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Abstract. We examine the challenges presented by large-scale formal verification
of industrial-size circuits, based on our experiences in verifying the class of all
micro-operations executing on the floating-point division and square root unit of
the Intel IA-32 Pentium�4 microprocessor. The verification methodology is based
on combining human-guided mechanised theorem-proving with low-level steps
verified by fully automated model-checking. A key observation in the work is the
need to explicitly address the issues of proof design and proof engineering, i.e.
the process of creating proofs and the craft of structuring and formulating them,
as concerns on their own right.

1 Introduction

Verification of large systems is discussed in an increasing number of published case
studies. For many of these, the story-line may be paraphrased by we used theory X and
tool Y to verify system Z. The verification of a system is considered an accomplishment
on its own right, and the fact that it could be achieved at all is a contribution worth
reporting. Given the current state of the art, we think this is quite justified.

Rather less has been said about the practice of applying formal verification on a large
scale in a system development project [1,5,8]. Producing an isolated proof of correctness
differs from such wide-scale application in the same way as writing a program to solve
a single problem in a single set of circumstances differs from writing a general software
system to solve a class of related problems in a variety of circumstances, evolving
over time. Although the solution in both cases is likely to be fundamentally the same,
the general case will require attention to issues that can be safely glossed over in the
restricted case. In effect, when producing an isolated proof of correctness, the main
concern is just that that the proof is provided, whereas in the general case, issues of how
the proof is constructed and structured become equally important.

In this paper we examine some of the issues present in large-scale verification work,
based on our experiences in verifying the family of all micro-operations executing in the
division and square root unit of the Intel IA-32 Pentium�4 microprocessor. Although
based on a single extended case study, we believe that many aspects of the work are of a
more universal nature. Therefore, we have tried to phrase the discussion on the general
level, drawing on the case study to illustrate various points in practice.

Our verification methodology is based on human-constructed, mechanically-checked
proofs with completely automatically verified model-checking steps at the lowest level.
The aim is to take advantage of automation to mechanise tedious low-level reasoning,
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while retaining the relatively complete freedom of the human verifier to set the over-
all verification strategy. We set out to perform a fully mechanically checked correctness
proof in a single, unified framework, relating the high-level correctness statements all the
way down to the actual register-transfer level description of the hardware. Technically
the verification work was carried out in the the Forte verification framework, a com-
bined model-checking and theorem-proving system built on top of the Voss system [9].
The interface language to Voss is FL, a strongly-typed functional language in the ML
family [16], model checking is done via symbolic trajectory evaluation (STE) [18], and
theorem proving is done in the ThmTac proof tool [2].

On a philosophical level, we approach verification much the same way as program
construction, by emphasizing the role of the human verifier in decomposing the top-
level problem to relatively simple steps amenable to automation, instead of striving at
maximizing the amount of automation. Continuing the analogy, we identify two separate,
although partly overlapping, aspects of proof construction: proof design, concerned with
the problem of devising a proof of correctness for a given system in the first place, and
proof engineering, concerned with the structure and formulation of such a proof.

Probably the most important observation in our work is that in large-scale application
of formal verification, conscious attention needs to be paid to the proof design and
engineering aspects, in addition to the conceptual argument behind the proof, or the
fundamental aspects of the verification framework. In retrospect, this should not be
surprising. After all, decades of experience have shown the crucial importance of careful
software design and engineering practices for large-scale system development projects.
However, in proof development we do not have the same wealth of established models
on which to base the work as in software development. In our verification work, we failed
to appreciate the need for clear development principles early enough. This resulted in
extensive amounts of proof rewriting work later on, when the problems caused by poor
choices in proof structuring and formulation became apparent.

We start by looking at the aims and challenges of applying formal verification in the
large scale in Sect. 2. Section 3 introduces the Pentium 4 divider circuit. In Sect. 4 we
outline our verification methodology, and in Sect. 5 the technical verification framework.
Section 6 discusses our approach to proof design, and Sect. 7 gives an overview of the
steps involved in the verification of one individual division micro-operation (for more
proof details, see [13,14]). Then, in Sect. 8 we examine aspects of proof engineering in
some more detail.

2 Large-Scale Verification

Before looking at our case study, let us discuss more generally our experiences regarding
the challenges of applying formal verification as a routine part of an active industrial
development project, as opposed to a one-off case study illustrating the feasibility of a
particular verification approach.

A basic difference between the two is that in a development project, formal verifi-
cation is not the main concern of the project, but only a fairly small part of it, one tool
among others. This is reflected in both the properties and the systems to be verified. On
the one hand, the choice of what is to be verified is based more on what is considered
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to be critical for the project, rather than what happens to suit well to a particular verifi-
cation technique. Although available technology naturally sets limitations to what can
be verified, in principle the verifier should be able to address any correctness issue that
may be relevant to the final product. On the other hand, systems are less than perfect
regarding the needs of verification. The verifier has little control over them, and cannot
massage a system to make the verification problem easier.

