Coverability Analysis Using Symbolic Model Checking

Gil Ratzaby, Shmuel Ur, and Yaron Wolfsthal

IBM Haifa Research Laboratory, Israel
{rgil,ur,wolfstal}@il.ibm.com

Abstract. In simulation based verification of hardware, as well as in software
testing, one is faced with the challenge of maximizing coverage of testing while
minimizing testing cost. To this end, sophisticated techniques are used to generate
clever test cases, and equally sophisticated techniques are employed by engineers
to determine the quality — a.k.a. coverage — attained by the tests. The latter activity
is called Test Coverage Analysis.

While it is an essential component of the development process, test coverage
can only be analyzed late in the design cycle when the tested entity and the test
harness are both stable. To address this serious restriction, we introduce the notion
of coverability, which intuitively refers to the degree to which a model can be
covered when subjected to testing. We also show an implementation of coverability
checking using Model Checking. The notion of coverability highlights a distinction
between (1) whether a model has been covered by some test suite and (2) whether
the model can ever be covered by any test suite. Coverability Analysis can be
performed as soon as the hardware or software are written, before the test harness
has been written.

1 Introduction

State machines are a simple and powerful modeling means used in a variety of areas,
including hardware [VHDL93] and software design [Biezer90] [Marick95], protocol
development and other applications [Hol91]. As a normal part of the modeling process,
state machine models need to be analyzed and reasoned with regard to their function,
performance, complexity and other properties. Traditionally, functional simulation has
been a key vehicle to analyzing state machine models. The model is simulated against
its expected real world stimuli and the simulated results are compared with the expected
results. Simulation coverage analysis is normally applied to determine the thoroughness
and quality of simulation. For example, the most common coverage metric used in the
industry is statement coverage which checks that each statement has been executed at
least once during simulation.

While test coverage analysis is an essential component of the design verification
process, it can only be used late in the cycle when the code is stable and simulation
environment is running. This is inherent limitation of test coverage analysis.

In this paper, we introduce the notion of coverability. Formally, a coverability model
is defined by creating a coverability goal for every coverage goal in the coverage model
of interest. The coverability goal is met if and only if a test that covers the corresponding
coverage goal exists. Informally, coverability is a property of a state-machine model and

T. Margaria and T. Melham (Eds.): CHARME 2001, LNCS 2144, pp. 155160, 2001.
© Springer-Verlag Berlin Heidelberg 2001

156 G. Ratzaby, S. Ur, and Y. Wolfsthal

refers to the degree to which the model can be tested using simulation. Reasoning about
amodel’s coverability is a powerful analysis technique as it obviates the aforementioned
limitation. Thus, a tool for determining coverability can help assess whether a given
fragment of HDL code contains dead code, whether all branches of a particular control-
flow statement can be taken, etc.

To implement coverability analysis, we build on symbolic model checking tech-
niques, which provide a framework for reasoning about finite-state systems [McM93].
In recent years, Symbolic Model Checking, and formal verification in general, has been
successfully used in the verification of communication protocols, as well as software and
hardware systems [BBEL96]). Our work may be viewed as an extension of the recent
research trend to bring together simulation-based verification and formal verification.
Some recent works, for example, have focused on improving the quality of simulation
by using formal verification methods to generate test sequences that ensure transition
coverage [CFSM, LLU96].

To contrast coverability analysis and coverage analysis, consider the implementation
of statement coverage. Here, a coverage tool typically implements statement coverage
by adding a counter after every statement and initializing the counter to zero. Every
time a test is simulated, some of the counters are modified. The coverage tool outputs
all the counters that remain zero, as they are indicative of either dead-code or holes in
the test plan. In coverability analysis, a rule for every statement would be automatically
generated to check that it can be reached. These rules are executed by the model checker
on the program (or instrumented program) and a warning on the existence of dead-code
is created for every statement that cannot be reached.

