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Abstract. We point out that value-based reinforcement learning, such as TD-
and Q-learning, is not applicable to games of imperfect information. We give a
reinforcement learning algorithm for two-player poker based on gradient search
in the agents’ parameter spaces. The two competing agents experiment with
different strategies, and simultaneously shift their probability distributions
towards more successful actions. The algorithm is a special case of the lagging
anchor algorithm, to appear in the journal Machine Learning. We test the
algorithm on a simplified, yet non-trivial, version of two-player Hold’em poker,
with good results.

1 Introduction

A central concept in modern artificial intelligence is that of intelligent agents, that
interact in a synthetic environment. The game-theoretic structure of extensive form
games is a natural mathematical framework for studying such agents. The sub-field of
two-player zero-sum games, which contains games with two players that have no
common interest, has the added benefit of a strong solution concept (minimax) and a
corresponding well-defined performance measure.

In this article we apply a gradient-search-based reinforcement learning algorithm
for a simplified Texas Hold’em poker game. The algorithm is a simplified form of the
lagging anchor algorithm, to appear in the journal Machine Learning [1]. The
contribution of the present paper is the presentation of an application to a more
complex problem than those of the journal paper.

The structure of the paper is as follows: In Section 2 we explain a few key concepts
of game theory, and give a brief survey of reinforcement learning in games. Section 3
covers earlier work on Poker games. In Section 4 we describe our simplified Hold’em
Poker game, and Section 5 gives our agent design. Section 6 describes the lagging
anchor algorithm in general terms, together with a precise implementation of the
simplified form used in the present article. In Section 7 we give the performance
measures that we use, and Section 8 describes the experiments. Section 9 concludes
the article. For a more thorough treatment of the topics in Sections 2, 3, 6 and 7, we
refer to the journal article.
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2 Reinforcement Learning in Games

Game theory [2] is a complex mathematical structure, and it is beyond the scope of
this article to give more than an introduction to some of its key terms. We restrict our
attention to two-player zero-sum games, which means that there are two players with
opposite goals, and therefore no common interest. Under mild conditions, a two-
player zero-sum game has a minimax solution. It consists of a pair of playing
strategies for both sides that is in equilibrium, in the sense that neither side can benefit
from changing his strategy as long as the opponent does not. The minimax solution
gives the game a numeric value, which is the expected payoff (for the first player),
given minimax play.

An important distinction is that between games of perfect and imperfect
information. In perfect information games like chess and backgammon, both players
know the state of the game at all times, and there are no simultaneous moves. In a
perfect information game, each game state can be regarded as the starting state of a
new game, and therefore has a value. If an agent knows the value of all game states in
a perfect information game, it can easily implement a perfect strategy, in the minimax
sense, by choosing a game state with the highest possible value (or lowest, if the value
is defined relative to the opponent) at each decision point.

With imperfect information games such as two-player Poker or Matching Pennies
(see below), the picture is more confusing, because minimax play may require
random actions by the players. In Matching Pennies, both players simultaneously
choose either “Heads” or “Tails”. The first player wins if they make the same choice,
and the second player wins otherwise. The minimax solution of this game is for both
players to choose randomly with probability 0.5 (flip a coin). Under these strategies
they have equal chances, and neither side can improve his chance by changing his
strategy unilaterally. Obviously, there exists no deterministic minimax solution for
this game. In Matching Pennies, the information imperfection is due to the fact that
choices are made simultaneously, while in Poker games, it is a consequence of the
private cards held by each player. Poker games typically also feature randomized (or
mixed) minimax solutions. The randomization is best seen as a way of keeping the
opponent from knowing the true state of the game. In a perfect information game, this
has little point, as the opponent knows the game state at all times.  Note that the
concept of game state values, which is the key to solving perfect information games,
does not apply to imperfect information games, because the players do not know from
which game states they are choosing.

A game represents a closed world, formalized with rules that define the set of
allowed actions for the players. Games are therefore suitable for algorithms that
explore a problem “by themselves”, commonly referred to as reinforcement learning.
This term is actually borrowed from the psychological literature, where it implies that
actions that turn out to be successful are applied more often in the future. In the
machine-learning context, the term is often used more broadly, covering all
algorithms that experiment with strategies and modify their strategies based on
feedback from the environment.