In actual fact, in a hardware development project like ours, there is an inherent conflict
between the goals of the hardware design and the needs of the formal verification. For
design, performance considerations are the most crucial concerns, and simplicity and
clarity come distant second. Verification, on the other hand, needs elegance and clarity,
for making specifications understandable and any kind of formal reasoning possible. In
effect, for formal verification we must create a clear and elegant abstract description of
something that is not in itself clear and elegant at all.

The practical problems of formal verification start with the formulation of a precise
specification. Written design specifications, if they exist, tend to overlook low-level
details necessary for formal verification. Furthermore, in a system under development,
current specifications often exist only in the minds of the designers. Therefore, writing a
precise specification almost invariably involves some reverse engineering of the system,
with the obvious danger that a specification replicates problems of the system.

The largest challenge in industrial formal verification is clearly just carrying out the
verification at all. Given the complexity of industrial systems, and the level of support
current tools provide, this is often a task requiring great ingenuity. To illustrate the size
and complexity of current systems, a print-out of the Pentium 4 divider register-transfer-
level source code, the basis of our verification work, is about one inch thick, and the unit
is only a small fraction of the whole processor.

However, carrying out the verification as part of an active development project sets
additional requirements beyond “just doing it”: we have to be able to make plans and
promises about the verification before actually carrying it out, and then keep these
promises. This means that the verification approach must be sufficiently predictable and
well understood to make meaningful advance planning possible.

Probably the largest difference between an individual case study and systematic ap-
plication of formal verification lies in the verification maintenance aspect. For an isolated
case, a proof can be almost write-only, as after the verification has been completed, it
will not need to be revisited. For an active development project the situation is quite the
contrary: the verification will need to adapt to changes in the underlying system and the
specification over the lifespan of a project. As a matter of fact, due to the high initial
investment required by formal verification, it is natural to reuse the results in future
projects, as well, so the verification is quite likely to outlive the project it was originally
part of. In our case, the underlying system model changed sometimes several times a
week, and we expect the proofs to be used for five years or more. It is also natural to carry
out large verification tasks incrementally, starting at a more restricted set of behaviours
and properties, generalising this step by step, which means that the verification needs to
be carried out repeatedly, even if the underlying system does not change. All this means
that for larger-scale formal verification, the robustness of the verification method and
easy modifiability of proofs are extremely important.
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While the accuracy of formal verification is naturally important in any setting, in an
industrial project it is of special significance, in relation to more traditional testing-based
approaches to validation. These methods are likely to be used in parallel with formal
verification, and as they typically produce partial results much faster, simple errata
appearing frequently are likely to be caught by testing long before formal verification
would detect them. Therefore, the value of formal verification lies in its ability to discover
the hard-to-find errata that testing would miss. In order to find these subtle problems,
it is essential that both the model of the system and the properties to be verified reflect
accurately the real system and its intended properties.

An ingredient in the accuracy of verification is the concern of reviewability. The
specification of a system should be reasonably clear and crisp to be easily reviewable
against informal notions of correctness, without understanding internal details of the
system. It should also be easy to find out from a verification what exactly does it prove,
how this is proved and, especially, what the underlying, unstated assumptions are.

3 Divider Circuit

To illustrate the Pentium 4 divider unit, consider first the simple iterative division-
remainder algorithm sketched in Fig. 1. It takes two normal floating-point numbers N
and D as input, and produces the rounded quotient Q of N divided by D. This algorithm
is essentially the same as the one taught in school for pen-and-paper division, although in
binary instead of decimal. The value of iteration count depends on the required precision
of result. The algorithm can be easily modified to compute the remainder R instead of
the quotient Q by just switching the entity to be output.

The algorithm of Fig. 1 can also be used to compute square root of N with minor
modifications. First, a preprocessing step aligning N is added so that Ne − bias, the
unbiased exponent, becomes even. Second, both occurrences of Dm inside the loop are
replaced with 2∗Qm[i]+2−i (notice that the value varies between iterations), and third,
the final exponent computation is replaced with Qe := (Ne − bias)/2 + bias.

Figure 2 depicts a simplified hardware implementation of this division algorithm.
The circuit has inputs for the dividend N , the divisor D and some control signals.
Mantissa calculation is done in a feedback loop, one iteration per clock cycle, and
exponent calculation is done in a separate subunit. As output, the circuit produces the
result W of the required calculation and some control information, such as various flags.
Correct behaviour of the circuit can be easily characterised by the formula r(W ) =
round( r(N)/r(D) ) for division and by r(W ) = round(

√
r(N) ) for square root,

where the precise meaning of the function ‘round’ depends on the intended rounding
mode and precision, and the function r maps a floating-point representation to the real
number it encodes.

