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Abstract. It is well known that the naive Bayesian classifier is linear
in binary domains. However, little work is done on the learnability of
the naive Bayesian classifier in nominal domains, a general case of bi-
nary domains. This paper explores the geometric properties of the naive
Bayesian classifier in nominal domains. First we propose a three-layer
measure for the linearity of functions in nominal domains: hard linear,
soft nonlinear, and hard nonlinear. We examine the learnability of the
naive Bayesian classifier in terms of that linearity measure. We show that
the naive Bayesian classifier can learn some hard linear and some soft
nonlinear nominal functions, but still cannot learn any hard nonlinear
functions.

1 Introduction

Learning classifiers from examples is an important issue in machine learning
research. A classifier is a function that assigns a class label to an example.
Assume A1, A2,· · ·, An are n attributes. An example E is represented by a
vector (a1, a2, , · · · , an), where ai is the value of Ai. There are two types of
attributes: nominal (taking values from a finite set) and numeric (taking values
from a continuous range). We restrict our discussion to nominal attributes in this
paper. Let C represent the classification variable, which takes values + (positive
class) or − (negative class), and let c be the value that C takes.

Numerous approaches to learning classifiers, such as decision trees, neural
networks, and instance-based learning, have been studied. In recent years, prob-
ability approaches to learning classifiers have been extensively investigated. Ac-
cording to Bayes Theorem, the probability of an example E = (a1, a2, · · · , an)
being in class c is

p(c|E) =
p(a1, a2, · · · , an|c)p(c)

p(a1, a2, · · · , an)
.

E belongs to the class C = + iff

g(E) =
p(C = +)p(a1, a2, · · · , an|C = +)
p(C = −)p(a1, a2, · · · , an|C = −)

≥ 1,

where g(E) is called a Bayesian classifier.
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Assume all attributes are independent given the class value (conditional in-
dependence), then

p(a1, a2, · · · , an|c) =
n∏

i=1

p(ai|c).

The corresponding Bayesian classifier g(E) is then:

g(E) =
p(C = +)
p(C = −)

n∏

i=1

p(ai|C = +)
p(ai|C = −)

,

where g(E) is called a naive Bayesian classifier or, in short, Naive Bayes.
Naive Bayes is easy to construct simply by estimating the value of p(ai|c)

from training examples. Intuitively this might be not accurate, because the con-
ditional independence assumption rarely holds true. To some extent, however,
this intuition is not correct. Many empirical comparisons between Naive Bayes
and C4.5 [9] showed that Naive Bayes predicts just as well as C4.5 [7,6].

In recent years, researchers have attempted to uncover reasons for the good
performance of Naive Bayes. Domingos and Pazzani [1] presented an explanation:
even though Naive Bayes alters the probability distribution of a class, the class
with the maximum probability may still be the same. This is verified by Frank’s
[3] work, which shows that the performance of Naive Bayes is much worse when
it is used for regression (predicting a continuous value).

One interesting and fundamental question is the learnability of Naive Bayes.
It is well-known that Naive Bayes can create only linear frontiers in binary
domains [2]. That is, Naive Bayes can learn only linearly separable concepts
in binary domains. For nominal domains, a general case of binary domains,
there is no satisfying result. Attributes in nominal domains can have more than
two values. Assume A1, A2, · · ·, An are n nominal attributes, each attribute
Ai may have m values ai1, ai2, · · ·, and aim (m ≥ 2). Domingos and Pazzani
[1] and Peot [8] introduced m new Boolean attributes Bi1, Bi2, · · ·, and Bim

for each attribute Ai, and proved that Naive Bayes is linear over these new
binary attributes. However, the linear separability on n original attributes is
transformed to m1 × m2 · · · × mn new attributes. To our knowledge, there is no
general result for the linearity of Naive Bayes on original nominal attributes.

Given a function in nominal domains, however, how can we define linearity
or linear separability? Typically, linearity is a geometric term on the Euclidean
space Rn (R is the set of all real numbers), but nominal attributes do not have
direct geometric meaning. We must map nominal attributes into numeric ones
to discuss the linearity property of a function. The tricky issue is that different
mappings may result in different results of linearity.

