime was approximately linear with the number of
bags. Due to lack of space, these experiments will be detailed elsewhere.

When running this algorithm on the small dataset described in table 2, it explores the
decision tree as shown in figure 3. The leaves of the tree indicate how many positive and
negative bags are covered by the corresponding rule. Here, the rule (x2 = 0) ∧ (x1 =
1) ∧ (x3 = 1) covers two positive bags (2⊕) and no negative one. This rule will thus
be extracted from the tree, and the pitfall will be avoided. Much work has been done
recently on the use of decision trees as a temporary representation for single-instance rule
induction. Nevertheless, as stated by Frank and Witten [9], in the single-instance case,
decision trees are used as a substitute to a global optimization on rule sets. Thus they do
not provide a qualitative algorithmic improvement, unlike in the multiple instance case
for which they enable pitfalls to be avoided.

In addition to misleading literals, induced theories may contain irrelevant literals
anywhere in the rules. In the single-instance case, irrelevant literals usually appear at
the end of the rule, because of overfitting. To avoid this, Ripper implements a reduced

58 Y. Chevaleyre and J.-D. Zucker

error pruning technique which tests and removes literals at the end of rules. We there-
fore added after this pruning step another step consisting in a modified reduced error
pruning algorithm examining literals in the current rule in any order. Using the same
validation procedure as earlier, the graphs of figure 1 respectively show the average clas-
sification error rate and induction time of RipperMi, the new algorithm implementing
both improvements. With the dataset containing 15 instances per bag, for example, the
classification error decreases from 26.5% to 18.9%. Note that these algorithmic improve-
ments, aimed at inducing consistant hypotheses, have no impact on the musk learning
task, as Naive-RipperMi was already consistant on these data.

5 Experiments on Relational Data

It has been shown that under various biases, the problem of learning from first-order
data can be converted to a lower-order learning problem, in particular to attribute-value
learning tasks. This process, called propositionalization, has already been investigated
within the multiple-instance framework in [17]. In this section Naive-RipperMi and
RipperMi will be used in association with Repart [17] to solve a traditional ILP problem
: the mutagenesis prediction task [15].

5.1 Solving the Mutagenesis Problem with a Multiple-Instance Learner

The mutagenesis prediction problem [15] consists in inducing a theory which can be used
to predict whether a molecule is mutagenic or not. To achieve this, a dataset describing
188 molecules with prolog facts is used. Several relational descriptions of the domain
are available. We will use the description termed B2 [15] where atoms and bonds are
described, and B3 which includes B2 as well as two global molecular properties.

The algorithm Repart [17] has been used to generate several propositionalizations.
After each propositionalizations, the MI learner is launched on the reformulated data,
and it outputs an hypothesis and its accuracy on the training set. The process stops if this
accuracy is sufficiently high. If not, another more complex reformulation is chosen, and
so forth. Using the description B2, Repart first represents molecules as bags of atoms.
Thus, each instance contains the three attributes describing a single atom. As expected,
this reformulation did not yield good results. During the second step, Repart repre-
sented molecules as bags of pairs of bonded atoms. The following subsection describes
the results using this reformulation. With the B3 description level, the first reformulation

Table 2. Compared accuracy of RipperMi with ILP learners on the mutagenesis dataset.

B2 B3

RipperMi 0.82 0.91
NaiveRipperMi 0.78 0.91
Tilde 0.77 0.86
Progol 0.76 0.86
Foil 0.61 0.83

A Framework for Learning Rules from Multiple Instance Data 59

chosen by Repart has shown to be sufficient. This reformulation consisted in repre-
senting each molecule as a bag of atoms each to which was added global molecular
properties.

5.2 Experiments and Results

The results of Naive-RipperMi and RipperMi are compared to those of state of the
art ILP learners able to generate comprehensible hypotheses Progol [15], Tilde [4],
and Foil. Table 2 shows the accuracy of these learners measured with a tenfold cross-
validation . Both Naive-RipperMi and RipperMi perform equally well on the B3 de-
scription, which is not surprising, because most literals added to the induced theo-
ries are global literals. Therefore, their multiple-instance ability is not challenged here.
On the other hand, the reformulation using the B2 description level does not contain
any global attributes. This explains the higher accuracy obtained by RipperMi com-
pared to that of NaiveRipperMi. The following is an example of rule generated by
our learner: active ← (type1 = 1) ∧ (ch1 < 0.288) ∧ (ch2 < -0.404) It
indicates that if a molecule has a pair of bonded atoms such that the first one is of type
1 and has a partial charge lower than 0.288 and that the second one has a partial charge
lower than -0.404, then the molecule is mutagenic. Both MI learners are faster than ILP
algorithms. For example, on the B2 description level, Naive-RipperMi induces an hy-
pothesis less than 150 seconds on a Sun SparcStation 4. In comparison, Progol requires
117039 seconds, Tilde requires 539 seconds, and Foil requires 4950 seconds.