Although similar in principle, current industrial hardware implementations of divi-
sion algorithms are many magnitudes more complex. For example, they may use re-
dundant or multiple representations of Q and R, produce more than one quotient bit per
iteration, or perform speculative calculations [6]. The Pentium 4 divider unit is no excep-
tion: it implements a highly optimised double-pumped radix-2 SRT division algorithm,
producing two quotient bits per clock cycle, and has over 7000 latches.
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input: two normal floating-point numbers N = (Ns, Ne, Nm) and D = (Ds, De, Dm)
(we view abstractly Ne and De as natural numbers and Nm and Dm as fractions below)

variables: floating-point numbers Q = (Qs, Qe, Qm) and R = (Rs, Re, Rm), integers imax and i

i := 0; imax := iteration count;
Qm[0] := 0; Rm[0] := Nm;
while i < imax do

/* determine quotient bit qi ∈ {0, 1} */
if Rm[i] < Dm then qi := 0 else qi := 1 fi
/* update quotient and remainder accordingly */
Qm[i + 1] := Qm[i] + 2−i ∗ qi; Rm[i + 1] := 2 ∗ (Rm[i] − qi ∗ Dm); i := i + 1

od
Qs := Ns xor Ds; Qe := Ne − De + bias; Qm := Qm[imax];
output ( round(Qs, Qe, Qm) )

Fig. 1. Simple iterative division algorithm
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Fig. 2. Simple divider hardware

The Pentium 4 divider unit also supports a number of different variations of the
basic division, remainder and square root operations. While the simplest ones differ
only with respect to rounding precision, the circuit supports a collection of specialised
micro-operations used primarily for microcode flows computing transcendental func-
tions. Additionally, the circuit supports a collection of Single Instruction Multiple Data
(SIMD) instructions called SSE (Streaming SIMD Extension) and SSE2, optimised for
multimedia applications. For some of these, several passes of the mantissa loop are exe-
cuted, and for some others, the normal full-width datapath is split into two halves, both
effectively executing the same algorithm in parallel. Altogether the Pentium 4 divider
unit supports about twenty materially different variants of the basic operations. For more
discussion on Pentium 4 micro-architecture, see [10].
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4 Verification Methodology

The goal of our verification methodology is to provide a completely machine-verified
proof of correctness, with low-level steps justified by fully automated model-checking,
relating high-level specifications all the way down to the actual description of the circuit
in a unified framework. The four basic principles, mechanised verification, automation
in the low level, actual model of the circuit, and uniform framework, are all answers to
the challenges of large-scale verification. While we believe these principles to be quite
uncontroversial, let us briefly outline the arguments behind them.

Consider mechanised proof-checking first. An alternative view would be to consider
proofs as social objects, and trust that the scrutiny of sufficiently observant peers will
find any mistakes [17]. Unfortunately, many of the proofs related to formal verification
of circuits are rather boring from a mathematical perspective, and do not motivate qual-
ified individuals to delve into them deeply enough. For example, in doing mechanised
theorem-proving on our rounding specifications, we discovered a hole that had resisted
close scrutiny for a long time. The second principle, automation, is necessary for the
sheer size of industrial circuits. While automation does not necessarily need to imply
model-checking, we are currently not aware of other sufficiently robust approaches.

Our decision to base the verification on the actual description of the circuit used in
the design flow is motivated by the reliability and maintainability of the work. Many
actual errata in circuits, e.g. the infamous Pentium FDIV erratum and all errata found in
our work, are caused by low-level details. Furthermore, a separate high-level description
would need to be constantly updated to reflect changes to the actual design.

Regarding the unified framework, some verification case studies use a variety of
tools, e.g. the results of model-checking are transferred from one system to another for
theorem-proving purposes. In our opinion this approach leaves room for error in the form
of unstated or poorly understood assumptions underlying the translation of statements
from one formalism to another. A single, tightly integrated environment also helps in
making the verification more manageable and reviewable, as assumptions, qualifications
and verified statements can be expressed uniformly.

Underlying our verification methodology is the philosophical belief that verification
of systems should be an activity analogous to programming. We view programming as
the human activity of organising individual primitive instructions, each of which can be
mechanically executed by a computer in an efficient, dependable and predictable fashion,
to a larger pattern to perform the intended high-level task. In the same way, we view
verification as the human activity of organising individual primitive proof steps, each
of which can be mechanically verified by a computer in an efficient, dependable and
predictable fashion, to a larger pattern to establish the intended high-level specification.