On the other hand, it is obvious that different functions in nominal domains
may present different difficulties for Naive Bayes to learn. It is natural to ask the
following questions: Can the complexity of a function be measured in terms of
its geometric properties? Is there any relation between the geometric properties
of a function and the learnability of Naive Bayes?
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The motivation of this paper is to explore the learnability of Naive Bayes by
answering the two questions above. The remainder of this paper is organized as
follows. Section 2 introduces necessary definitions and briefly reviews the results
in the upper bound on the learnability of Naive Bayes. Section 3 proposes a
three-layer measure for the linearity of a function, and proves a sufficient and
necessary condition for hard nonlinearity, and then examines the learnability of
Naive Bayes in terms of that measure. In the conclusions, we summarize our
results and outline our future work.

2 The Upper Bound on the Learnability of Naive Bayes

As mentioned above, Naive Bayes is a linear classifier in binary domains. Let us
briefly review the relevant results [2].

Suppose that attributes A1, A2, · · ·, An are binary, taking value 0 or 1. Let
pi and qi represent the probability p(Ai = 1|C = +) and p(Ai = 1|C = −)
respectively, E = (a1, · · · , an) be an example. Then the corresponding Naive
Bayes G(E) is:

G(E) =
p(C = +)
p(C = −)

n∏

i=1

pi
ai(1 − pi)1−ai

qi
ai(1 − qi)1−ai

. (1)

It is straightforward to obtain a linear classifier by applying a logarithm to the
above equation.

Two points should be noted here. First, we actually implicitly use a mapping
from the two nominal values (such as red and blue) of a binary attribute to {0,
1}. Second, we cannot get a similar result when any of Ai has more than two
values. Thus, we cannot simply extend the result in binary domains to nominal
domains.

We begin our discussion on the linearity of Naive Bayes with a few definitions.

Definition 1 Given n nominal attributes A1, A2, · · ·, An, and two classification
labels {+,−}, a function f from A1 × A2 · · · × An to {+,−} is called an n-
dimensional nominal function.

Zhang and Ling [12] proved that if a nominal function f “contains” an XOR,
then no Naive Bayes can represent it. So, roughly, XOR is the upper bound of
Naive Bayes. We give detailed definitions of “contain” below, since we will use
this term in the next section.

Definition 2 Assume f is an n-dimensional nominal function on A1, A2, · · ·,
An. An (n-1)-dimensional partial function fp of f on A1, · · ·, Ai−1, Ai+1, · · ·,
An, and Ai = aij, is called an (n-1)-dimensional subfunction at Ai = aij, de-
noted by f(aij), where 1 ≤ i ≤ n.

To get a k-dimensional subfunction of f is straightforward, by fixing n − k
attributes, 2 ≤ k ≤ n − 1.
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Definition 3 An n-dimensional nominal function f is said to contain a tangent
XOR, if there is a 2-dimensional subfunction fp on attributes Ai and Aj, and
each of them has two distinct values ai and āi, aj and āj, respectively, such that
a partial function fp′ of fp on {ai, āi} × {aj , āj} is an XOR function.

Definition 4 Assume f is an n-dimensional nominal function. f is said to
contain a diagonal XOR if there are two attributes Ai and Aj, each of which has
two distinct values, ai, āi, and aj, āj, respectively, such that:

f(a1, · · · , ai, · · · , aj , · · · , an) = + (2)
f(a1, · · · , ai, · · · , āj , · · · , an) = − (3)
f(ā1, · · · , āi, · · · , aj , · · · , ān) = − (4)
f(ā1, · · · , āi, · · · , āj , · · · , ān) = + (5)

where al and āl are two distinct values of Al, l 6= i and j.

Definition 5 An n-dimensional nominal function f is said to contain an XOR
if and only if f contains a tangent XOR or a diagonal XOR.

3 Geometric Properties of Naive Bayes

Containing an XOR of a nominal function is a basic concept in this paper. It
has been proved that Naive Bayes cannot learn any function containing XOR
[12]. However, what is the relation between a function containing an XOR and
its geometric linearity? We propose a measure for the geometric linearity of a
function, and show that there is a close relation between a function’s containing
an XOR and its linear separability. Then we examine the learnability of Naive
Bayes on functions with different linearity.

3.1 Measure for the Linearity of Nominal Functions

We have to map nominal attributes of a function into numeric ones in order
to discuss its linearity. Since the values of a nominal attribute have no order,
it is reasonable to map a nominal value into an arbitrary real number without
conflicting with the mapping of another attribute value.

