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Abstract. This paper presents a framework for verifying compilation tools based
on parametrised hardware libraries expressed in Pebble, a simple declarative lan-
guage. An approach based on pass separation techniques is described for specifying
and verifying Pebble abstraction mechanisms, such as the loop statement. We show
how this approach can be used to verify the correctness of the flattening procedure
in the Pebble compiler, which also results in a more efficient implementation than
a non-verified version. The approach is useful for guiding compiler implementa-
tions for Pebble and related languages such as VHDL,; it may also form the basis
for automating the generation of provably-correct tools for hardware development.

1 Introduction

Advance in integrated circuit technology leads to an increasing emphasis on building
designs from hardware libraries. A single parametrised library can be used to generate
many implementations supporting multiple architectures, variable bit widths and trade-
offs in speed and size. Such libraries enable effective hardware utilisation by exploiting
technology-specific features whenever desirable, allowing designs with optimal perfor-
mance and resource usage while minimising the need for knowing low-level details.

This paper describes an approach for developing provably-correct compilation tools
for the Pebble language [12], which has been used to produce hardware libraries in
VHDL, an industry standard language. While it is desirable to have hardware libraries in
industry standard languages, there are, however, two major difficulties with developing
VHDL libraries. First, VHDL is a versatile but complex language, and it takes much
effort to write good parametrised code and to check its behaviour by simulation or other
means — even when the subset used for realistic hardware libraries is small [13]]. Second,
most vendors have their own VHDL dialect; for instance not all VHDL tools support
multi-dimensional vectors. It is unattractive to develop and maintain the same set of
library elements in various vendor-specific dialects.

Our aim for Pebble is to enable application builders and library developers to work
at a higher level of abstraction than that provided by VHDL, while ensuring that the
resulting libraries are as flexible and efficient as those produced by hand. Our Pebble
compiler targets various description formats, including parametrised and flattened VHDL
and EDIF. It enables designers to compose and instantiate library elements, and it has
been used to develop many designs for applications such as speech processing, data
compression, and special video and graphics effects in augmented reality [14]].
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An important component of the Pebble compiler is the flattening procedure, which
produces flattened descriptions from hierarchical descriptions. Flattened descriptions are
required by many tools, such as place-and-route programs for design implementation,
and model checkers for design verification [18]]. Interestingly, our proof of the flattening
procedure not only offers users greater confidence in its correctness, it also leads to a more
efficient implementation. Although this paper focuses on a specific proof, recent work
indicates that similar techniques can be applied to verify other abstraction mechanisms,
such as polymorphic variables and higher-order functions.

Pass separation [[L1] provides a framework for verifying abstraction mechanisms for
generic descriptions, such as hierarchical blocks and GENERATE - FOR loops in Pebble,
with respect to a Structural Operational Semantics [16]. For instance, the key to our proof
is an environment invariant — Equation () — inspired by pass separation (Sect.3.2)). Such
proofs are rare, but we feel that they are well-suited to verifying development tools for
domain-specific languages containing multiple evaluation phases.

While much has been published on formal methods and tools for hardware design, it
appears that most researchers focus on tools for producing correct designs [2]],[18] rather
than on the correctness of the tools themselves. Some researchers study embedding of
synthesis algorithms in a theorem prover [4], or correctness condition generators for
designs generated by synthesis tools [[L5]]. Our work is complementary to their efforts,
and is in a similar spirit to research on verifying compiler correctness for imperative
descriptions for hardware [6]],[7]] and software [8] implementations.

2 Overview of Pebble

Pebble can be regarded as a much simplified variant of Structural VHDL. It provides a
means of representing block diagrams hierarchically and parametrically [12]. A Pebble
program is a block, defined by its name, parameters, interfaces, local definitions, and its
body. The block interfaces are given by two lists, usually interpreted as the inputs and
outputs. An input or an output can be of type WIRE, or it can be a multi-dimensional
vector of wires. A wire can carry integer, boolean or other primitive data values.

A primitive block has an empty body; a composite block has a body containing the
instantiation of composite or primitive blocks in any order. Blocks connected to each
other share the same wire in the interface instantiation. For hardware designs, the prim-
itive blocks can be bit-level logic gates and registers, or they can, like an adder, process
word-level data such as integers or fixed-point numbers; the primitives depend on the
availability of corresponding components in the domain targeted by the Pebble compiler.
The GENERATE - I F statement enables conditional compilation and recursive definition,
while the GENERATE - FOR statement allows the concise description of regular circuits.