Based on this view, we tend to emphasise the proof decomposition aspect over au-
tomation. We are naturally not in any way against the use of sophisticated algorithms:
they can help verification just like a subroutine library can help programming. Neverthe-
less, our trust in our ability to carry out a given programming task is usually based more
on our programming skills, rather than on being lucky enough to find a tool that already
happens to perform the task. In the same way, in our opinion, our trust in being able to
carry out a given verification task should be based primarily on our decomposition skills
and the robustness of the underlying primitive verification steps.
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5 Technical Verification Framework

Our verification framework consists of a collection of definition and theorem libraries
built in the Forte environment, a combined model-checking and theorem-proving system.
The interface and scripting language to Forte is FL, a strongly-typed functional language
in the ML family [16]. It includes binary decision diagrams (BDDs) as first-class objects
and symbolic trajectory evaluation as a built-in function.

Symbolic trajectory evaluation, based on traditional notions of digital circuit simu-
lation, is an efficient method for determining the validity of a restricted class of temporal
properties over circuits. It allows statements of the form |=ckt [ant==�cons], where
the antecedent (ant) gives an initial state and input stimuli to the circuit ckt , while the
consequent (cons) specifies the desired response of the circuit. Formally, the meaning
of the statement is: all sequences in the language of the circuit satisfying the antecedent
will also satisfy the consequent. Antecedents and consequences are formed by conjunc-
tion from basic formulae of the form Nt(node is value when guard), where t is an
integer, node is a signal in the circuit and value and guard are Boolean expressions. The
meaning of a basic formula is “if guard is true then at time t, node has value value”.

The efficiency of trajectory evaluation is based on built-in support for data abstraction
via a lattice of simulation values. The simulation model used by Forte extends the
conventional Boolean domain to a lattice by adding a a bottom element X and a top
element �. Intuitively the value X denotes lack of information: the signal could be either
T or F. The essential relation between such four-valued and Boolean sequences is that
any assertion verified over a sequence containing Xs will hold for sequences with Xs
replaced with either T or F [4,3].

Theorem proving in Forte is done in the ThmTac proof tool, an LCF-style implemen-
tation of a higher-order classical logic. Its principal aim is to enable seamless transitions
between model checking, where we execute FL functions, and theorem proving, where
we reason about the behaviour of FL functions [2]. Roughly speaking, if a term does
not include any free variables, contains quantification over Boolean domains only, is
evaluatable within the computational resources available, and evaluates to true, we can
turn it into a theorem and use it for reasoning.

As the restricted language used for trajectory evaluation is too weak to allow expres-
sion of many interesting properties, we use a variant of the traditional pre-postcondition
framework (see e.g. [7]) for formulating temporal aspects of our specifications. In our
approach specification statements are of the form {φin}(trin, ckt, trout){φout} where
a trajectory assertion trin(x) binds a vector x of Booleans to some input signals of ckt
at the time the input is intuitively read by the circuit, trajectory assertion trout(y) binds
a vector y similarly to some output signals, a formula φin(x) expresses the precondition
the input is supposed to meet, and φout(x, y) the postcondition the circuit is supposed
to produce. Formally, this statement is shorthand for the formula:

∀in.φin(in) ⇒ (∃out.(|=ckt [trin(in)==�trout(out)])) ∧
(∀out.(|=ckt [trin(in)==�trout(out)]) ⇒ φout(in, out))

Intuitively the formula states that for any vector of values x satisfying the precondition
φin(x), 1) there is some output vector y such that for every execution e, if trin(x) is true
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of e, then so is trout(y), and 2) for every vector y for which 1 holds, the postcondition
property φout(x, y) holds, or more loosely, that whenever precondition φin is satisfied,
the circuit guarantees that postcondition φout is also satisfied.

The validity of a pre-postcondition statement in the form above can, in principle, be
determined by direct evaluation, although computational resource requirements mean
that in practice this is feasible only in limited circumstances. To allow reasoning about
the flow of computation in a structured way, our proof framework includes general
reasoning rules for pre-postcondition statements, such as precondition strengthening,
postcondition weakening, conjunction, sequential composition and bounded iteration
[13].

When dealing with arithmetic circuits, both specifications and reasoning are often
naturally expressed in terms of arithmetics. As model-checking techniques using BDD
based representations can only deal with bit-vector operations, our proof framework
includes a library of provably correct bit-vector arithmetic operations, which have an
exact correspondence with integer operations.