6 Conclusion

The problem of supervised multiple-instance learning is a recent learning problem which
has raised interest in the machine learning community. This problem is encountered in
contexts where an object may have several alternative vectors to describe its different
possible configurations. Solving multiple-instance problems using propositional algo-
rithms raises subtle issues that are related to the notion of bags of instances whose cov-
erage is by essence different from that of mono-instance problems. We have proposed an
method to extend a propositional rule learning algorithm to the multiple-instance case.
Some drawbacks of this method have been detected and a better search procedure was
developed. Each refinement has been validated on artificial datasets.

With the help of the Repart [17] algorithm, which reformulates first-order examples
into bags of instances, our algorithm has been tested on the well known mutagenesis
relational dataset. RipperMI yielded good results compared to those of FOIL Tilde and
Progol on this problem. It also showed to be significantly faster. We therefore argue
that the multiple instance paradigm may be very useful for solving a wide range of
relational problems. Relational data mining tasks may also be addressed by multiple-
instance learners, in particular when it is possible to create bags of instances making
sense by joining tables together [6]. Finally, a future application of our learner will be
to embed it in a mobile robot to recognize real-world objects from segmented images.

Many questions remain opened. The pitfalls described here appear more often when
instances are independantly drawn from a distribution D. How often do they appear if

60 Y. Chevaleyre and J.-D. Zucker

this does not hold any more ? In fact, most theoretical studies were made under this
statistical assumption which was shown to be reasonable in many cases. An interesting
research issue would be to develop weaker assumptions which would be more realistic.

Acknowledgments. We would like to thank the anonymous reviewers for their helpful
suggestions, comments, and pointers to relevant literature.

References

1. Erick Alphonse and Celine Rouveirol. Lazy propositionalization for relational learning. In
ECAI, 2000.

2. P. Auer, P. Long, and Ashwin Srinivasan. Approximating hyper-rectangles: Learning and
pseudo-random sets. In Annual ACM Symposium on Theory of Computing, 1997.

3. Peter Auer. On learning from multi-instance examples: Empirical evaluation of a theoretical
approach. In Proc. 14th International Conference on Machine Learning, 1997.

4. Hendrik Blockeel, Luc De Raedt, Nico Jacobs, and Bart Demoen. Scaling up inductive logic
programming by learning from interpretations. Data Mining and Knowledge Discovery,
3(1):59–93, 1999.

5. Avrim Blum and Adam Kalai. A note on learning from multiple-instance examples. Machine
Learning, 30, 1998.

6. Yann Chevaleyre and J.D. Zucker. Noise tolerant rule induction for multiple-instance
data and potential data mining application. Tech. Rep. University of Paris 6, available at
http://www-poleia.lip6.fr/˜chevaley/michurning.ps, 2001.

7. William W. Cohen. Fast effective rule induction. In Proc. 12th International Conference on
Machine Learning. Morgan Kaufmann, 1995.

8. Thomas G. Dietterich, Richard H. Lathrop, and Tomás Lozano-Pérez. Solving the multiple-
instance problem with axis-parallel rectangles. Artificial Intelligence, 89(1-2), 1997.

9. Eibe Frank and Ian H. Witten. Generating accurate rule sets without global optimization. In
Proc. 15th ICML, 1998.

10. Attilio Giordana, Lorenza Saitta, Michele Sebag, and Marco Botta. Analyzing relational
learning in the phase transition framework. In Proc. 17th ICML, 2000.

11. J.U. Kietz. Some lower bounds for the computational complexity of inductive logic program-
ming. In ECML, 1993.

12. Oded Maron and Aparna Lakshmi Ratan. Multiple-instance learning for natural scene clas-
sification. In Proc. 15th ICML, pages 341–349, 1998.

13. Luc De Raedt. Attribute-value learning versus inductive logic programming: The missing
links. In Proc. 8th International Conference on ILP, 1998.

14. Michele Sebag and Celine Rouveirol. Tractable induction and classification in first order
logic. In IJCAI, Nagoya, Japan, 1997.

15. A. Srinivasan and S. Muggleton. Comparing the use of background knowledge by two ilp
systems. In L. de Raedt, editor, ILP-95., Katholieke Universiteit Leuven, 1995.

16. Jun Wang and Jean-Daniel Zucker. Solving multiple-instance problem: a lazy learning ap-
proach. In Proc. 17th ICML, 2000.

17. Jean-Daniel Zucker and Jean-Gabriel Ganascia. Learning structurally indeterminate clauses.
In Proc. 8th International Conference on ILP. Springer-Verlag, 1998.

	Introduction
	The Multiple Instance Learning Problem
	Definition and Notation
	Related Work

	Extending a Propositional Learner
	Motivation
	A Single-Tuple Naive Extension of textsc {Ripper}
	Evaluating textsc {Naive-RipperMI}

	Analysis of textsc {RipperMi} Algorithms
	Validation Protocol Using Artificial Datasets
	Pitfalls during Induction
	Avoiding Pitfalls

	Experiments on Relational Data
	Solving the Mutagenesis Problem with a Multiple-Instance Learner
	Experiments and Results

	Conclusion