Pebble has a simple, block-structured syntax. As an example, Fig. 2l describes the
multiplexor array in Fig. [[] provided that the size parameter n is 4. In more complex
descriptions, the parameters in a Pebble program can include the number of pipeline
stages or the pitch between neighbouring interface connections [12]. Different network
structures, such as tree- or butterfly-shaped circuits, can be described parametrically by
indexing the components and wires.
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Fig. 1. An array of multiplexors described by the Pebble program in Fig. 2l

BLOCK muxarray (n:GENERIC)
[c:WIRE, xX,y:VECTOR (n-1..0) OF WIRE]
[Zz:VECTOR (n-1..0) OF WIRE]
VAR i
BEGIN
GENERATE FOR i = 0..(n-1)
BEGIN
mux [c,x(i),y(1)] [z(i)]
END
END;

Fig. 2. A description of an array of multiplexors (Fig. [[l) in Pebble. The external input c is used to
provide a common control input for each mutiplexor.

The semantics of Pebble depends on the behaviour of the primitive blocks and their
composition in the target technology. Currently a synchronous circuit model is used in our
tools (Sect. B)), and special control components for modelling run-time reconfiguration
are also supported [[12]. However, other models can be used if desired. Indeed Pebble
can model any block-structured systems, not just electronic circuits.

Advanced features of Pebble include support for annotations and for modules. Such
features improve design efficiency and reusability, and facilitate interface to components
in other languages, including behavioural descriptions. Discussions about these features
are beyond the scope of this paper.

3 Program Staging and Pass Separation

This section introduces a framework in which abstraction mechanisms for Pebble can
be specified and verified. Our approach consists of three steps. The first is to provide a
semantics for a flattened version of Pebble. The second is to characterise an abstraction
mechanism in two ways: (a) specify how designs exploiting the abstraction mechanism
can be transformed into flattened Pebble, and (b) provide the semantics of the abstraction
mechanism directly. The third is to show that the semantics of a design produced by (a)
is consistent with (b).
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In the following, we specify and verify two Pebble abstraction mechanisms: hi-
erarchical blocks, and GENERATE-FOR loops. The insight is to recognise that pass
separation provides a framework for the above approach, so that the correctness of the
two abstraction mechanisms can be demonstrated with respect to a Structural Opera-
tional Semantics [16] for Pebble. Only elementary understanding of such semantics is
required to follow our work. We shall first present an overview of pass separation, and
then explain how it can be used in verifying Pebble abstraction mechanisms. The key to
our proof is an environment invariant — Equation (I)) — inspired by pass separation.

Consider a repeated computation, part of whose input context remains invariant
across all repetitions. Program staging is a technique which improves performance by
separating the computation into two phases. We follow this approach to separate the
task of interpreting a Pebble program on a variety of inputs: an early phase flattens
the parametrised description into a collection of primitive gate calls, and a late phase
completes the task given the varying inputs.

Two popular methods for separating a computation into stages are partial evaluation
and pass separation [[IT]. We have used both methods in our study of Pebble and in tool
development; in the following we shall focus on pass separation as a means to study
abstraction mechanisms for Pebble.

Pass separation constructs, from a program p, two programs pj, p2 such that:

[p] (x,y) = [p2] ([p1] %, y)

forall x and y, where [p] is the function mapping the program p to its meaning. The equa-
tion indicates that [p] can be split into two stages: computing v = [p1] x and [p2] (v, y).
The intention in performing pass separation is to “move” as many computations from
p to p1 as possible, given only input x. In our framework, let p be the semantics (PS)
of Pebble, x be a parametrised circuit description C, and y be some input data. Then p;
corresponds to the abstraction mechanism, which in this case can be described using
a flattening procedure (FP). Similarly ps corresponds to the semantics (FS) of the
flattened description on the data as shown in Fig.[3

Cy)

FP PS

PS (C,y)
7S FS (FPCy)

(FPC,y)

Fig. 3. Commuting diagram describing the pass separation equation.

We shall restrict our attention to a subset of Pebble which does not include vectors or
GENERATE- IF statements. We begin by presenting the semantics of Flattened Pebble
before adding the necessary structure to create Hierarchical Pebble. We then display a
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procedure for instantiating the generics. We show that for a set of input values, a flattened
description produces the same results as those from the hierarchical description.