To support verification of floating-point operations, our proof framework includes a
general-purpose theorem library for floating-point numbers and rounding [14]. Analo-
gous to the case of integer arithmetics above, the library supports floating-point numbers
and rounding at the bit-vector level for model-checking, and at the mathematical level
for reasoning. As currently our framework does not support reals, only integers, we have
adopted the work-around of multiplying all entities by a sufficiently big number 2BN

so that every real number that is relevant for our proofs maps to an integer.

6 Proof Design

Finding a proof for a given property and system is naturally always a heuristic process.
Nevertheless, just as in program design, it is worth while to articulate general strategies
for finding a solution, and to impose some structure on the process. In addition to
offering guidelines for construction of future proofs, spelling out design principles gives
a vocabulary for communicating and comparing solution strategies.

For low-level STE model-checking work, the methodology discussed in [1] gives
us the basic structure for finding out circuit interfaces, describing them abstractly, and
carrying out trajectory evaluation runs. On a higher level, our decomposition strategy is
based on looking at the abstract algorithm the circuit is intended to compute.

We start by partitioning the algorithm to regions in such a way that the computation
within each region in isolation can, in principle, be efficiently carried out for symbolic
initial values using BDD’s. For example, a region involving only addition and subtraction,
or only shifts, is rather likely to have a concise BDD representation. For the division
algorithm, the body of the loop forms a good candidate for a region.

For each region, we then try to locate the computations corresponding to the region
in the circuit, find boundaries separating the computations, and signals corresponding to
the variables of the abstract algorithm. At this point, we may notice that the algorithmic
description of the circuit is too coarse to allow an adequate correspondence. For example,
when trying to map the loop body of the division algorithm to the actual circuit, we notice
that the circuit uses auxiliary entities, effectively different approximate representations
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of Q and R. In this case, we will need to refine the abstract algorithm. When mapping
entities of the abstract algorithm to the circuit, the relation between the levels is not
necessarily one-to-one: a single abstract variable may correspond to a non-trivial function
of a collection of signal vectors, with different timing characteristics.

Once we have located the regions and boundaries in the circuit, we verify that each
region in the circuit implements correctly the corresponding region of the algorithm. As
the original partitioning to regions was chosen so that calculations within each abstract
region could be efficiently carried out using BDD’s, there is a fairly good likelihood that
we can also efficiently simulate the behaviour of the circuit region with STE. While it
may naturally happen that an intermediate value in a region is not concisely representable
by BDD’s even if the boundaries are, we have so far never encountered such a case.

After having model-checked each region separately, the corresponding relations are
combined using theorem proving, in the way described by the abstract algorithm to yield
a proof of the top-level correctness statement. In other words, our proof design approach
is top-down, whereas proof construction takes place bottom-up.

The decomposition of the abstract algorithm to the regions used in verification does
not need to coincide with the decomposition used in implementing the algorithm in the
circuit. In fact, one perhaps surprising observation in this work has been that this is
hardly ever the case: the regions and boundaries used for verification rarely bear much
resemblance to the module structure, nor to the latch boundaries of the circuit. On second
thought, this may not be so surprising: modules of the circuit are more tied to the physical
area, and especially in later stages of a project, circuit logic tends to be moved from one
module to another, or from one side of a latch to another, with fairly little regard to its
conceptual position in the overall computations. Consequently, circuit modules do not
usually have a clear algorithmic characterization useful to us.

We believe that this proof design approach is quite widely applicable to various kinds
of datapath-oriented circuits.As neither the proof nor the verifier needs to know the exact
way computations within a circuit region are actually carried out, concrete proof plans
can be made in advance. The approach also appears to be robust regarding changes to the
design: most changes are likely to take place at a local level, so while they may require
adjusting the boundaries or the description of the intended computation within a region,
the overall proof structure does not need to change.

7 Divider Verification Outline

An informal specification of the circuit’s correctness is quite easy to come up with:

IF a division operation is started AND the input values N and D are within the
range handled by hardware AND the environment behaves according to the ex-
pected protocol AND the circuit is internally in normal operating state, THEN at
the time the circuit produces outputW , the equation r(W ) = round(r(N)/r(D))
holds.

When formalising this, the part concerning the relation of input and output data values is
straightforward, as it follows from the IEEE specification on floating-point arithmetics
[11], although formalisation of the standard itself is non-trivial. However, the problem
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lies at the left side of the implication: what are “normal internal operating state” and
“expected environment protocol”? Characterising these very circuit-dependent aspects
required a fair amount of investigative work. To increase confidence in the correct char-
acterisation of the environment assumptions, we also used an existing test suite to check
for their validity in a variety of circumstances using traditional test-based validation. In
principle the environment assumptions could have been verified in the context of the
whole processor, but we did not have the resources for this.