Our approach is based on two key observations. First, as described above, a coverage
model is composed of coverage goals, each of which is mappable to a corresponding
coverability goal. The second observation is that a state-machine model can be instru-
mented with control variables and related transitions; these, on one hand, retain the
original model behavior as reflected on the original state variables, and on the other
hand can be used for coverability analysis of the model. The analysis is carried out by
formulating special rules on the instrumented model and presenting these rules (with the
instrumented model) to a symbolic model checker.

The rest of this paper is organized as follows: in Sect. 2 we define the terms used.
In Sect. 3, we demonstrate a few coverability models and show their implementation. In
Sect. 4, we explain how CAT — our Coverability Analysis Tool — was implemented. In
Sect. 5, we discuss our experience using CAT and then we discuss our conclusions.

2 Definitions

A coverage goal is a binary function on test patterns. This function specifies whether
some event occurred when the test pattern is simulated against the state-machine model.
A coverage model is a set of coverage goals. The statement coverage model, for example,
is a model containing a goal for every statement and indicates if this statement has been
executed in simulation.

Every coverage model has a corresponding coverability model. A coverability model
is defined by creating, for every coverage goal in the coverage model, a coverability goal

Coverability Analysis Using Symbolic Model Checking 157

which is a binary function on the state-machine model. The coverability goal is true if
there exists a test on the state-machine model for which the corresponding coverage goal
is true.

3 Coverability Analysis via Model Checking

This section describes and exemplifies the concepts of instrumentation and generation of
auxiliary rules in our implementation of coverability analysis. We focus on coverability
models relating to values of variables and to dead code analysis, and we show sample
results in figure 1.

3.1 Attainability of All the Values of a Variable

This coverability model checks whether all variable values in a code fragment are attain-
able. To this end, for each variable declaration: TYPE : var, where var is a variable of
interest, a collection of auxiliary rules of the form !'EF (var =V;) — one for each value
V; of var —is created. The conjunction of these rules is a property requiring all relevant
variables to take their respective values. This rule is presented to the underlying model
checker, which in turn decides on the attainability of the value. When the formula passes,
an example is also produced, demonstrating how the value is attained. Checking for this
kind of coverability does not require instrumentation; it needs only the information about
the variable declaration that enables the creation of the auxiliary rule.

3.2 Statement Coverability Analysis

This coverability model checks whether all statements can be reached. To this end, the
program is instrumented separately for each statement .S; in the following way:

— Create an auxiliary variable V; and initialize it to 0.
— Replace statement S; with the statement “V; = 1.

The model checker is then presented with the following rule: “ !EF(V; = 1) , which
indicates whether .S; could be reached.

Statement coverability analysis changes the program’s behavior. It may now con-
tain dead-locks and behave in an unpredictable way. However, the program’s behavior
remains the same until the first execution of the replaced statement. As reachability anal-
ysis is performed, the behavior of the program after the first execution of the statement is
immaterial. In this type of instrumentation, only one statement at a time may be checked.
We are currently working on checking more efficient implementation.

4 CAT - Our Coverability Analysis Tool

We have created a coverability tool called CAT (Coverability Analysis Tool) which is
very simple to use. It receives two parameters: the name of the program to be tested
and the coverability models to be used. CAT outputs a list of all the coverability tasks,

158 G. Ratzaby, S. Ur, and Y. Wolfsthal

module example (A,B,clock,F);