3.1 Flattened Pebble

In its most basic form, a circuit consists of a collection of primitive block calls mapping
input wires to output wires. Intermediate wires link these primitive block calls together.
A circuit description is enclosed within a main block and primitive block identifiers are
denoted by idp, as shown in the following syntax:

circuit ::= BLOCK main
[idin, SLYPCiy s s idin, :type,, ]
[idout, 2UYPC oy, 1 e idout,, 1 LYpe s, ]
decy; -+ ;dec;
BEGIN stmts END
type = WIRE
dec ::= VAR id : type
stmts = stmt1; --- ; stmig
stmt = 1idp [idy, ...,idn] [id1, ..., 1dm]

Note that the language is applicative, as each wire is given an attribute only once.
Input wires are defined and given the appropriate values; the purpose of the semantics
is to find suitable definitions for the output wires. The semantic domain for wires is
parametrised by the metavariable a, so that primitive objects can be of any type; it
allows us to deal with both bit-level descriptions and word-level descriptions.

data wire a = Undefined | Defined a

To deal with sequential circuits, the datatype a can be lifted to the stream domain [9].

The Structural Operational Semantics rules for Flattened Pebble, defined by — tran-
sitions [16], are given in Fig. Bl A local environment p maps identifiers to their wires.
Primitive logic operators that map boolean pairs to booleans, such as xor, are held in an
environment labeled §. Such operators can only be applied to wires that are defined.

Two rules provide the meaning of primitive gate calls. If one or more inputs are
Undefined, then the statement is returned unevaluated, as the gate call cannot be com-
pleted. The second rule applies the primitive function to the gate’s parameters. Statements
can be evaluated in any order; those that complete update the local environment p. When
all statements have been reduced, the final environment is returned.

The output and intermediate wires of the main block are initially declared as
Undefined. The block’s statements are evaluated to calculate the final environment p’,
from which the output wires are extracted.

3.2 Hierarchical Pebble

Parametrised designs require the addition of a separate parameter list for generic values.
Blocks other than main can receive values that define the bounds of loops or that can
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3j-1<j<nA(pid;) = Undefined
5+ (idp [id1,...,idy] [idY, ..., idy,], p)
—stmt (idp [id1, ..., ids] [id], ..., id], p)

(pid1) = Defined vi A --- A (pidy,) = Defined v,
(6 idp) (vi,...,vn) = (U1, ..., v1,)
5 F (idp [idr,. ., idn] [idly - id], p)
—stmt p @ {id} — Defined v{, - -, id},, — Defined v}, }

d F {stmti, p) —stmt P’
0 F (stmty;--- stmt;—1;stmts;stmiigq; - - - stmig, p)
—stmts (Stmiti;- - stmt;_1;stmtiqq;- - - stmtg, p')

0 b (stmts, p) —stmt (stmis, p)
0 F (stmty;--- stmt;—1;stmti;stmtigq; - - - stmig, p)
—stmts (Stmii;-- - stmit;—1;stmi;;stmtiyr; - - - stmig, p)

3 FA[l,p) —stmes p

p1 = {idin, — Defined v1, - -, idin,, — Defined vy}
p2 = {idout, — Undefined, - - - | idout,,, — Undefined}
ps = {id1 — Undefined, - - -, id; — Undefined}
p=p1®p2Dps3
8 & (stmts, p) —>stmts P’
BLOCK main
lidin, :WIRE, ..., idn, :WIRE]
o+ < lidout, :WIRE, ..., idout,, : WIRE] 7[v1,44.7vn}>
VAR id; :WIRE; ... VAR id; : WIRE
BEGIN stmts END
—main [(P/ idoutl), ceey (pl idoutm)]

Fig. 4. Semantics of Flattened Pebble, based on — rules for main, stmts and stmt.