Further, mentioning the internal operating state in the specification violates the prin-
ciple of external visibility. Therefore, we needed to strengthen the statement by proving
separately that whenever a division operation can be started, the circuit is internally in
normal operating state, which allows us to discharge the last conjunct of the antecedent.
This proof was carried out in a fairly traditional temporal-logic-based framework. How-
ever, as it is separate from the main datapath proofs, we shall not discuss it here.

The top-level correctness statement can then be formalised by

{IN} (tin, ckt, tout) {IO} (1)

where the precondition IN formalises the four conjuncts of the antecedent of the informal
specification, and the postcondition IO is defined by

IO = ∃Q. ( ri(W ) = roundri(Q) ) ∧
( Q ∗ ri(D) ≤ ri(N) ∗ 2BN ≤ (Q + ε) ∗ ri(D) )

(2)

and where trajectory function tin binds N and D to input data signals at the start of
the operation, and tout binds W to output signals at the time the output is ready. The
formula IO is slightly more complex than the intuitive specification: the extra entities
Q, intuitively denoting the unrounded quotient, and ε, denoting some fixed small value,
are needed because of the lack of real numbers in our current framework. The function
roundri is a rounding function working on the integer representation of reals.

As the algorithm and the hardware are iterative in nature, the verification is based
on a loop invariant for the mantissa calculation. At the top level, there is a natural
mathematical invariant MIi relating the quotient and remainder mantissas Qm[i] and
Rm[i] to the input numbers D and N , derived from the defining equation of division:

MIi = (Nm = Qm[i] ∗ Dm + 2−i ∗ Rm[i]) ∧ (Rm[i] < 2 ∗ Dm) (3)

Due to the multiplication operation in this invariant, it is not amenable to verification by
direct model-checking. Therefore, the problem is further decomposed into verification of
MI1 after first iteration, and verification of an equation MRi between current and previous
loop values for each subsequent iteration. The equation MRi is based on the recurrence
relation the loop is supposed to compute. Further, to verify the relation MRi by model-
checking, two bit-vector relations are introduced: a bit-vector recurrence relation BRi

that coincides with the mathematical relation MRi, and a low-level bit-vector invariant
BIi expressing a consistency constraint on loop data.

Using this decomposition, verification of the mantissa computation in the circuit
consists of the following steps:

{IN} (tin, ckt, tl0) {BI1 ∧ MI1} (4)
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∀i. (0 ≤ i < imax) ⇒ ({BIi} (tli, ckt, tli+1) {BIi+1 ∧ BRi}) (5)

∀i. (0 ≤ i < imax) ⇒ (BRi ⇒ MRi) (6)

∀i. (0 ≤ i < imax) ⇒ (MIi ∧ MRi ⇒ MIi+1) (7)

where trajectory function tli binds Rm, Qm and other data items to corresponding signals
for iteration i. Statements 4 and 5 are verified directly by model-checking. Considering
our proof design strategy, the binding functions tli express the boundaries of the regions
for model-checking. Statement 6 involves reasoning about the correspondence between
bit-vector operations and their arithmetic counterparts, and statement 7 relies on pure
arithmetic reasoning. Using pre-postcondition reasoning, steps 4–7 can then be combined
to a correctness statement for the complete mantissa computation:

{IN} (tin, ckt, tlimax) {BIimax ∧ MIimax} (8)

The correctness of the final rounding stage can be expressed by the formula:

MRND = ( ri(W ) = roundri(ri(s, e, m)) ) where (9)

s = sgn(N) XOR sgn(D)
e = exp(N) − exp(D) + bias

m = Qm[imax]

To verify the rounding stage by model-checking, two further bit-vector relations are
needed: a bit-vector version BRND of the mathematical relation MRND, and an auxiliary
relation AUX, which expresses constraints on the final loop output necessary for the
proper behaviour of the rounder. Then, verification of the rounding stage consists of the
following steps:

{BIimax ∧ AUX} (tlimax, ckt, tout) {BRND} (10)

BRND ⇒ MRND (11)

BIimax ∧ MIimax ⇒ AUX (12)

MIimax ∧ MRND ⇒ IO (13)

Statement 10 is verified by direct model-checking. This is a good example of the differ-
ences between boundaries used for verification and those of the circuit units: the starting
boundary tlimax is not at the rounder input in the circuit, but inside the mantissa loop.
Statement 11 reasons about the correspondence between bit-vector and mathematical
versions of rounding, and statements 12 and 13 involve mostly arithmetic reasoning.
Using pre-postcondition reasoning, steps 10–13 then yield:

{BIimax ∧ MIimax} (tlimax, ckt, tout) {IO} (14)

Finally, statements 8 and 14 can be joined by sequential composition to show the top-level
correctness statement 1. For more proof details, see [13].