input A,B; 30 e}se
input [0:7] clock; 31 if(W2 == 1)
output F; 32 regl = 1;
wire W1,W2; 33end
reg regl; endmodule
reg [0:7] arr; P
integer intl,int2; Attainability Results:
initial)
begin Wire W1:
g intz - 1. Value 0 is attainable.
, - Value 1 cannot be attained!
intl = 0; X
arr[0:7] = 0; Wire W2:
reql ; O-_ ! Value 0 is attainable.
gL =Y Value 1 is attainable.
end
; — 1 . oe
assign w2 t clocklel; Statement Coverability Results:
assign Wl = regl;
always @(clock) ASSIGNMENT in line 20: ok
b?gln IF in line 21: ok
20int2 = 2; ASSIGNMENT in line 24: ok
21if (clock[3]>clock[2] || W2==1) IF in line 25: ok
22 for(intl=0;intl<5;intl=intl+1) ASSIGNMENT in line 26:
23 begin -- can never execute!
24 int2 = int2 + 1; IF in line 27: ok
25 if(intl > int2) ASSIGNMENT in line 28: ok
26 . érr[4:51 = 2; IF in line 31: ok
27 if{intl < int2) ASSIGNMENT in line 32:
28 arr[4:5] = 3; -- can never execute!
29 end

Fig. 1. Verilog program with analysis

indicating whether each task is coverable or not. CAT works in the following way: for
every coverability goal, CAT instruments the original program with the needed auxiliary
statements, and creates a corresponding temporal rule. The rule is then checked by using
a model checker on the instrumented program and the result of the run is reported. For
example, if we want to find whether a line can be reached, we add an instrumentation
that marks this line so it can be referred to by the rule. The model checker then checks
the attainability of the marked line and CAT extracts and reports the answer.

CAT uses RuleBase, a symbolic Model Checker developed by the IBM Haifa Re-
search Lab ([BBEL96]), as its underlying engine. RuleBase can analyze models for-
mulated in several hardware description languages, including VHDL and Verilog. The
basis for CAT is RuleBases’s Verilog parser, Koala. CAT parses the input Verilog de-
sign, extracts the information needed in the current coverability goal, and constructs the
auxiliary CTL rules on demand. CAT then transforms the design so that it will include
the relevant auxiliary statements, and presents the instrumented program to RuleBase.

CAT supports default free-behavior environments, as well as user-defined environ-
ments. The user may choose between the two modes of environment modeling — default

Coverability Analysis Using Symbolic Model Checking 159

or user-defined. For example, in the application of CAT for dead-code analysis, default
free-behavior environments are used. If a statement cannot be covered with free inputs,
it can never be reached under any circumstances.

5 Experience

The coverability report for the sample program of Fig. 1 was generated in less than one
minute. Figure 1 shows a Verilog program and Fig. 2 shows the issued report that indi-
cates which variable values are not attainable and which statements cannot be reached.
Working on benchmark PCI local BUS ([AZ97]), statement-reachability rules for a
1500-line Verilog program were evaluated at the rate of one rule per minute. To test
CAT’s industrial applicability, we used CAT to analyze the coverability of some cus-
tomer code. It took two hours to complete a dead-code analysis report for a 1200-line
Verilog module of a relatively simple control structure. The rules looking for dead code
(e.g., “line 312 is never reached”) execute quickly since each rule induces a relatively
small cone-of-influence, which is amenable to the many reductions supported by Rule-
Base, our underlying model checker. Working on another Verilog file of comparable
size (1300 lines) but with a significantly more complex control structure, a report was
created at a rate of ten statement coverability rules per hour. This appears to be excessive
for the developers, and we therefore are currently evaluating some of the optimization
techniques.

6 Discussion

In this paper we introduced the concept of coverability analysis and described how
a number of coverability metrics, corresponding to some commonly-used coverage
metrics, can be implemented via Symbolic Model Checking. The same ideas can be
used to implement many other coverability metrics (e.g., define-use, mutation, and loop
[Marick95]|[Kaner935]).

The presented technique integrates ideas from traditional simulation and formal
verification. It is somewhat similar to ideas seen in fault grading [KPKR94]. In fact, the
technique derives its strength from its use of the exhaustiveness of formal verification
to improve the planning of simulation.

A possible critique of the coverability approach might be that if a state machine
is small enough to measure its coverability, it would also be small enough to be for-
mally verified. However, we believe the merit of the coverability approach does in fact
complement — and extend — the capabilities of formal verification due to the following
reasons:

1. Today’s model checkers are complicated tools that require the users to write complex
rules in some form of temporal logic. The application suggested in this paper is fully
automatic and enables naive users to take advantage of the power of model checkers
with a “one button” interface for coverability analysis. We believe that adding this
capability to existing model checkers will increase their utilization and applicability
in the hardware design community.

160 G. Ratzaby, S. Ur, and Y. Wolfsthal

2. Our approach can be used in the debugging stage (as soon as code is being written),
before formal verification or simulation are used.

3. Formal verification does not guarantee that the design is correct. Even units that
were formally verified need to be tested via simulation in which coverability can
help.

References

[AZ97] Adnan Aziz, Example of Hardware Verification Using VIS, The benchmark PCI
local BUS,
http://www-cad.eecs.berkeley.edu/Respep/Research/vis
/texas-97/.

[BBEL96] I. Beer, S. Ben-David, C. Eisner, A. Landver, “RuleBase: an Industry-Oriented
Formal Verification Tool”, Proc. DAC’96, pp. 655-660.
[Beizer90] Boris Beizer, Software Testing Technique, 2/e. New York: Van Nostrand Reinhold,

1990.
[CGP99] E.M. Clarke, O. Grumberg. D.A. Peled. Model Checking, MIT Press, 1999.
[CFSM] D. Geist, M. Farkas, A. Landver, Y. Licthenstein, S. Ur and Y Wolfsthal, Coverage

Directed Test Generation using Symbolic Techniques, FMCAD 96: Int. Conf. on
Formal Methods in Computer-Aided Design, November 1996.

[Hol91] G. J. Holtzman, Design and Validation of Computer Protocols, Prentice Hall, 1991.

[Kaner95] C. Kaner, Software Negligence & Testing Coverage, Software QA Quarterly, Vol
2, #2, pp 18, 1995.

[KNO96] M. Kantrowitz, L. M. Noack, “I’'m Done Simulating; Now What? Verification
Coverage Analysis and Correctness Checking of the DECchip 21164 Alpha Mi-
croprocessor”’, Proc. DAC’96.

[KPKR94] S. Kajihara, I. Pomerantz, K. Kinoshita and S. M. Reddy, “Cost Effective Gener-
ation of Minimal Test Sets for Stack-At Faults in Combinatorial logic Circuits”,
30th ACM/IEEE DAC, pp. 102-106, 1993.

[LLU96] D. Levin, D. Lorentz and S. Ur, “A Methodology for Processor Implementation
Verification”, FMCAD 96: Int. Conf. on Formal Methods in Computer-Aided
Design, November 1996.

[Marick95] B. Marick, The Craft of Software Testing: Subsystem Testing Including Object-
Based and Object-Oriented Testing, Prentice-Hall, 1995.

[McM93] K. L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers, 1993.

[Mil90] Raymond E. Miller, Protocol Verification: The first ten years, the next ten years;
some personal observations, in Protocol specification, Testing, and Verification X,
1990.

[RB] RuleBase User Manual V1.0, IBM Haifa Research Laboratory, 1996.

[TCE] 1. Beer, M. Dvir, B. Kozitsa. Y. Lichtenstein, S. Mach, W.J. Nee, E. Rappaport. Q.

Schmierer, Y. Zandman, VHDL TEST COVERAGE in BDLS/AUSSIM Environ-
ment, IBM HRL Technical Report 88.342, December 1993.

[VHDL93] D. L. Perry, VHDL Second Edition, McGraw-Hill Series on Computer Engineer-
ing, 1993.

[Weyuker94] E. Weyuker, T. Goradia and A. Singh, Automatically Generating Test Data from a
Boolean Specification, IEEE Transaction on Software Engineering, Vol 20, No 5
May 1994.

	Introduction
	Definitions
	Coverability Analysis via Model Checking
	Attainability of All the Values of a Variable
	Statement Coverability Analysis

	CAT -- Our Coverability Analysis Tool
	Experience
	Discussion