be passed to subsequent gate calls as defined in the syntax for Hierarchical Pebble:

circuit ::= main; blocky; --- ; block;
main = BLOCK main
liding 2 typey, v - s Win, : type,, ]
lidout, : tYPEoysy v -+ v iout,y, : LYDE Gy, ]
deci; --- ; decj
BEGIN stmis END
block ::=BLOCK id (idgen,, ---, z’dgenq)
[idin, :typem1 s ildin, :typemn]
[idout, SLYDE gy v e idout,, :typeoutm]
deci; --- ; decj
BEGIN stmts END
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type 1= WIRE

dec = VAR id : type | VAR id : NUM

stmts .::= stmti; --- ; stmitx

stmt = idp [id1, ... ,idn] [id1, ..., %dm]
| id (expr, ..., expq) lid1, ..., idn] [id1, ..., idm]
|

GENERATE FOR id = exp, .. exp,
BEGIN stmts END
id | n | exp, bop exp, | uop exp

exp

The semantic rules for Hierarchical Pebble statements, defined by = transitions, are
given in Fig. Bl Two new environments are introduced: I' maps block names to their
bodies, while 0 maps generic variables and loop indices to their values. Arithmetic ex-
pressions are evaluated by the valuation function £ in an appropriate value environment.
The rules for primitive gate calls and statement lists remain essentially unchanged except

for the additional environments.

Eolexp,] > Esfexp,]
[sok <(GENERATE FOR idindes = €TDy. . e:pr) 7p> e p

BEGIN stmts END

Eslexp,] < Es[exps]
I6,0®{id— E[exp,]} F (stmis,p) = stmes p’
6o+ <GENERATE FOR idindez = (€xp;+1) .. exp,y

/ i
=
BEGIN stmts END ’p> stmt f

GENERATE FOR idingec = €Zp;.. €Tp
Ié [ wnaex 1 2 = 171
09 <<BEGIN stmts END P stmt P

BLOCK id (idgen,,- .-, %dgeny) [idin, :WIRE, ..., idn, :WIRE]
[idout, :WIRE, ..., idout,, : WIRE]
(Iid) = VAR idindex; : NUM; ... VAR idindex; : NUM;
VAR idiocal; : WIRE; ... VAR idjocal, : WIRE
BEGIN stmts END
o1 = {idgen, = Esler], ..., idgen, = Esleq]}

p2 = {idout, — Undefined, ..., idout,, — Undefined}
p3 = {idiocar, — Undefined, ..., idiocar, — Undefined}
p = p1®p2®ps

6,01 & (stmits, p') = stmes p”

6o+ (id(er,...,eq) [id1,...,idy] [idY, ..., id,], p)
= stmt p@ {ldll = (P” idoutl)a Tty /Ld;n = (P” idoutm)}

Fig. 5. Semantics of Hierarchical Pebble. The = rules dealing with primitive statements are similar

to the corresponding — rules and are not shown.
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Two rules are required for loops. The first rule deals with the situation when the
loop has terminated. A loop has terminated when the expression representing the lower
bound denotes a value that is greater than the upper bound. In such cases the current p
environment is returned unchanged. Alternatively, the loop’s statements are evaluated
in a value environment where the loop index is bound to the lower bound value. Once
completed, the loop is re-evaluated with the updated p’ and a lower bound expression that
has been incremented by one. The rule for enacting new block calls retrieves the block
definition from the environment I; it creates a value environment o7 by mapping the
generic variable names to their values calculated in the outer block’s value environment
o; it creates an initial wire environment p’ by mapping the input variable names to their
wire values extracted from p and coalesced with Undefined bindings for output and
intermediate variable names; and it evaluates the called block’s statements to create a
final environment p”, from which the output wires are extracted. The rule for the main
block creates the initial environment p in much the same manner as with Flattened Pebble
descriptions, and is shown in Fig.[@. The blocks statements are evaluated in an initial
empty value environment.

A Hierarchical Pebble description can be flattened by unfolding both the generic
variables and the GENERATE - FOR loops. The block environment /" and the local vari-
able environment o support the abstraction mechanisms, and do not affect the underlying
evaluation mechanism. Hence we can instantiate generic variables prior to the applica-
tion of input wires, enabling block definitions to be flattened and incorporated into the
main block. Flattened Pebble, itself a subset of Pebble, is used as the output language of
this flattening process to facilitate its proof. To avoid parameters and local wire names
overwriting each other when instantiating block calls, we rename all such variables
beforehand using the function « :: block — block (Fig.[1).