While this discussion has concentrated on the division operation, the proof for square
root is analogous. The most crucial issue in the model-checking part of the verification
was determining the boundary tli and the invariant BIi exactly: some parts are easy, like
the location or the expected ranges of data values in the loop, but some are extremely
implementation-dependent.
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8 Proof Engineering

Once we had completed a proof for the first micro-operation, effectively the proof out-
lined in Sect. 7 and reported in [13], we believed that the largest body of work was
behind us, and the proofs for the remaining cases would fall out easily. We were wrong.
The length of the basic proof for one micro-operation, excluding library code, is about
15 000 lines, about 85% of which is related to the theorem-proving effort, and 15% to
the model-checking. The naive solution of replicating the code for each micro-operation
and then making necessary changes would have resulted in 20 * 15 000 = 300 000 lines
of code, clearly an organisational and maintenance nightmare.

Consequently, we had to reformulate the proofs avoiding code duplication, while
accounting for the differences between micro-operations. These differences come in
various flavours: The loop body of the division and square root operations is different,
although the general structure is the same. Mantissa loop is executed for a different
number of times for different precision modes. For certain SIMD operations, the data-
path is split to two halves, and both halves implement the same algorithm as the full width
datapath, except for certain details. The two halves are nearly, but not exactly symmetric.
Flag and fault behaviour for customised micro-operations differs from standard ones.
For some SIMD operations, multiple passes of mantissa loop are executed, and for some
others, fault behaviour reflects several pieces of data. The rounder depends on different
constraints on the loop output for different micro-operations.

It turned out that most of the theorems we proved for the first completed proof were
not sufficiently general. Various values, assumptions and definitions were hard-coded
into the proofs, although they vary between micro-operations. This lack of generality
caused an extensive amount of proof rewriting. Actually, we spent more time rewriting
proofs than writing them in the first place. Although some consolation is provided by
anecdotal evidence in the literature [15,12] that we were not the only ones encountering
the problem, this clearly is not a preferable state of affairs. We basically made the same
mistake as starting a software project by rushing to write program code, without precise
planning of the overall structure of the system. Moreover, we did not write our original
proofs in a fashion that would have supported modifications and maintenance.

So, how do we write robust, understandable, and maintainable proofs? It appears
to us that theorem-proving is often used in a fairly static setting, where maintainability
is not a crucial concern, so we did not seem to have too many models. While we can
naturally learn from principles used to enhance software maintainability, we cannot just
simply equate the problems of software and proof maintenance. As a matter of fact, we
would argue that the latter is considerably harder than the former. First, for software
only the semantics of objects matter: we can freely reformulate a definition as long as its
denotation does not change. For proofs, on the other hand, syntactic structure of terms
matters as well. Secondly, the rigour required for formal reasoning leaves much less
leeway for sticky-tape solutions than in the case of software. Thirdly, the arduousness of
theorem proving means that proof reformulation is harder than program reformulation.
This conspires against maintainability in two ways: once a proof has been created, no
matter how imperfect, there is a great temptation to leave it as it is, but when we will
need to modify it later, the penalty is even higher.
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Many specific questions emerge in relation to writing robust and maintainable proofs.
For example, if we classify objects related to proofs to term language definitions, claims
regarding such definitions, and proofs of claims, what principles are relevant for formu-
lation of objects in each group? How to structure a theorem hierarchy? How to formulate
the proof of an individual theorem? How to represent proof hierarchies which are similar
except for some details? While we cannot claim to have the best possible solutions, we
were forced to explicitly address these issues during our verification work.

Let us start from the question of maintainable definitions. We adopted the practice of
formulating definitions as hierarchies of definition layers, with each layer concentrating
on a separate aspect. The layers are very thin, usually a single level of a definition is less
than five lines long. For example, consider the definition of MRND (equation 9 in Sect. 7).
As written there, it contains the aspects of sign and exponent calculation, mantissa
definition, conversion from floating-point representation to a number and rounding. To
be able to reason about these aspects separately, we define each of them as a separate
layer. Then we can easily change parts of a definition, e.g. to reuse parts of MRND for
square root proofs by changing sign and exponent calculation.

The layering is repeated in the formulation of claims. For each layer present in a
definition, we write a separate claim, with the intention that it can be proved on the basis
of the definition of the current layer and claims relating to the layer immediately below.
This induces a natural theorem hierarchy. We also try to state claims always in terms
of relation names, instead of the actual relations. So, instead of if a < 223 then . . . we
write if (in bounds a) then . . . where in bounds x = x < 223. In this way, even if the
actual bound used in in bounds will change, subsequent theorems will be unaffected as
long as the current theorem remains true. This isolates effects of changes and improves
maintainability. On the negative side, the approach may lead to a proliferation of claims.