The reinforcement learning algorithms that have been studied the most are TD-
learning [3] and Q-learning [4]. These algorithms were originally designed for
Markov decision processes (MDPs), which may be viewed as 1-player games. TD-
and Q-learning work by estimating the utility of different states (and actions) of the
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process, which is the reason why they are referred to as value-based. Convergence
results for value-based reinforcement learning algorithms are given in [5]. In an MDP,
an accurate value function is all that it takes to implement an optimal policy, as the
agent simply chooses a state with maximum value at each decision point.

The approach of deriving a policy from a state evaluator generalizes to two-player
zero-sum games with perfect information, such as backgammon [6]. However, as we
have seen in our brief game-theoretic survey, the value-based approach does not work
with imperfect information, because the players may not know which game states
they are choosing between. Also we have seen that optimal play in games of
imperfect information may require random actions by the players, which is not
compatible with the “greedy” policy of always choosing the game state with
maximum value. It should be noted that the value-based approach can be extended to
a subset of imperfect information games named Markov games by the use of matrix-
game solution algorithms [7,8]. However, non-trivial Poker games are not Markov.

Summing up, established reinforcement learning algorithms like TD- and Q-
learning work by estimating values (i.e. expected outcomes under optimal strategies)
for process or game states. In (non-Markov) games of imperfect information, this
paradigm does not apply.

3 Related Work on Poker

An important breakthrough in the area of solution algorithms for two-player games
(not necessarily zero-sum) is that of sequential representation of strategies [9]. Prior
to this work, the standard solution algorithm for two-player zero-sum games was
based on enumerating all deterministic strategies for both players, assembling a
corresponding game matrix, and solving the matrix game with linear programming
[10]. The sequential strategy representation algorithm is an exponential order more
efficient than the matrix game approach, and it has been applied to simple poker
games [11]. However, even this algorithm quickly becomes intractable for non-trivial
poker games.

A more practical view of computer poker is taken in the Hold’em-playing program
“Loki” [12]. It uses parametric models of the habits of its opponents. Loki updates its
opponent models “real time”, based on the actions taken by its opponents. It estimates
the utilities of different actions by approximate Bayesian analysis based on
simulations with the current state of the opponent models. Apparently this approach
has been quite successful, especially against weak and intermediate level humans.
Note, however, that the objective of Loki is rather different from ours: We attempt to
approximate game-theoretic optimal (minimax) behavior, while Loki attempts to
exploit weaknesses in human play.

4 Simplified Two-Player Hold’em Poker

We now give the rules of our simplified two-player Hold’em poker game. Firstly, the
full deck of 52 cards is shuffled. Then two private cards are dealt to each player
(hereafter named Blue and Red). Blue then makes a forced blind bet of one unit,
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whereafter Red has the options of folding, calling and raising (by one unit). The
betting process continues until one player folds or calls, except that Blue has the right
to bet if Red calls the blind bet (the blind is “live”). Also there is a limit of four raises,
so the maximum pot size is 10.

As usual in poker, a player loses the pot to the opponent if he folds. If the betting
stops with a call, five open cards, called the table, are dealt. These are common to the
players, so that both have seven cards from which they can choose their best five-card
poker hand. The player with the better hand wins the pot. An example game may
proceed as shown in Table 1.

Table 1.  An example game of simplified Hold’em poker

In the example game, Red wins three units from Blue, because his flush beats Blue’s
two pair.

The decision tree of our game is given in Figure 1. Arrows pointing to the left
represent folding, downward-pointing ones represent calling, while those pointing to
the right represent raising. This is not the complete game tree, however, because the
branching due to the random card deal is not represented. The nodes containing a “B”
or an “R” represent decision nodes for Blue and Red, respectively. The leaf nodes
contain Blue’s payoff, where “+/–” indicates that the cards decide the winner.

Although our game is far simpler than full-scale Hold’em, it is complex enough to
be a real challenge. We have not attempted to implement the sequential strategy
algorithm, but we can indicate the amount of effort this would take. Essentially, that
algorithm requires one variable for each available action for every information state,
to represent a player’s strategy. From Figure 1 this implies 13 variables for each
different hand for Blue, and 14 for each hand Red can have. By utilizing the fact that
suits are irrelevant (except whether or not the two cards are of the same suit), the
number of different hands is reduced to 169. This implies that the strategy space of
both sides has more than 2000 degrees of freedom. The algorithm requires the
assembly (and processing) of a matrix with Blue degrees of freedom as columns and
Red ones as rows (or vice versa), which implies a total of 169× 13× 169 × 14 = 5,198,102
matrix entries. The calculation of these entries also requires the calculation of the win
probabilities of the various opposing hands (169× 169 = 28,561 combinations). One
would probably have to estimate these probabilities by sampling, because the set of
possible card combinations for the table is very large. All in all, it may be possible to
solve our game using a present-day computer, but it will require massive use of
computer time.
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Fig. 1. The decision tree of simplified Hold’em poker. Arrows to the left signify fold, vertical
arrows call, and arrows to the right raise

5 Agent Design

Our agents are designed to act on the basis of available information. This means that
an agent bases its decision on its own two cards and the current decision node (in
Figure 1). In game-theoretic terms this means that the agents act on information sets
and represent behavioural strategies. From game theory, we know that strong play
may require random actions by an agent, which means that it must have the capability
to assign probabilities to the available actions in the given decision node. We use
separate agents for playing Blue and Red.

The general agent design that we use with the lagging anchor algorithm is as
follows: Let S represent the set of information states that the agent may encounter,
and let ( )A s  represent the (finite) set of available actions at state s S˛ . For each

s S˛  and ( )a A s˛ , the agent has a probability ( , )P s a  of applying action a at
information state s. Furthermore, we assume that the agent’s behaviour is
parameterised by v V˛ : ( , )vP s a . We assume that V  is a closed convex subset of nR
for some n. Summing up, our general agent design allows probability distributions
over the set of legal actions for different information states, and these probability
distributions may depend on a set of internal parameters of the agent (v). The goal of
the learning algorithm is to find parameter values v V* ˛  so that the agent acts
similarly to a minimax strategy.
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Our agent design may give associations to Q-learning, which also works for agents
that assign numeric values to combinations of states and actions. The main difference
is one of interpretation; while Q-values estimate expected (discounted) rewards, our
P-function dictates the agent’s probability distribution over available actions.

For our present application, we design our agents using neural nets (NNs) that take
as input the available information and a candidate action, and give a probability
weight as output. When such an agent responds to a game state, it first evaluates all
available actions, and then chooses a random action according to the outputs of the
NN. The design is illustrated in Figure 2.

Probability weight

Game state
information

Candidate
action

Neural net

Fig. 2. Neural net agent design

For our NNs we have chosen a simple multi-layer perceptron design with one layer
of hidden units and sigmoid activation functions. For updating we use standard back-
propagation of errors [13]. The NN has the following input units (all binary): 13 units
for representing the card denominators, one unit for signaling identical suit of the
cards, one for signaling a pair, eight nodes for signaling the size of the pot, and finally
three nodes signaling the candidate action (fold, call and raise). The single output
node of the net represents the probability weight that the agent assigns to the action.
The number of hidden nodes was set to 20. With this design, the internal parameters
(v’s) are the NN weights, which will be tuned by the learning algorithm.

We denote Blue’s NN function by ( , )vB s a , and Red’s by ( , )wR s a . For Blue, the

corresponding probability function is 

( )

( , )
( , )

( , )
v

v
v

a A s

B s a
P s a

B s a
˛

=
å

, and likewise for Red.
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6 Learning Algorithm

The idea of our algorithm is to let Blue and Red optimize their parameters through
simultaneous gradient ascent. Let ( , )E v w  be Blue’s expected payoff when Blue’s
playing strategy is given by v and Red’s by w. By the zero-sum assumption, Red’s
expected payoff is ( , )E v w- . If we set the step size to a , the following (idealized)

update rule results:
1

1

( , )

( , )

k k k k
V

k k k k
W

v v E v w

w w E v w

a
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+

+

‹ + Ñ
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In general, the basic gradient search algorithm (1) does not converge. In the
context of matrix games (where E is bi-linear), Selten has shown that update rule (1)
cannot converge towards mixed strategy solutions [14]. In [1] we show that in the
case of matrix games with fully mixed randomised solutions, the paths of ( , )k kv w

converge towards circular motion around minimax solution points, when the step size
falls towards zero. This fact is utilized in the lagging anchor algorithm: An anchor kv
maintains a weighted average of earlier parameter states for Blue. This “lagging
anchor” pulls the present strategy state towards itself. Similarly, a lagging anchor kw
pulls Red’s strategy towards a weighted average of previously used strategies, turning
the oscillation of update rule (1) into spirals that, at least in some cases, converge
towards a minimax solution. The (idealized) lagging anchor update rule looks like
this:
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where h  is the anchor attraction factor.

In the present article, we use an approximate variant of learning rule (1), i.e.
without anchors. The learning rule includes the calculation of the gradients of the
expected payoff, with respect to the agents’ internal parameters. We estimate these
gradients through analysis of sample games. First the Blue and Red agents play a
sample game to its conclusion. Then both Blue and Red perform the following “what-
if” analysis: At each decision node (as in Figure 1) visited, an additional game is
completed (by Blue and Red) for each decision not made in the original game. The
outcomes of these hypothetical games provide estimates of how successful alternative
decisions would have been. The agents then modify their NNs in order to reinforce
those actions that would have been the most successful. We accomplish this through
the use of training patterns of input and desired output: (gamestate+action , feedback).
If a given (hypothetical) action turned out more successful than the others, for the
given game state, the agent should apply it more often. This means that the training
pattern feedback should be given by the NN’s current evaluation of the state-action
pair offset by the action’s relative success compared to the other actions. Because of
this relative nature of the feedback signals, there is a risk that the NN outputs may
drift toward zero or one, which hurts the back-propagation learning. We prefer that
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the NN outputs approximate probability distributions, and therefore adjust the
feedback signals in the NN training patterns accordingly.

In pseudo-code, the algorithm is given below, where we apply the convention of
displaying vector quantities in boldface. Keywords are displayed in boldface
courier. Blue’s and Red’s NN functions are denoted by ( , )B × ×  and ( , )R × × ,

respectively.

repeat Iteration times {

play a game  between Blue and Redg

for each decision node n g˛   do {

legal actions at n‹A

outcomes of games resulting from actions  at n‹E A

if Blue on turn in n  { ( , )B s‹P A  }

else             { ( , )R s‹P A  }
T

sump ‹ 1 P
T

sume p‹ P E

e‹ -E E 1

( 1)sump‹ + - -F P E 1

if Blue on turn in n  { { }train  with patterns ( , ),B s A F  }

else             { { }train  with patterns ( , ),R s A F  }

}

}

Operations involving vectors are interpreted component-wise, so the notation implies

several for-loops. As an example, the statement { }train  with patterns ( , ),B s A F  is

implemented as:

for  ( )1 ... ( )i length= A  do { ( )train  with pattern ( , ),i iB s A F  }.

The vector E consists of outcomes (for the player on turn) of sample games that
explore the different actions A in node n. In these games, the players’ hands and the
table cards are held fixed. Note that when we assemble E, we take the outcome of the
actual game as the estimated outcome from taking the action chosen in that game. The
number e estimates the expected payoff for the player on turn, given his current
probability distribution over the actions A. The statement e‹ -E E 1  normalizes E
by deducting e from each component. F is the calculated vector of feedback, and the
term ( 1)sump- -1  is included in order to push the NN function (B or R) towards valid

probability distributions.
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7 Evaluation Criteria

Defining evaluation criteria for two-player zero-sum games is less straightforward
than one might believe, because agents tend to beat each other in circle. Ideally, we
would like to apply the performance measure of equity against globally optimizing
opponent  (Geq) as described in [15]. The Geq measure is defined as the expected
payoff when the agent plays against its most effective opponent (the best response
strategy in game-theoretic terms). The Geq measure conforms with game theory in
the sense that an agent applies a minimax strategy if, and only if, its Geq is equal to
the game’s value (which is the maximum Geq achievable).

Although we develop our Blue and Red players as separate agents that compete
against each other, it is convenient for the purpose of evaluation to merge them into
one agent that can play both sides. For agents of this form, a single game is
implemented as a pair of games, so that both agents get to play both sides. For the
sake of variance reduction, we hold the cards fixed in both games, so that both agents
get to play the same deal from both sides. We take the average of the two outcomes as
the merged game’s outcome. The redefinition of the game as a pair of games has the
advantage that the value is known to be zero, by symmetry.

We use a set of three reference players, named Balanced-player, Aggressive-player
and Random-player. Balanced-player is our best estimate of a minimax-playing agent.
Our first implementation of this agent turned out to have significant weaknesses, and
the final one was developed through experimenting with (in parts even imitating) our
NN agents. Aggressive-player is a modification of Balanced-player that folds only a
few hands and raises often. Random-player makes completely random actions, with
uniform probabilities over actions. It is included mostly for reference, as it is unlikely
that it can ever be the most effective opponent.

8 Experimental Results

The step size for the NN back-propagation update started at 0.5 at the beginning of
the training session, and was tuned down to 0.1 after 50,000 training games. The NNs
were initialized with random weights. Figure 3 shows the estimated performance
against the three reference opponents as a function of the number of training games.

We observe that the agent initially scores approximately 0 against Random-player,
which is reasonable. We also see that Aggressive-player is the most effective
opponent by a large margin at this point. The reason for this is that a randomly
playing agent will sometimes fold after a sequence of raises, which is extremely
costly. Against Balanced-player, the agent does not get the chance to make this error
so often. Recall that our agent learns by adapting to its opponent (its own other half in
the evaluation procedure). It therefore first learns strategies that are effective against a
random opponent, which means that it begins to resemble Aggressive-player. This
explains why it quickly scores so well against Random-player. Once the agent has
learned not to fold so often, it starts to appreciate the value of good cards, and stops
raising with weak hands. From then on, its strategy moves towards that of Balanced-
player. The figure shows that when the agent becomes sufficiently skilled, it starts
beating Aggressive-player, and Balanced-player takes over as the most effective
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opponent. The fluctuations in the diagrammed performance graphs are mainly due to
randomness in the procedure of sampling the performances. Note that the random
noise in the sampling of the performance against Balanced-player falls towards zero.
This is because their strategies become similar, which makes the variance reduction
trick of playing the same cards both ways more effective.

Fig. 3. Performance against reference opponents

The procedure of defining a set of opponents, and taking the result against the most
effective of these, is a practical approach to estimating the Geq of an agent.
According to this test, our NN based player appears to approach minimax play.
Unfortunately, our small set of opponents is not sufficient to convince us. However,
we are able to estimate the Geq quite accurately, through optimization. In this
calculation we analyze one opponent hand at the time, and experimentally determine
the most effective opponent strategy. For each of the 169 different hands, we have
completed 10,000 test games for each deterministic playing strategy (derived from the
decision tree of Figure 1). These calculations are rather time consuming, so we have
not been able to produce learning curves with respect to this measure, but only
analyzed the NN agent resulting from the complete training session. The learning
curves of Figure 3 have actually been truncated, in order to highlight the interesting
phenomena close to the start of the session. After 200,000 training games, our agent
broke exactly even  (to three decimal places) against Balanced-player. The massive
optimization calculation gave a Geq estimate of –0.005 for this NN agent, which
gives strong evidence that it is in fact close to minimax play.

Our fully trained agent has discovered a rather non-trivial fact that we hold to be
true (or close to true) also for full-scale Hold’em: As Red it never calls the blind bet,
but either folds or raises. Calling the blind bet is often a bad idea, because it leaves the
opponent with the option of raising without putting on any pressure. If Red believes
that he can make a profit by playing a hand (folding gives payoff 0), he should
probably raise the stakes. Some humans like to call the blind bet with strong hands,
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with the intention of re-raising if Blue is tempted to raise. We do not think this is a
sound strategy, because Red would also have to call with some weak or intermediate
hands in order not to reveal his hand when he calls. We believe that the downside of
playing these hands outweighs the benefit of sometimes getting to re-raise with the
strong hands.

An open question that remains is why the algorithm works so well without the
anchors. We know from formal analysis that the gradient ascent algorithm fails for
matrix games with mixed strategy solutions, and the non-linearity of our Poker game
is not likely to do any good. In our opinion, the reason is that there exist minimax
strategies that are only marginally random. Every Poker player knows the importance
of being unpredictable, so it may sound odd that good play requires little
randomization. The explanation is that the random card deal does the randomization
for the player. Although the player’s betting is a deterministic function of his private
cards, the randomness of the cards is sufficient to keep the opponent uncertain about
the true state of the game. There probably exist borderline hands (e.g. hands on the
border between an initial pass and raise for Red) that would be treated randomly by an
exact minimax solution, but given the large number of possible hands, these are not
very important.

9 Conclusion

We have implemented a reinforcement learning algorithm for neural net-based agents
playing a simplified, yet non-trivial version of Hold’em poker. The experiments have
been successful, as the agents appear to approximate minimax play. The algorithm is
a special case of one that is to appear in the journal Machine Learning.
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