To model the static behaviour of the wire environment p in hierarchical descriptions
with local bindings, we introduce a local environment p which behaves like a symbol
table mapping local parameter names to their original definitions, be they inputs to the
circuit or local variable definitions. This leads to the invariant equation below, where p
is the environment for modelling wire values in a hierarchical description, while pg4 is a
dynamic environment for flattened descriptions:

Vid - pid = pa (p id) (D)

This invariant equation will be used extensively in the correctness proof of the flattening
procedure for Hierarchical Pebble in Sect.[dl The flattening procedure itself, defined by
1}, is given in Fig.[ Flattening a single statement will result in a pair of lists consisting
of primitive gate calls and intermediate wire declarations. The statement list represents
those primitive calls required to implement the statement derived from unfolding sub-
sequent parametrised blocks, while the declarations are for the local wire definitions
belonging to each unfolded block. The intention is to create the flattened main block
from these two lists.

Primitive calls are simply returned with their parameter lists updated with their
original variable definitions held in p. Parametrised gate calls create a new instance of
the retrieved block using the function «.. Generic variables are bound to their values in
o1. A static environment 4 is created by mapping the parameter names to their original
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p1 = {idin, — Defined v1, - -, idsn, +— Defined vy}
p2 = {idout, — Undefined, - - - | idout,, — Undefined}
p3 = {id1 — Undefined, - - -, id; — Undefined}
1,6, {} b (stmits, p1 @ p2 @ p3) =stmts P
BLOCK main
lidin, :WIRE, ..., idin, : WIRE]
o+ < lidout, :WIRE, ..., idout,, :WIRE] ,[m,...,un]>
VAR id; :WIRE; ... VAR idj :WIRE
BEGIN stmts END
Zmain (P idout, ), - -, (0" idout,, )]

Fig. 6. Semantics of the main block in Pebble.

Tpo b (idp [id, ..., idn] [id, ..., id’))
Ystme ([idp [pid1, ..., pidy] [pidl, ..., pwidy]l, [])

BLOCK id (idgens, .., 9dgen,) [iding :WIRE, ..., idn, :WIRE]
[idout, :WIRE, ..., idout,, : WIRE]
(a (I'id)) = VAR idindez; : NUM; ... VAR idindes; : NUM

VAR idjocat; : WIRE; ... VAR idjocar, : WIRE

BEGIN stmts END
M1 = {Zdznl —> (/L idl), ey Zdznﬂ — (/L ’Ldn)}
po = {idout; — (@ idl), ..., idout,, — (pidp,)}
w3 = {idiocat; = idiocatys - - -5 iiocaty, — diocaly, }
o1 = {idgen, — Esler], ..., idgen, = Esleq]}

Typn @ po @ ps, o1 b (stmts) Ystmes (stmis’, locals”)

Lou,o = (id (e, ..., eq) [id1,. .., idn] [id], ..., id],])
Ystme (stmits’, [VAR idiocar, : WIRE; -+ ; VAR idiocar, : WIRE] H locals’)

Eslexp,] > Eolexp,]

I p,o - <(GENERATE FOR idindex=€IP; . . €xpy BEGIN stmis END)> Ystme ([15]])

Eslexp,] < Es[exps]
I, 0 @ {idinges — Eslexp ]} E (stmts) Ystmes (stmis’, locals”)
Fo - <(GENER_ATE FOR idindes=(€xp,+1) . . exp,

t t 1 l l 1
BEGIN stmts END Yotme (stmis”, locals™)

ok GENERATE FOR idindex=€TP; - . €TDy
o BEGIN stmts END

Vstme (stmts’ + stmits”  locals’ +- locals”)

I, 0 b (stmir) dseme (stmtsy, localsy) - I, u, 0 & (stmtn) Jseme (stmtsn, localsy,)

Ip,o b (stmty; - ; stmtn) Ystmes (stmitsi 4 - - - H stmtsp, localsi 4 - - - H localsy)

Fig.7. Transition rules for flattening Pebble statements, based on |} rules for stmts and stmt.
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names held in . Local variables are bound to themselves, but are returned as declarations
so that they are properly declared at run time. The blocks statements are flattened and
returned with the local wire declarations. The two rules for loops apply the unfolding
procedure at compile time to their subterms by incrementing the loop bound, creating
primitive gate calls to implement the loop at run time. The rule for statements flattens

each statement, and collects the intermediate calls and declarations together.

The flattening rule for the main block is shown in Fig.[8] An initial static environment
1 is created binding input, output and local wire names to themselves as these will be their
run-time names. The body of the block is flattened with an empty value environment.
The returned list of primitives gate calls forms the body of the flattened main block and

the derived intermediate wires are declared local to this block.

H1 = {’idml —r idin17 HRIRIN idin" — idinn}

M2 = {idoutl — idoutly ceey idoutm — Z-doutm}
H3 = {idl — id1, .. ~,idj — idj}

w=p1 D pu2 D s

Lo, {} = (stmts) Vstmes (stmts’, [VAR id} :WIRE; ... VAR id}, : WIRE])
BLOCK main [idin, :WIRE, ..., idn, :WIRE]
re lidout, :WIRE, ..., idout,, : WIRE]
VAR id1:WIRE; ... VAR id; :WIRE
BEGIN stmts END
BLOCK main [idin, :WIRE, ..., idin, : WIRE]
lidout, :WIRE, ..., idout,, : WIRE]
Ymain VAR id1:WIRE; ... VAR id; :WIRE;
VAR id} :WIRE; ... VAR id} : WIRE

BEGIN stmts’ END

Fig. 8. Transition rules for flattening the main block.

To illustrate how blocks are flattened and local variables are renamed, we shall use

the following example which creates a row of two not-gates:

BLOCK notrow (n) [vin:WIRE] [vout:WIRE]
VAR inter:VECTOR (n..0) OF WIRE
VAR 1i:NUM

BEGIN
connect [vin] [inter(0)];
GENERATE FOR i=0..n-1
BEGIN

not [inter(i)] [inter(i+1)]
END;
connect [inter(n)] [vout]
END;
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BLOCK main [x:WIRE] [y:WIRE]
BEGIN

notrow (2) [x] [y]
END;

The circuit is defined in terms of two primitive components: connect which links two
wires together, and the not gate. Figure [0 demonstrates how a block call is flattened
given previously established environments. The called block is initially renamed; the
environment o is created for the generic values; the environment ;4 maps parameter
names to their original names; the block’s statements are then flattened to create a list
of primitive calls, and returned along with the distinct local wire definitions.

connect [vinl] [11(0)];

GENERATE FOR
) UJstmes ([connect [x] [i1(0)];

: not [i1(0)] [i1(1)];
connect [i1i1(nl)] [votl] not [i1(1)] [i1(2)];

connect [i1(2)] [yl],

(1)
o1 ={nl— 2}
w1 = {vinl — x} po={votl—vy} puz={il1— i1}
W= @ pe D ps

Iy, o1+

(a(I' notrow)) = BLOCK notrow (nl) [vinl:WIRE] [votl:WIRE]

VAR il:VECTOR (nl..0) OF WIRE;
VAR i2:NUM

BEGIN
connect [vinl] [i1(0)];
GENERATE FOR i2=0..nl-1
BEGIN not [i1(i2)] [i1(i2+1)] END;
connect [il(nl)] [votl]

END;

I'{x—x,y—=vy}L{}F (notrow (2) [x] [yl)
Jstme ([connect [x] [11(0)];
not [11(0)] [i1(1)];
not [11(1)] [i1(2)1;
connect [i1(2)] [ylL,[])
[VAR 11:VECTOR (2..0) OF WIRE])

Fig. 9. Fragment of the proof tree for flattening not row.
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4 Correctness Proof

We can now present the main correctness theorem for flattening hierarchical blocks and
GENERATE-FOR loops. This result, given by Equation (2), relies on Lemmas (3}, @) and
(@. Each lemma is an instance of the commuting diagram given in Fig. 3l and involves
the environment invariant given by Equation (). At each syntactic level, they show how
the sequence of outputs generated by the hierarchical definition can be calculated by
first flattening the term and then using the simplified semantics. With the addition of
GENERATE- IF statements, recursive block definitions can result in non-terminating
programs. In these cases the flattening procedure will also fail to terminate.

The main theorem states that, from a given Hierarchical Pebble description consisting
of amain block, a block environment I, a primitive gate environment §, and a sequence
of input wires [v1, ..., v,], one can calculate the sequence of outputs derived from the
circuit’s proof trees by first unfolding the description to create one large main block, to
which the flattening rules can be applied:

L6 F (main, [v1,...,0]) =main [V],- - V)]
= I F main Ymaein main’ )
A8 (main, [v1, .., vn)) = main V] 00

This result can be proved by structural induction on the rules for the main block (Figs.[4],
[Bland B). We establish the invariant on wire environments initially, and we use Lemma (3))
below to show how it holds on completion of the block’s statements so that the same
final values are derived.

From a given Hierarchical Pebble statement list, a block environment I, a primitive
gate environment ¢, a local value environment ¢ and a local wire environment p, we can
calculate the wire bindings p’ derived from a successful completion of the statements,
by staging the computation in two. The first stage flattens the statements into a list of
primitive calls, where local wire names are mapped to their original definitions using
the static environment p, and a distinct list of local wire declarations is created. The
second stage applies the Flattened Pebble rules to the primitive gate call list using the
dynamic wire environment py4. An environment p; can be derived that will contain the
same bindings as those for the hierarchical statements. This implication requires the
invariant, given by Equation (TJ), to hold for wire environments:

I,6,0 b (stmts,p) =stmes P
= I,0,u = stmts Usimss (stmts’, locals’)
A Yid - pid = pg(pid) 3)
N Yid - pid = ply(pid)
A0 b (stmts’, pa) = stmes Pl

This lemma can be proved by induction on the length of derivation sequences using
Lemma @) below; it completes the presentation of the main theorem.

The next lemma deals mainly with GENERATE - FOR loops (Figs.[d Bland [7). From
a given Hierarchical Pebble statement, a block environment /', a primitive gate environ-
ment §, a local value environment o, and a local wire environment p, one can calculate a
set of wire bindings p’ derived from the successful completion of the statement, by first
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flattening the statement using the static environment u, and then executing the derived
statements in the dynamic wire environment p:

I6,0 b (stmt,p) =stme p'
= I,o,u = stmt {sime (stmts’, locals”)
A Yid - pid = pa(pid) 4)
A Vid - pid = pl(pid)
N 0 F (stmts’, pa) —sime Pl

This result can be proved by structural induction on statements: primitive gate calls,
parametrised gate calls and loops. The first two cases are straightforward, once the
invariants of the environments have been established. The third case, however, requires
Lemma (@) to show that the appropriate final environment can be derived after staging:

I,6,00 b (stmtsy, p) = stmis P’
(/\ I,6,09 b (stmitsa, p') = stmis p”)
= o1, b stmtsy Vsemes (stmitst, localsy)
AN oo, b stmitsy Uspmes (stmitsh, localsh) 5)
A Vid-pid = pg(pid)
A Yid - p"id = plj(pid)
A 0 b (stmtsy H stmisa, pa) —>stmes Pl

This lemma states that reducing a statement list stmts; in the value environment oy with
wire bindings p, followed by reducing a second statement list stmtss in oy yielding a
final wire environment p”’, can be derived by first flattening the two statement lists and
then executing the concatenation of the two primitive gate call lists. The lemma can be
proved by induction on the length of derivation sequences.

5 Compiler Development

This section reflects on the implications of our approach for compiler development.
Natural semantic rules, as used in specifying Pebble, rely on notions of pattern matching,
inference rules and operational semantics. They can be captured in a theorem prover [2],
[17] or translated into Horn clauses via a metalanguage such as Typol [3]. Since the
transition rules for flattening Hierarchical Pebble descriptions permit a left-right and
top-down construction of the proof tree with no backtracking, we can replace a resolution
engine by a functional evaluator based on pattern matching [[I] to improve efficiency.

In practice, an implementation in a functional language of the core flattening pro-
cedure (Fig. [I0) follows naturally from the rules in Fig. [l For a particular language
construct, a function definition is created that pattern matches its goal and obtains the
result from the intermediate transitions by means of a where clause. This technique
offers a way of automatically producing a functional implementation of the compilation
tools directly from their specifications.