Given a hierarchy of definitions and a claim relating to some layer, how do we write a
maintainable and understandable proof for the claim? A proof composed of many simple
manually crafted steps is more likely to need editing, even for small modifications in the
claim, than a proof with fewer, more automated steps. However, when modifications are
needed, they are likely to be easier to make in the former case than in the latter, as it is
easier to recreate the conceptual argument behind the proof from its code representation.
Thus, in our experience, for small changes in the claim, highly automated proofs are
superior, but for larger changes, manually crafted proofs are more maintainable. Unfor-
tunately, without foreseeing what kinds of changes will be required, it is hard to plan for
the best outcome.

The core issue in avoiding code duplication is proving each argument only once.
However, it is often easier to prove n instances of a general theorem, than the theorem
itself, so there is a tradeoff between maintainability and ease of proving. We usually opted
for proving the general case for any n > 2, unless the general proof was fundamentally
more difficult.

To improve understandability and manageability, we organised all our proofs in
modules that, conceptually, are given a set of objects and theorems concerning those
objects, and provide another set of objects and theorems. In modules we followed a
principle of locality, and packaged all proofs requiring access to the internal details
of a definition together with the definition itself. This greatly increases maintainability
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of code, as changes to a definition only require changes to the local module, as long as
externally visible theorems are not affected. Modularity also allows us to represent proof
hierarchies differing only in some details without code duplication, by using alternate
modules for the differing aspects of the proof. This way, we managed to capture all the
different proof variations in only about 45 000 lines of proof code.

We found the layering of definitions, claims and proofs to be indispensable for
creating maintainable proofs. However, splitting definitions to minute steps has a negative
effect on reviewability. To alleviate this problem, we experimented with proofs using two
sets of definitions: monolithic ones, used in the top-level specifications for reviewability,
and layered ones, used for the rest of the proof. The transition from layered to monolithic
definitions then takes place just below the top level.

Technically our proof development environment was rather austere. In ThmTac a
user writes down a textual representation of proof steps, and a proof is an FL term like
any other, so no special proof capture or replay mechanism is needed. For interactive
proof development we used a ThmTac interface for stepping through a proof, and a
mechanism for assuming theorems without having to evaluate their proofs. We used
no special module, version or proof consistency management tools. While they might
have helped on some occasions, the real problem we faced was not in these aspects, but
in deciding how to write down the proof. To guarantee that all pieces fit together after
a round of changes, we revalidated the whole proof hierarchy from scratch overnight.
What would have made our work easier would have been a mechanism for supporting
and enforcing good code writing practices, such as module visibility rules. Now, our
work environment did not support modules directly and we had to emulate them by
conditional load sequences. Another item in our wish-list would have been tool support
for incremental proof changes, such as analysing the precise point in which an old proof
and an attempted new proof diverge.

Looking back on the lessons learned during our verification work, we would advocate
the strategy of starting the verification by a quick, semi-informal decomposition of the
top-level property to model-checkable portions, carrying out the model-checking, and
then planning the complete formal proof structure in great detail before starting any
theorem-proving. The proof planning stage should result in a documented description
of the modules, definitions, claims, required proofs and their relations. Precision in this
stage is crucial, as the high cost of proof changes makes it important to get the proof
structure right at the first attempt.

9 Conclusion

We have examined verification methodology, proof design and proof engineering as-
pects relevant to large-scale industrial application of formal verification, based on our
experiences in verifying the Pentium 4 divider unit, to our knowledge one of the largest
industrial hardware verification case studies. The verification took about two and a half
person-years of work in total, and it was carried out in parallel with later stages of the
circuit design, before silicon was produced. No errata were found in the original design,
but applying the proof suite to a proliferation project caught a few rather tricky errata
caused by unintended interactions between micro-operations executing in parallel.
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Considering the technical requirements of industrial verification, in our experience it
is more important that tools are robust and dependable than that they are technologically
the most advanced ones: all the basic techniques that we are using have been well known
for years. In a combined theorem-proving and model-checking approach, we found tight
integration of the techniques to be necessary: theorem-proving is used in all stages of
our verification work, from justifying model-checking optimizations in the low level, to
very abstract reasoning in the high level. We also found the open-endedness of general
theorem-proving indispensable for the work.

During the course of our work we identified a number of solutions to practical prob-
lems arising in proof design and engineering. Nevertheless, we would like the message
of the paper to be not so much of a solution but of a problem statement: How do we
write large proofs in a manageable way? If we are to apply formal verification, especially
formal theorem-proving, as a routine part of industrial design flow, we must have models
and principles addressing this issue, as otherwise the work will become infeasible.
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