Definition 6 Given n numeric attributes A1, A2, · · ·, An, and two classifi-
cation labels {+,−}, a function f from A1 × A2 · · · × An to {+,−} is called
n-dimensional numeric function.

Definition 7 Given a nominal attribute A = {a1, a2, · · · , am}, a numeric at-
tribute mapping Γ is defined as a function from A to R, such that for each ai,
1 ≤ i ≤ m, we have Γ (ai) = xi, xi ∈ R and xi 6= xj if i 6= j.
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Let us review the conclusion that Naive Bayes is a linear classifier in binary
domains. As discussed in Section 2, this conclusion comes from an implicit as-
sumption that the two values of each binary attribute are mapped into {0, 1}.
Obviously, other reasonable mappings also exist, since we can map the two values
of a binary attribute into any two different real numbers. Then we can no longer
get Equation 1. Since the mapping affects the geometric properties of a nominal
function, what we are interested in are the properties that are independent of
mappings.

Definition 8 Given a nominal function f on nominal attributes A1, A2, · · · .,
An, an attribute mapping vector Ω = (Γ1, Γ2, · · · , Γn) is called a numeric func-
tion mapping of f , where Γi is the numeric attribute mapping of Ai, i = 1, 2,
· · ·, n. The resulting numeric function fΩ is defined below:

fΩ(Γ1(A1), Γ2(A2), · · · , Γn(An)) = f(A1, A2, · · · , An).

After f is mapped to fΩ in the Euclidean space, geometrically, fΩ corre-
sponds to an n-dimensional hypercube, and each (n−1)-dimensional subfunction
f(aij) corresponds to an (n − 1)-dimensional surface of the hypercube, denoted
by Hij . Note that an (n−1)-dimensional surface is also an n-dimensional hyper-
plane. Each assignment of all attributes corresponds to a vertex of the hypercube
with a class label. Let W+ and W− represent all positive and negative vertices
respectively. Then we have the following definition.

Definition 9 A numeric function fΩ is linearly separable if there is a hyper-
plane H to separate W+ from W−, where H =

∑n
i=1 wiAi + w0, wi ∈ R.

Geometrically, if fΩ is linearly separable, then there is an n-dimensional hy-
perplane slicing the hypercube of fΩ , such that all positive vertices lie on the one
side of the hyperplane and all negative vertices on its opposite side. Therefore, the
problem of linear separability becomes the problem in which a hyperplane slices
a hypercube [10]. As mentioned earlier, since we only care about the properties
independent of mappings, we can freely move a surface Hij of fΩ (corresponding
to an f ’s (n−1)-dimensional subfunction f(aij)), which corresponds to assigning
a different mapping value to aij ; or we can freely exchange the positions of any
two distinct surfaces Hij and Hik, which corresponds to exchanging the map-
ping values of aij and aik. Since moving a surface or exchanging two surfaces
corresponds to a different mapping, we will use these two operations in the proof
of theorems later.

Definition 10 (1) A nominal function f is called hard linear, if for any numeric
function mapping, the resulting numeric function is linearly separable.

(2) A nominal function f is called soft nonlinear if it is not a hard linear
function, and there exists a numeric function mapping such that the resulting
numeric function is linearly separable.

(3) A nominal function f is called hard nonlinear if for any numeric function
mapping, the resulting numeric function is not linearly separable.
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Definition 10 proposes three layers to measure the linearity of nominal func-
tions, independent of specific mappings. In binary domains, however, only two
layers are needed, as given by the following Theorem.

Theorem 1. There is no soft nonlinear Boolean function in binary domains.

Proof: Suppose that f is a Boolean function on binary attributes B1, · · ·, Bn,
and there is a numeric function mapping Ω = (Γ1, · · · , Γn), where Γi(bij) = xij

(bij is the value of Bi, i = 1, · · ·, n, j = 1, 2), such that the resulting numeric
function fΩ is linearly separable. Then there is a hyperplane H to separate fΩ .
Assume H =

∑n
i=1 wixi + w0, wi ∈ R.

For any other mapping Ω′ = (Γ ′
1, · · · , Γ ′

n), where Γ ′
i (bij) = x′

ij (i = 1, · · ·, n,
j = 1, 2), the following hyperplane

H ′ =
n∑

i=1

wi(
xi − x′

i1

x′
i2 − x′

i1
(xi2 − xi1) + xi1) + w0

will separate the resulting function fΩ′ .

A straightforward result from Theorem 1 is that Naive Bayes is linear in
binary domains regardless of mapping. That means that linearity in binary do-
mains is simple. However, the linearity in nominal domains is more complex. As
we will show in the following subsections, the learnability of Naive Bayes in the
three layers of linearity is different.

3.2 Hard Linear Nominal Functions

Consider the m-of-n functions. An m-of-n function is a Boolean function that
is true if m or more out of n Boolean variables are true. Clearly, if the two
values of each Boolean variable are mapped into {0, 1}, an m-of-n function is
linearly separable by the hyperplane

∑n
i=1 xi − m = 0, where xi ∈ {0, 1}. So

it is hard linear by Theorem 1. It can be verified that some m-of-n functions
are learnable to Naive Bayes, such as 13-of-25, 30-of-60, 31-of-60 [11]. However,
not all m-of-n functions are learnable to Naive Bayes. Domingos and Pazzani [1]
showed that for the concept 8-of-25, Naive Bayes gives an incorrect answer of
1 (instead of 0), when just six or seven input Boolean variables are true. This
result is independent of mapping, since all variables are Boolean in an m-of-n
function.

The above example shows that Naive Bayes can learn only a subset of hard
linear nominal functions. Zhang and Ling [11] presented a sufficient and neces-
sary condition for an m-of-n function to be learnable to Naive Bayes. But for an
arbitrary linear function, such a condition is still unknown.

3.3 Soft Nonlinear Nominal Functions

Soft nonlinear nominal functions are those functions that are nonlinear under
some mappings, but linear under others. The following is an example.
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Let A = {a1, a2, a3}, B = {b1, b2, b3}, the nominal function f1 is defined as
follows: f1(a1, b1) = +, f1(a1, b3) = +, f1(a3, b1) = +, f1(a3, b3) = +, f1(a2, ∗) =
−, f1(∗, b2) = −, where * means any valid values. Figure 1 (a) is the result of
mapping ai and bi to i, i = 1, 2, 3. It is not linearly separable. However if we
map a1, b1 to 1, and a3, b3 to 2, and a2 to 5, b2 to 4, the result, which is linearly
separable, is shown in Figure 1 (b). Therefore, f1 is soft nonlinear.

Fig. 1. (a) Nonlinear result of f1 (b) linear result of f1

Definition 11 A numeric attribute mapping Γ on a nominal attribute A =
{a1, a2, · · · , am} is called an integer mapping, if Γ is a one-to-one mapping from
{a1, a2, · · · , am} to {1, 2, · · · , m}, denoted by ΓI .

From Definition 7, we know that ΓI is a special case of arbitrary Γ , since
nominal attribute values are mapped one-to-one into a fixed set of integers.
Indeed, application of Naive Bayes on real-world datasets often requires that
all attributes be converted into nominal attributes, which are commonly repre-
sented internally by integers from 1 to k for k different values. Therefore, integer
mapping is a typical and useful mapping in real applications.

Consider a Naive Bayes G on two specific nominal attributes A and B, where
A = {a1, a2, a3}, B = {b1, b2, b3}, and Table 1 is the conditional probability
table (CPT) for A, and B has the same CPT as A. Assume ΓIA and ΓIB are

Table 1. The conditional probability table for A.

A = a1 A = a2 A = a3

C = − 0.3 0.4 0.3
C = + 0.5 0 0.5
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integer mappings from A and B to {1, 2, 3} respectively, such that ΓIA(ai) =
i, ΓIB(bi) = i, i = 1, 2, 3. It is easy to verify that the classifications of G are the
same as in Figure 1 (a) after mapped to a two-dimensional Euclidean plane. So,
f1 is learnable to G.

Therefore, Naive Bayes can learn some soft nonlinear nominal functions. This
conclusion is quite different from that in binary domains. As we have shown,
there are no soft nonlinear functions in binary domains; a function is either hard
linear, or hard nonlinear, and Naive Bayes can only learn some of hard linear
functions. In nominal domains, however, there are soft nonlinear functions, which
are nonlinear under some mappings, and Naive Bayes can actually learn some
of them. This may explain why the performance of Naive Bayes is quite good in
real-world datasets in which attributes are nominal (since continuous attributes
are often discretized to nominal attributes).

3.4 Hard Nonlinear Nominal Functions

Consider the XOR function. Let A = {a, ā}, B = {b, b̄}, the XOR function f2 is
defined as: f2(a, b) = +, f2(a, b̄) = −, f2(ā, b) = −, f2(ā, b̄) = +. It is easy to
verify that f2 is hard nonlinear.

We now establish a sufficient and necessary condition for the hard nonlinear-
ity of a function.

Lemma 1. If an n-dimensional nominal function f has an (n-1)-dimensional
subfunction f(aij) with an identical class (called identical subfunction), where
aij is a value of attribute Ai, then f is hard nonlinear if and only if f ’s partial
function fp on A1, A2, · · ·, Ai − {aij}, · · ·, An is hard nonlinear.

Proof: It is obvious that if fp is hard nonlinear, f is hard nonlinear too.
If fp is not hard nonlinear, then there is a numeric function mapping Ω,

such that after applying it on fp, the resulting numeric function fpΩ is linearly
separable. Then there is a hyperplane H:

∑n
j=1 wjAj + w0 = 0 to separate fpΩ .

Suppose that the vertices above H have class label +, and the vertices under
H have class label −. Assume that Hik is the surface corresponding to subfunc-
tion f(aik), k = 1, · · ·, m. We put Hij on the side of H with the same class
label and move it any distance from other surfaces Hik, k 6= j. If H is exactly
perpendicular to Hij , we can adjust H slightly to make it not perpendicular
to Hij , while keeping the separation. This is possible since there are only finite
vertices on the hypercube. Then it is obvious that if we move Hij far enough, it
will be totally on the one side of H, since H is not perpendicular to Hij .

The current positions of Hik for k = 1, · · ·, m, correspond to a numeric
function transform of f . Applying this transform, the resulting numeric function
fΩ must be linearly separable by H. Therefore, f is not hard nonlinear too.

Lemma 1 shows that the identical surface has no influence on the linearity
of a function, so it can be freely removed without affecting the linearity.

Now we begin to discuss the relation between a nominal function containing
XOR and its nonlinearity.
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Lemma 2. Suppose f is a 2-dimensional nominal function. If f does not con-
tain an XOR, then f is not hard nonlinear.

Proof: Suppose that f is a 2-dimensional nominal function on attributes
A and B and does not contain an XOR. After applying a numeric function
mapping Ω, we get a corresponding numeric function fΩ . fΩ can be illustrated
by a matrix M on R2 which consists of a set of vertices with class labels, as
shown in Figure 1. Because f does not contain an XOR, it can be proved that
M will be empty after successively removing the identical rows and columns of
M . According to Lemma 1, f is not hard nonlinear.

Theorem 2 below establishes a close relation between a function containing
an XOR and its nonlinearity.

Theorem 2. An n-dimensional nominal function f is hard nonlinear if and
only if it contains an XOR.

See Appendix 1 for the proof of this theorem.
Interestingly enough, XOR is also related to the linearity of other classifiers.

For example, the perceptron is linear since it cannot represent XOR.

Theorem 3. Naive Bayes cannot learn any hard nonlinear nominal function.

Proof: Since Naive Bayes cannot learn any nominal functions containing an
XOR and, according to Theorem 2, a nominal function is hard nonlinear if and
only if it contains an XOR, Naive Bayes cannot learn any hard nonlinear nominal
function.

4 Empirical Experiment

In the above section, we proved that any hard nonlinear function is not learnable
to Naive Bayes, and that a nominal function is hard nonlinear if and only if it
contains an XOR. According to that result, it is intuitive that the more XORs
contained in a nominal function, the more difficulty for it to be learnable to Naive
Bayes. We have verified this statement by the empirical experiment below.

We randomly generate an augmented Naive Bayes (ANB) G [4], and count
the number of XORs contained in G. Then we draw a dataset from G at random
by logical sampling [5]. A Naive Bayes NG is trained and applied to that dataset
by 5-fold cross-validation . Then we can observe the relation between the number
of XORs contained in G and the classification accuracy of NG. We try different
ANBs, and the results are similar. The following figure shows the results of two
cases, in which the ANBs have six nodes and five edges, and eight nodes and
seven edges respectively. We repeat the above process 10,000 times in both cases.

In Figure 2, the solid lines plot the classification accuracy of the target ANBs.
Note that the accuracy is not 1, because not every example drawn by logical
sampling is consistent to the classification of the target ANB. The dotted lines
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Fig. 2. (a) Target ANB with six nodes (b) target ANB with eight nodes

are the classification accuracy of Naive Bayes. Clearly, the difference between
the solid and dotted lines increases significantly in both cases, as the number
of XORs contained in the target ANB increases. Approximately, the difference
grows from six percent to nineteen percent.

The above experiment verifies our expectation that the more XORs contained
in a nominal function, the more difficulty for it to be learnable to Naive Bayes.
This provides us with the evidence that Naive Bayes cannot learn any hard
nonlinear functions.

5 Conclusions

We investigated the linearity of nominal functions by introducing a three-layer
measure: hard linear, soft nonlinear, and hard nonlinear. We discussed the learn-
ability of Naive Bayes in term of the three layers of linearity. Our results showed
that Naive Bayes can learn some hard linear and some soft nonlinear functions,
but it cannot learn any hard nonlinear functions. Our experiment also verified
that hard nonlinear functions are more difficult to be learned by Naive Bayes.

Our work establishes two fundamental facts. One is the limitation of Naive
Bayes in terms of geometric properties of the nominal functions. The other is
that linearity is an appropriate measure for the complexity of nominal functions
in Bayesian learning.

From the theoretical results of our paper, Naive Bayes is quite limited in its
learnability in nominal domains. A natural question is, what is the reachable up-
per bound on the learnability of Naive Bayes? That is, how well can Naive Bayes
approximate a nonlinear function, even though it cannot represent it perfectly?
This is one of our future research topics.
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Appendix: Proof of Theorem 2

Suppose that f contains an XOR. By Definition 5, there is a tangent XOR
or a diagonal XOR in f . When f is mapped to Rn, there should exist a 2-
dimensional plane H2 containing an XOR. It is obvious that the XOR cannot
disappear whatever numeric function mappings are applied. Moreover, for any
hyperplane H to separate f , its projection onto H2 should separate the XOR on
H2. Therefore, such a hyperplane H does not exist. So function f is nonlinear
regardless of mappings. That is, f is hard nonlinear.

Suppose f does not contain an XOR. We apply induction on f ’s dimension
n.

Let n = 2. From Lemma 2, we know that f is not hard nonlinear.
Suppose when n = m − 1, all (m-1)-dimension nominal functions not con-

taining an XOR are not hard nonlinear, where m ≥ 3.
Consider n = m. Suppose f is an m-dimensional nominal function on at-

tributes A1, A2, · · ·, Am and does not contain an XOR. Applying a numeric
function mapping Ω on f , the resulting numeric function is fΩ and fΩ(am1),
· · ·, fΩ(amk) correspond to all of f ’s (m-1)-dimensional subfunctions f(am1),
· · ·, f(amk) on Am. Suppose all f(am1), · · ·, f(amk) are not identical (otherwise
we can delete it by Lemma 1).

Since none of f(am1), · · ·, f(amk) contains an XOR, fΩ(am1), · · ·, fΩ(amk)
are all linearly separable. So there are k (m-1)-dimensional hyperplanes H1, · · ·,
Hk to separate fΩ(am1), · · ·, fΩ(amk) respectively.

When k = 2, if H1 and H2 are parallel, we can construct an m-dimensional
hyperplane H from H1 and H2 to separate fΩ . When H1 and H2 have the same
orientation, 1 we can also construct an m-dimensional hyperplane H from H1
and H2 to separate fΩ . When H1 and H2 have different orientation, f should
contain an XOR.

If k > 2, H1, H2, · · ·, Hk should have the same orientation. Then we can
sort H1, H2, · · ·, Hk in an decreasing order of the vertex number above each
hyperplane. Suppose that the resulting sequence is Hk1, Hk2, · · ·, Hkk. We
construct an m-dimensional hyperplane H from Hk1, Hk2. Then for each Hki

from i = 3 to k, since the number of vertices above Hki is not greater than
those above Hk1, · · ·, Hk(i−1) and there are only finite vertices, it is easy to
adjust the angle of H by moving Hk1, · · ·, Hk(i−1) away from Hki to separate
fΩ(amki) while separating fΩ(amk1), · · ·, fΩ(amk(i−1)). Since k is finite, the
hyperplane H constructed above will separate all Hk1, Hk2, · · ·, Hkk. So fΩ is
linearly separable. Therefore, f is not hard nonlinear.

1 Here orientation is the angle of the intersection of Hi and the hyperplane perpen-
dicular to fΩ(ami)
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