It is educational to compare the original, hand-developed implementation of the
flattening procedure, and the new version in Fig. [Qlwhich results from the specification
and proof exercises. The new version is better than the original version in all aspects:
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data Exp = Number Int | Var String

| Binop (Exp,Bop,Exp) | Unop (Uop,Exp)
data Type = WIRE
data Dec = VARW (String,Type) | VARN String

data Stmt = PrimCall (String, [String], [String])
| BlkCall (String, [Expl, [Stringl, [String])
| Loop (String,Exp,Exp, [Stmt])
data Blk = Block (String, [String],
[ (String, Type)]l, [ (String, Type)], [Decl, [Stmt])

fetch :: [(String,a)] -> String -> a
eval _exp :: Exp -> [(String,Int)] -> Int
flatten stmt :: ([(String,Blk)],

[(String,String)], [(String,Int)]) -> Stmt -> ([Stmt], [Dec])
flatten stmt (gamma,mu,sigma) (PrimCall (pnm,argsl,args2))
= ([PrimCall (pnm,map (fetch mu) argsl,
map (fetch mu) args2)], []1)
flatten stmt (gamma,mu,sigma) (BlkCall (bnm,gens,argsl,args2))
= (stmts’, [(VARW d) | (VARW d) <- decs] ++ locals’)
where
(Block (nm,gennms,parmsl,parms2,decs,stmts))
= rename (fetch gamma bnm)

sigmal = zip gennms

(map (\ e -> eval exp e sigma) gens)
mul = zip parmsl (map (fetch mu) argsl)
mu2 = zip parms2 (map (fecth mu) args2)
mu3 = [(id,1id) | (VARW (id,WIRE)) <- decs]
mu’ = mul ++ mu2 ++ mu3

(stmts’,locals’)
flatten stmts (gamma,mu’,sigmal) stmts
flatten_stmt (gamma,mu,sigma) (Loop (nm,el,e2,stmts))

| ni>n2 = (01,101
| otherwise = (stmts’++stmts’’,locals’++locals’’)
where
nl = eval exp el sigma
n2 = eval exp e2 sigma

(stmts’,locals’)
= flatten stmts (gamma,mu, (nm,nl):sigma) stmts
(stmts’’,locals’’)
= flatten stmt (gamma,mu,sigma)
(Loop (nm,Binop (el,Add,Number 1),e2,stmts))

flatten stmts :: ([(String,Blk)],
[(String, String)], [(String,Int)]) -> [Stmt]-> ([Stmt], [Dec])
flatten stmts (gamma,mu,sigma) = unzip . map flatten stmt

Fig. 10. Flattening Pebble in Haskell.
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it is clearer, more concise, more robust and more efficient. The main reason is that,
based on the formal development, the new version separates variable renaming from
the flattening procedure. The original implementation, in contrast, attempted the former
without properly considering the latter: the mingling of the two leads to situations where
the renaming process is deeply nested within the unfolding procedure, leaving little
scope for further optimisations. The new version is amenable to further optimisations,
such as the use of de Bruijn indices to avoid the costly rename function [5]. Further
refinements would lead to a highly efficient imperative implementation.

Our experience shows that deriving provably-correct compiler implementations can
benefit their efficiency, in addition to increasing the confidence in their correctness. Fur-
thermore, it appears possible that the verification of such implementations for domain-
specific languages such as Pebble can be mechanised using custom proof engines [2].
Further work, however, is needed to explore this possibility thoroughly.

6 Concluding Remarks

While the version of Pebble described in this paper does not include advanced abstrac-
tion mechanisms, current work involves extending Pebble with polymorphic variables,
records and higher-order functions. These features enable a combinator style of devel-
opment [10] that tends to simplify the hardware design process.

Our extended compilation strategy infers the types of the polymorphic variables,
unfolds the record definitions and instantiates higher-order functions prior to compile
time to create a Hierarchical Pebble description. The correctness proof for Polymorphic
Pebble is very similar to that for Hierarchical Pebble. An intermediate environment
mapping polymorphic variables to types is used to create distinct blocks, and it leads
to an invariant equation similar to Equation (I). Higher-Order Pebble enables nested
function calls which require lambda lifting before the calls can be unfolded. In this way
the ability to generate correct parametrised VHDL will be maintained.

The combinator style of description facilitates the formulation of correctness-
preserving algebraic transformations for design development [10]. The proposed exten-
sions of Pebble take us a step closer to providing, for instance, a generic transformation
rule [13] which can be used to derive pipelined designs from a non-pipelined design.
Further work will generalise our approach to deal with relational descriptions [[10].

Our research contributes to insights about abstraction mechanisms and their validated
implementations. It also provides a useful foundation on which further work, such as
verifying tools for pipeline optimisation [19], can be based. We believe that provably-
correct tools will have a profound impact on understanding the scope and effectiveness
of hardware synthesis algorithms and their implementation.
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