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Abstract. The framework of this paper is the formal specification and
proof of applications distributed on symmetric interconnection networks,
e.g. the torus or the hypercube. The algorithms are distributed over
the nodes of the networks and use well-identified communication primi-
tives. Using the notion of Cayley graph, we model the networks and their
communications in the inductive theorem prover Nqthm. Within this
environment, we mechanically perform correctness verifications with a
specific invariant oriented method. We illustrate our approach with the
verification of two distributed algorithms implemented on the hypercube.

1 Introduction

We propose a methodology for the specification and the formal verification of dis-
tributed algorithms designed to be implemented on symmetric interconnection
networks such as the ring, the torus or the hypercube [14]. In areas like signal
processing or computer vision, the necessity of improving the performance of
the applications is increasing inexorably. The parallelization of the algorithms
in view of an implementation on specific interconnection networks1 provides a
solution to this problem [15,16]. The program is distributed over the nodes of
the network, and the processes can exchange data by means of various types of
communication procedures.

Our ultimate goal is to develop a specialized environment for the design and
validation of such hardware/software architectures. To that aim, various aspects
have to be taken into account: (i) the formal specification of the hardware struc-
tures and the description and validation of the usual communication operations
over these architectures, (ii) the development of a methodology for the spec-
ification and the formal proof of application programs that make use of these
communication functions, (iii) to make the approach accessible to application
programmers, it is necessary to provide a way of mechanizing the transformation
from their source code to the formal model.

1 For instance, the ring of the HP/Convex SPP-1200, the tori of the Cray T3E and of
the Intel Paragon XP, or the hypercube of the nCUBE 3.
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All these aspects depend on the formal proof tool that we choose. In the
framework of regular structures like symmetric interconnection networks, the
induction-based prover Nqthm [4] provides valuable assistance. Its mechanisms
allow to reason at a high-level of abstraction and to deal with parameterization
(here the size of the network is a parameter). We model interconnection networks
in Nqthm as Cayley graphs [1], which give a representation of the mathematical
groups defined by generators: the vertices are the elements of the group and
the arcs are the actions of the generators. Cayley graphs have been extensively
used to solve problems of routing [2] or information dissemination [8,3] in inter-
connection networks. To our knowledge, this model has never been applied to
formal verification. We will show that one of the advantages of this approach is
that it allows to reason independently on the structures on the one hand and
on the algorithms on the other hand. