
Multiclock Esterel

Gérard Berry1 and Ellen Sentovich2

1 Esterel Technologies, 885 av. J. Lefebvre, 06270 Villeneuve-Loubet, France
Gerard.Berry@esterel-technologies.com

2 Cadence Berkeley Laboratories, 2001 Addison Street, Berkeley, CA
ellens@cadence.com

Abstract. We present the Multiclock Esterel language, which extends
the synchronous language Esterel to multiple clock zones. While Esterel
is good for compact single-clocked hardware or software designs, modern
electronic designs are growing rapidly and they can no longer be designed
in a monolithic fashion. Problems such as clock distribution, complexity,
and power limitations have led designers to construct designs in a mod-
ular, multiple clock fashion. Multiclock Esterel is designed precisely to
address this design style. It is a natural extension of Esterel, and retains
its strong synchronous semantics and internal determinism. Statements
driven by different clocks communicate through two special devices called
the sampler and the reclocker. Multiclock Esterel should be understood
as a preliminary language proposal meant to study multiclocking. It has
not yet been validated by large experiments.

1 Introduction

The Esterel synchronous reactive language [5,4,6], which we call Classic Esterel
in this paper, is based on a single-clock instantaneous interaction principle. The
behavior of a program is defined by a sequence of reactions to input sequences.
The execution environment decides when the program is provided an input, and
a reaction is viewed as the simultaneous production of an output response to
an input event. We call ticks the instants in which reactions occur, and master
clock the sequence of these instants (it is a logical clock and no time regularity
is required). This synchronous view has proved useful for a fairly large class
of reactive applications such as process or human-machine interface controllers,
communication protocols, and hardware circuits. For single-clocked synchronous
circuit synthesis [13], the master clock is simply the circuit’s clock [2,4]. Then,
reaction to an input is not instantaneous, but it is guaranteed to be computed
before the next clock tick; this is the best practical approximation of perfect
synchrony.

In practice, synchronous single-clocking makes perfect sense for compact sys-
tems for which it is reasonable to pretend that all the system’s component fit
within a single circuit or within a single micro-computer for software applica-
tions. However, modern electronic designs are characterized by unwieldy size,
clock distribution complexity, and power limitation. Their hardware, software,
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or mixed implementation tends to abandon the classical single-clock framework
in favor of a multiclock one, each clock controlling a circuit zone or a local pro-
cessor. A good example of this is described in [12], where a single global clock
was abandonned for a design style with multiple local clocks. Communication
between clock zones becomes a critical issue and is carefully controlled either by
inserting special devices such as latches or by fine timing analysis.

In this paper, we present an extension of Esterel for such multiclock systems,
which we call Multiclock Esterel. The new language proposal extends Classic
Esterel in two ways. First, it deals with a set of primary clocks instead of a
single global clock, each individual reactive module being clocked by one of the
primary clocks. Second, it introduces two new communication primitives between
clock zones, the sampler and the reclocker, which make it possible to send an
information on a given clock and to receive it on another clock. These extensions
are quite minimal, semantically well-defined, and physically reasonable.

Semantically speaking, Multiclock Esterel is still a synchronous language in
the sense that clock ticks of different clocks remain comparable in time and infor-
mation transmission remains instantaneous. We thus retain the strong determin-
ism property which has proved so useful in the synchronous language framework:
the behavior of a program is completely determined once the clock timings and
the input flows are known. There is a larger amount of external non-determinism
(the timings of the clocks), but still no internal non-determinism. Therefore, Mul-
ticlock Esterel is not a language for large asynchronous distributed applications
for which such notions are not applicable. Since words are heavily overloaded in
this field, we shall speak of single clocked and multiclocked parts of systems, and
we shall avoid using the ambiguous word asynchronous.

As in [4,3], we concentrate on the kernel Multiclock Esterel calculus, ignoring
software engineering issues related to full language development. Our goal is
to develop the foundations of multiclock langages, and in particular to study
preemption operators in the multiclock framework. In Sect. 2, we study how
communication can be organized in a multiclock context, and we define the
sampler and the reclocker.

In the rest of the paper, we study the Multiclock Esterel calculi. The syntax
defines two kinds of terms: the clocked reactive statements, which are basically
those of Classic Esterel, and the multiclocked processes. A multiclocked process
it is either the pair of a reactive statement and of the clock that drives it, or a
compound structure involving several of these clocked reactive statements driven
by different clocks. The semantics is given by a modeling in Classic Esterel.

In Sect. 3 we begin with the basic calculus, where a multiclocked process
is a flat network of reactive modules, each controlled by a given clock. In the
full calculus in Sect. 3.3 we achieve full orthogonality by allowing processes to
be recursively launched from within reactive statements and vice versa. We can
then define how an arbitrary multiclocked process can be preempted by a re-
active preemption statement. We also enrich processes by allowing sequencing
and looping of them. We give a simple example of preemption control of a fast
process by a slow one. We conclude in Sect. 4.
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2 Clocks, Signals, and Communication

2.1 Clocks

We consider a set C = {c, c′, c0, c1, . . .} of clocks. Intuitively, a clock is a primitive
object that delivers ticks in sequence. Clocks are logical and need not be periodic
in time. For instance, a clock can be generated by a quartz, by the depressing of
a button, or by the decision to call a program. Clocks determine tick sequences,
which can be dealt with in two ways:

– Discrete time: A tick sequence is a sequence of global ticks, where a global
tick is characterized by a set of clock names:

c1, c2, c1 ·c2, c1, c3, c2, c1 ·c2 ·c3, . . .
Here, c1 ·c2 means that the clocks c1 and c2 tick simultaneously. Allowing
simultaneity is useful for several reasons: we may want to set two clocks equal
in a program, we may want to extract a clock from another one, or we may
simply want to deal with coincidental simultaneity of a priori independent
clocks. When needed, we can require clocks to be non-simultaneous for all
of their ticks by asserting an exclusion relation of the form c#c′ as we do for
signals in Classic Esterel.

– Continuous time: here time is continous and a clock is defined by a finite
or infinite increasing sequence of real numbers representing the instants at
which the clock ticks. Ticks of distinct clocks can coincide in time.

In our framework, both models are essentially equivalent, but one or the other
may be more natural in intuitive or formal descriptions. It is easy to go from
one model to the other: from discrete time to continuous time, associate any
increasing sequence of reals with a discrete tick sequence; conversely, from con-
tinuous time to discrete time, extract the clock set sequence from the increasing
sequence of real numbers obtained by taking the union of the individual clock
sequences.

2.2 Signals and Communication

In Classic Esterel, there is a single implicit clock c for all statements, which makes
communication very simple. In Multiclock Esterel, we organize communication
between different clock zones by sampling and reclocking the exchanged signals.
We explain the semantics of communication and discuss the appropriate software
or hardware devices for implementing it.

Communication in Classic Esterel. Two Classic Esterel statements p and q
communicate by instantaneously propagating signals: for example, at some tick
of c, p emits s and q instantaneously receives s. A pure signal is characterized
by its broadcast status at each tick of c, which is either present (high) or absent
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(low). A pure signal s is absent by default, and it is set present at a tick of c if and
only if at least one “emit s ” statement is executed at that tick. Simultaneous
emission of s by concurrent emit statements is allowed and simply sets s present.

In addition to the status information, a valued signal broadcasts a value
belonging to some data type, with the restriction that a value change can occur
only when the signal is present. A valued signal is emitted by executing an
“emit s(e)” statement, where e is a value expression. The value of s is read by
the expression ‘?s’. To give a meaning to concurrent emission of a valued signal,
one associates with it an associative and commutative combination function,
which is used to combine all the separately emitted values into one final value.
For example, “emit s(1) || emit s(2)” results in ?s = 3 if combination is done
by addition.

Pure Communication in Multiclock Esterel. In Multiclock Esterel, we
retain the principle of instantaneous reaction to clock ticks and communication
by signals, but we may emit and receive signals according to several clocks.
Instants become relative to clocks. Consider two processes A and A′ running
reactive statements respectively clocked by two different clocks c and c′. Each
process is locally single-clocked: communication within A (resp. A′) is governed
by c (resp. c′) as in Classic Esterel. To communicate with each other, A and
A′ can share an instantaneously broadcast signal s without sharing a clock: the
emitter A will emit s at some tick of c, and the receiver A′ will receive s at some
tick of c′. Instantaneous propagation means that A′ will receive s at the very
first tick of c′ that follows the emission tick of c, however close these ticks are in
time, up to tick equality for which A′ will also receive s as in Classic Esterel.

Which status s′ of s will A′ receive at c′? This question doesn’t arise in
Classic Esterel, since there is only one clock for the emitters and receivers: com-
munication occurs only on ticks, and statuses outside ticks are irrelevant in the
model (they are of course relevant in implementations). In Multiclock Esterel,
we view signals as continuous objects and statuses as being held high or low
during the emitter’s clock cycle according to their emission statuses at the clock
tick, as pictured in Fig. 1. We think there are two fundamental choices for s′:

1. Sampling : s′ is present at c′ and set high for the c′ cycle if and only if s is
high precisely at c′.

2. Reclocking : s′ is present at c′ and set high for the c′ cycle if s has been high
at least once at any time since the previous occurrence of c′.

Sampling is the classical operator of Signal Theory. It is like taking a snapshot of
the signal at c′. Reclocking has a built-in memory, and amounts to taking a long
exposure on s not to miss any occurrence. This can be necessary if the sender’s
clock c is faster than the receiver’s clock c′: for instance, if the sender is sending
transient alarms, and if the receiver worries about the emission of at least one
transient alarm since its last tick, sampling is not enough to catch the required
information at the receiver and reclocking is mandatory (another example will
be given in Sect. 3.5). In Multiclock Esterel, we make both choices available.
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clock c

clock c’

signal s

sampled s’

reclocked s’

Region A Region CRegion B

Fig. 1. Communication devices in continuous time

As usual with synchronous languages, there are boundary problems to be
solved:

– Sampling: if the ticks of c and c′ coincide, the sampled status is the new
status of s w.r.t. c, i.e. the one which will be valid for s in M until the next
tick of c.

– Reclocking: if the ticks of c and c′ coincide, the new status of s in M is not
considered for s′ in M ′; reclocking checks that s has been emitted since the
previous tick of c included, current tick excluded.

The other boundary cases can be obtained simple Boolean combinations of the
above ones. If c′ = c, sampling is simply transparent, while reclocking amounts
to taking the previous status of the signal, as for the Classic Esterel pre operator.

In Fig. 1, the following three differences between sampling and reclocking
cases are illustrated:

Region A: the reclocked signal can be delayed in its rising transition with
respect to the sampled signal when the clocks c and c′ coincide on a rising
edge of s: reclocked s′ cannot see the current value of s until the next tick
of c′, while sampled s′ can.

Region B: the reclocked signal is delayed in its falling transition with respect
to the sampled signal: reclocked s′ remains high if s was high at any time
since the last tick of c′, while sampled s′ goes low as soon as s is low at a tick
of c′. (Region B illustrates this for the case in which c and c′ do not coincide
for s’s falling transition. The same is true when c and c′ do coincide, but we
have not shown this case.)

Region C: The reclocked signal can detect spurious high values for s that might
be missed by the sampled signal.
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An example where a reclocker is needed is presented in Sect. 3.5. The extended
version of this paper, available from the authors, contains another illustrative
example of sampling and reclocking. The example is a video game where a process
controls a joystick and another process controls the game proper. The joystick
and game processes have different clocks. The joystick process sends position
signals to the game, which samples them. The joystick also sends a reset signal
to the game. This signal must be reclocked by the game, otherwise it could be
lost.

Value Communication in Multiclock Esterel. As far as valued signals are
concerned, sampling extends trivially by inputting the current value of a signal
in addition to its status at the receiver’s clock tick. The value may have changed
many times since the previous tick, but we only sample the most recent one,
as for the status; this is exactly what sampling means in signal theory. The
memory effect of reclocking makes defining the value of a reclocked signal less
obvious; a natural extension of the Classic Esterel concept of multiple simulta-
neous emission would be to combine all the successive values received since the
previous tick by an associative-commutative operation. Since we have no really
good supporting example, we prefer to postpone the decision and to currently re-
strict Multiclock Esterel to pure or valued sampled signals and to pure reclocked
signals.

Single Clocked and Multiclocked Signals. Given a clock c, we say that a
signal is clocked by c if its status changes occur only on ticks of c. A signal which
is emitted by reactive statements driven by a single clock c is always clocked by
c. Sampling and reclocking always generates local views that are clocked by the
receiver’s clock.

An interesting question is whether or not we want to allow multiclocked
signals. A pure multiclocked signal could be handled by merging the results of two
different emit statements driven by different clocks, saying that s is high at time
t if any one of the outputs of the emit statements is high at that time. The device
to do this is a wired or. However, multiclocked merging does not extend trivially
to valued signals. We said that multiply emitted values should be combined
by an appropriate combination function. We should also combine the values if
the ticks of two distinct emitter clocks happen to be simultaneous. This would
be semantically meaningful, but we lack magical tricks for the implementation.
Therefore, we choose to postpone this problem and to forbid multiclocked signals
for the time being. We do not see this as a limitation: in most hardware systems,
each signal is computed from a single clock zone.

2.3 Sampling and Reclocking Devices

Having seen that for Multiclock Esterel have two fundamental choices in reading
a signal that passes from one clock zone to another, and having defined what
sampling and reclocking semantically mean, we now study devices that can do
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the job for different styles of implementation. We name them generically the
sampler and the reclocker. To give an operational semantics of Multiclock Es-
terel, we first encode them within Classic Esterel. We then discuss hardware and
software realizations.

Classic Esterel Encoding. To model Multiclock Esterel in Classic Esterel,
we can write single-clocked programs where the tick is that of a fictitious global
clock of the Multiclock Esterel programs, which is faster than all of the actual
clocks. A Multiclock Esterel clock can then be modeled as an ordinary Esterel
signal. (This is modeling, not programming, since this global clock will be inac-
cessible from within Multiclock Esterel programs.) The obtained Classic Esterel
program is deterministic, which means that Multiclock Esterel has no internal
non-determinism. However, the fact that Multiclock Esterel clocks have become
free input signals leaves room for a large amount of external non-determinism.

We take the freedom of considering C’ and S’ as valid Esterel identifiers,
using primes for the receiver side. The sampler takes as input the signal S, the
receiver clock C’, and it returns as output the local receiver view S’ clocked by
C’:

module Sampler :
input S;
input C’; % the clock
output S’;
loop

present S then
sustain S’

end present
each C’
end module

Although the module is active on every tick of the fictitious global clock, sam-
pling S only happens on ticks of the clock C’. On any tick of C’ in which S
is present, S’ is emitted, and it keeps being emitted on every global clock tick
(i.e. “continously in discrete time”) until the next tick of C’ arrives. Notice that
loop...each is stongly preemptive, so that when C’ occurs, the sustain state-
ment is preempted without being executed, the loop loops, and the sustain
statement is instantaneously restarted only if S is present. Therefore, we indeed
sample the new value of S as required in the sampler specification.

The reclocker has the same interface. It can be coded as follows:

module Reclocker :
input S;
input C’; % the clock
output S’;

signal MEM in
loop
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await immediate S;
sustain MEM

each C’
||

loop
present pre(MEM) then sustain S’ end

each C’
end signal
end module

The first part of the parallel statement implements a memory to remember the
occurrence of S. As soon as S goes high on a global clock tick, the internal signal
MEM is set high, where it remains (by being emitted each global clock tick) until
a tick of C’ occurs. When C’ occurs, the previous value of MEM w.r.t. the global
clock is tested and S’ is sustained for the next cycle if MEM was high. Notice that
an S occuring at the same time as a C’ is taken into account only in the next
tick of C’, as required by the reclocker specification.

Software Implementation. A software implementation of Multiclock Esterel
can follow the principles of Polis [1]. Clock ticks correspond to module activa-
tions, acting as Polis CFSMs. A sampler is a single memory cell in which writers
write and readers read, i.e., a Polis 1-place buffer. A reclocker is a 1-place buffer
with an additional bit set at each write and reset by the reader. For multipro-
cessor applications, atomicity conditions on activations, reads and writes are
required as usual to provide a consistent view between readers and writers.

Hardware Implementation. In hardware, one can build a sampler and a
reclocker using electronic devices such as latches and flip-flops (unfortunately,
the terminology is a little sloppy in this field). For instance, the sampler can
be built as a positive edge-triggered D flip-flop [10]. However, it is impossible
to build a perfect sampler or reclocker, because of the standard metastability
problem. For any sampling device, there is a time interval δ around the clock
edge inside of which the sampled signal cannot itself have an edge. Otherwise,
the device can enter a metastable state in which it incorrectly drives its output
for some amount of time.

The metastability problem is not specific to Multiclock Esterel. It arises in
any kind of harware multiclock design. In today’s technology for multiclock de-
sign, a sophisticated timing analysis program is run to ensure that there are
no violations of clock setup and hold times. A similar analysis should be made
for a synthesized implementation of an Multiclock Esterel program. In this ex-
ploratory paper, we shall ignore these issues since we want to experiment with
the technology-independent aspects of language design.

3 The Multiclock Calculus

In this section, we develop the Multiclock Calculus. We begin with some defini-
tions of basic elements and the flat calculus. This is followed by the modeling
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of the flat calculus in Classic Esterel. We continue by addressing the issues of
process sequencing and preemption. Finally, we give an example containing a
slow module controlling a fast process.

Terms in Multiclock Esterel are divided into two categories, multiclocked
processes and single-clocked reactive modules. Recall that Classic Esterel contains
only reactive modules.

– Processes P , Q, etc., are elementary or compound. A process has a signal
interface and a body. Elementary process bodies consist in executing a reac-
tive module with a given clock and a given sampling / reclocking interface
specification. Compound process bodies are built from elementary ones by
concurrency and signal scoping declaration, and possibly by sequencing and
looping in the extended calculi.

– Reactive modules M , N , etc., are as in Classic Esterel. Each reactive module
is governed by a single clock, which is implicit in the module. The interface
specifies the input / output signals. The body is a reactive statement. All
the statements in kernel Classic Esterel are imported in kernel Multiclock
Esterel. Only one statement is added, execution of a process.

– A program is defined by a set of clocks and a process.

For compound processes, clocks appear only in the leaf elementary processes,
which in turn call clocked reactive modules. Therefore, there is no global clock
accessible to the executable reactive statements: a reactive statement knows only
the clock that runs it.

We first present the flat calculus, limited to putting classical reactive mod-
ules into a flat multiclocked parallel structure. Then, we present the full calculus,
where we can recursively embed multiclocked processes into single-clocked reac-
tive modules and conversely, up to any depth. In this fully orthogonal language,
one can deal in a general way with preemption of multiclocked processes. As in
[4], we use indifferently a mathematical style or a programming language style
syntax.

3.1 The Flat Calculus

In the flat calculus, a process is limited to being composed of reactive modules
driven by given clocks and put in parallel.

Processes. A process P = (I, O).A has a list I of input signals, a list O of
output signals, and a body. Process bodies are written A, B, etc. Their syntax
is as follows, M denoting a reactive module defined below:

c ∗ M (Im) run M clock C input sample I . . .
A |B A ||B
A \ s signal S in A end

There are clock constaints on signals, which will be presented in Sect. 1.
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In the c ∗ M (Im) reactive module run statement, the decorated vector Im

of input modes specifies an exponent m ∈ {s, r} for each input signal of M . The
exponent defines how the signal is brought into the clock c: s means that the
signal is sampled, r means that it is reclocked.

Reactive Modules. A reactive module M is defined by an interface specifica-
tion and a body:

M = (I, O).p

The interface specifies the input signal vector I and the output signal vector O.
The body is a reactive statement p1, with syntax that of Classic Esterel:

0 nothing
1 pause
k (for k > 1) exit t
!s emit s
s ? p , q present s then p else q end
s ⊃ p suspend p when s end
p ; q p ; q
p ∗ loop p end
p | q p || q
{p} trap t in p end
↑ p
p \ s signal s in p end

Notice that there are two concurrency operators ’|’, one for reactive statements
and one for processes, and similarly two local signal declaration operators ‘\’.
These operators perform the same kind of operation in both worlds, although the
behaviors are technically different. There is no danger in overloading the symbols
since one can always determine unambiguously from the syntax whether one is
inside a process body or a reactive module body.

Signal and Clock Constraints. Signals are subject to the usual visibility
rules. A signal refered to in a reactive statement must be an interface signal
or a local signal in the enclosing reactive module. For any reactive module run
c ∗ M (Im) occuring in the body A of a process P , a signal s in M ’s interface
must be declared as an interface signal of P or as a local signal in an enclosing
local signal declaration A \ s.

Signals in a reactive module are always clocked on the module’s implicit
clock. Input signals are either sampled or reclocked by the module run interface;
local and output signals are set by the emit statements which only acts on the
module’s clock.

Signals in a process must obey the following clock consistency rules: all re-
active modules that share a signal as output must be clocked by the same clock.
1 We use P for a process and p for a reactive statement, which may be confusing. The
whole Esterel literature uses p for statements, a notation we keep here.
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This requirement ensures that each signal is properly clocked by a single clock,
as required in Sect. 2.2.

3.2 Modeling Flat Multiclock Esterel in Classic Esterel

We give the semantics of a flat Multiclock Esterel program by modeling its
behavior in Classic Esterel. For this, we introduce a fictitious base clock faster
than all Multiclock Esterel clocks, as in Sect. 2.3. We consider this fictitious clock
as the Classic Esterel model base clock and we view each Multiclock Esterel clock
c as a pure signal also named c in the Classic Esterel translation. We define a
translation function T which translates any multiclocked process P into a Classic
Esterel term T (P ).

The interface of T (P ) is simply that of P . The process body is translated in
a trivial recursive way until reaching a clocked module run statement:

T (A |B) = T (A) |T (B)
T (A \ s) = T (A) \ s

We now translate a leaf explicitly clocked module run statement c ∗ M (Im),
m ∈ {s, r}, with M = (I, O).p. The basic idea is to introduce local views I ′ and
O′ clocked by c′ of the input and output signals vectors I and O, ant to use
three components in parallel: the appropriate translation of p, an input handler
TI (Im , c′ , I ′), which builds the local view I ′ of I according to the sampling or
reclocking directives m, and an output handler TO (O′ , c′ , O) which builds the
output signals O from their local views O′.

The input handler puts in parallel individual signal handlers that sample or
reclock input signals using the sampler and reclocker defined in Sect. 2.2:

TI (Im , c′ , I ′) = TI (i0m0 , c′ , i′0) |TI (i1m1 , c′ , i′1) | . . . |TI (inmn , c′ , i′n)

TI (im , c′ , i′) =
{

Sample (i, c′, i′) if m = s
Reclock (i, c′, i′) if m = r

The output handler puts in parallel individual signal sustainers Out (o′, c′, o)
defined in Classic Esterel as follows:

loop
present O’ then

abort
sustain O

when C’
else

await C’
end present

end loop

The effect of these sustainers is to clock the output signal on c′, in the sense of
Sect. 2.2. The definition of TO is:

TO (O′ , c′ , O) = TO (o′
0 , c′ , o) |TO (o′

1 , c′ , on) | . . . |TI (o′
n , c′ , on)

TO (o′ , c′ , o) = Out (o′, c′, o)
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To translate p, we use two auxiliary operators. The “await immediate c” oper-
ator or sync(c) waits for the first occurrence of c and terminates. The c-trigger
operator, written “suspend p when immediate not c” in Esterel and c̄ ⊃· p in
short form, triggers p exactly at the instants where c is present, and freezes p at
the other instants (c̄ is the negation of c). These operators are defined by

sync(c) = {(c ? 1 , 2) ∗}
c̄ ⊃· p = sync(c) ; c̄ ⊃ p

Let p [I ′/I, O′/O] be p where I and O are renamed into I ′ and O′. The final
translation is:

T (c ∗ M (Im)) = ((s̄ ⊃· p ) [I ′/I, O′/O] |TI (Im , c′ , I ′) |TO (O′ , c′ , O)) \ I ′, O′

Notice that the translation of p starts acting at the first tick of c′, first instant
included, because of the initial sync(c) in c̄ ⊃· p .

3.3 Process Sequencing

In the flat calculus, termination of a reactive module is ignored within the process
that holds the module since there is no process sequencing. It is sensible to
exploit the existing termination information and to define concurrent process
termination as termination of all the concurrent reactive modules they contain.
In the Classic Esterel translation, we get termination detection for free: a process
body A terminates when T (A) terminates. In hardware, concurrent termination
detection can be done using devices such as Muller C-elements [11].

Then, we can define process sequencing A;A′. Semantically, we just write
T (A ; A′) = T (A) ; T (A′). As before, the syntactic context disambiguates the
‘;’ symbol between processes or reactive statements.

There are many elementary delays involved in process sequencing. Consider
the trivial example (c ∗ 1 ()) ; (c′ ∗ 1 ()). One first waits for the first occurrence of
c to start the first 1 pause statement. This statement waits for one more c and
terminates. Then, one waits for the first occurrence of c′ to start the second 1
statement, this instant included. The second 1 terminates at the next occurrence
of c′. The final translation of the above process sequence in Classic Esterel is

sync(c); await(c); sync(c′); await(c′)

Therefore, to implement process sequencing in practice, we have to implement
sync(c). We need a device with an input for the incoming control in and an
output for the outgoing control out . The device should immediately set out high
if in is high when c occurs, or else reclock in on c. The solution is to use the
disjunction of a sampler and a reclocker with input in and clock c.

Having defined process sequencing, we can also define process looping A ∗ by
T (A ∗) = (T (A)) ∗, provided that A cannot terminate instantaneously, which is
checked as in Classic Esterel.
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3.4 Process Preemption: The Full Calculus

The last step to the full Multiclock Esterel calculus is to allow an abritrary
multiclocked process P to be launched and preempted from within a clocked
reactive module M clocked by c. This is done by adding a new reactive statement
that starts P within M with a list of inputs and outputs and samples or reclocks
the output signals of P on M ’s clock c since they become inputs of the body of
M . The calculus and language syntax are as follows:

〈P (I, Om) 〉 process run P input I

output reclock O ...

This new reactive statement can appear anywhere where a reactive statement
can, including in a preemption context. Of course, the construction is fully or-
thogonal and recursive: P can be a general process that can itself run syn-
chronous modules that themselves run other multiclock processes, etc.

Signal names in P ’s interface must exist in the scope of the 〈P (I, Om) 〉
statement within M ’s body, and signal binding is by name (in a real language,
renaming facilities such as the ones used in the full Classic Esterel language
should be added).

However, with the current definition of a reactive module interface, all signals
in P ’s interface would be clocked by M ’s clock c: inputs come either from M ’s
interface where they are either sampled or reclocked, local signals are directly
clocked by c, while outputs are sampled or reclocked for M . Since P is an ar-
bitrary process, it should also be able to view signals which are in the current
process scope but not in M ’s interface. For this, we slightly change the reac-
tive module syntax into (I, O, H).p, where H is a set of hidden signals. Hidden
signals are neither sampled nor reclocked by M , and they cannot be used by
M ’s reactive statements. They can only be passed by M as inputs or outputs
to subprocesses. In the call 〈P (I, Om) 〉, we set m = ⊥ for outputs of P which
are hidden in M . To sample or reclock the non-hidden outputs of P for M , we
rename them O′ in P to keep the names O in M (beware, this time the prime
is on the emitter side). The translation in Classic Esterel is:

T (〈P (I, Om) 〉)c = T (P [O′/O]) |TO (O′m , c′ , O)

T (o′m)c =




Sample (o′, c, o) if m = s
Reclock (o′, c, o) if m = r
0 if m = ⊥

This very simple translation tells everything about the semantics of the con-
struct, and especially about subprocess preemption. For example, consider the
Multiclock Esterel reactive statement

s ⊃ 〈P (I, Om) 〉
within a reactive module M clocked by c. When control reaches the statement,
P is started autonomously and it communicates with M through its input /



Multiclock Esterel 123

output ports, where M sees all non-hidden signals as clocked by c. If M receives
s from the environment or emits it internally, s is sustained for the whole clock
cycle of c in the Classic Esterel translation. Therefore, T (P ) is suspended for
the whole clock cycle as one expects. If, for some reason, M exits a trap that
kills P , then T (P ) instantaneously dies as any other Classic Esterel term.

3.5 The Bureaucrat Example

Here is an example where a slow module called Bureaucrat controls the life
and death of a fast process Worker. We assume that Worker reads an input
flow InFlow, writes an output flow OutFlow, and sends a signal Done when its
computation has finished. The bureaucrat wakes up every hour and returns OK
and goes home if Worker has finished in the last hour. Of course, by construc-
tion, the bureaucrat does not care about the work being done with InFlow and
OutFlow, which are hidden to him. After five hours, if Worker has not finished,
the bureaucrat kills it, reports FIRED, and goes home. In concrete syntax, the
program may look like:

clock Hour;
clock WorkClock;

process Global :
input InFlow;
output OutFlow;
signal OK, FIRED in

run Bureaucrat clock Hour input InFlow
output OutFlow, OK, FIRED

end signal
end process

module Bureaucrat :
output OK, FIRED;
hidden InFlow, OutFlow;
signal Done in

weak abort
process run Worker input InFlow output OutFlow,

reclock Done
when
case Done do
emit OK

case 5 tick do
emit FIRED

end weak abort
end signal
end module

assuming that Worker itself involves one or more reactive modules clocked by
the fast clock WorkClock.
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Notice that bureaucrat termination depends on a weak abort preemption
statement [5]. Every hour, i.e. on each of its ticks, the bureaucrat checks whether
Done has occurred since the previous hour using the reclock directive (the
worker goes home when done and does not sustain Done, hence the need to
reclock this signal). If so, OK is emitted and the bureaucrat terminates. Otherwise,
the counter from 5 in the second case is decremented. If the count reaches 0,
Worker is killed, FIRED is emitted and Bureaucrat terminates.

3.6 Notes

In full Multiclock Esterel, one should allow direct reactive module inclusion
within a module body as in full Classic Esterel. In this case, the clock of the
included module is as usual that of the caller. To include a reactive module with a
different clock, one needs to use an intermediate process. Process / module strict
alternation makes signal usage very clear and is one of the main characteristics
of Multiclock Esterel.

The physical hardware implementation of multiclocked preemption is not
fully explored yet. The main idea is of course to “gate the clocks” when passing
them through Worker, but one has to be careful about the numerous boundary
problems which can occur, because of clock simultaneity for instance.

4 Conclusion

We have presented the new Multiclock Esterel language proposal that extends
Classic Esterel to multiclock systems. Although the language makes it possi-
ble to write very complex behaviors including well-defined multiclocked process
preemption, it is technically a simple extension of Classic Esterel. We believe
that this is a good sign of semantic soundness. It is too early to claim that the
language is really well-suited to real-life multiclock systems and that it can be
correctly and efficiently implemented in hardware or software. Experiments are
on the way.

We did not discuss causality issues and the handling of combinational cy-
cles [4]. Within each node, they are as in Classic Esterel. Between nodes, there
is no extra issue if the clocks are declared exclusive since there is always a positive
delay from one clock zone to another one. If clocks ticks can be simultaneous,
there can be nasty cycles beteen clock zones, which we have not studied yet.

Similar techniques can be used for other synchronous languages such as Lus-
tre [9] and Signal [8], making their nodes communicate through sampler and
reclockers. These languages are much simpler since they do not support preemp-
tion. See for example [7] for the use of samplers in distributed continuous control
applications.
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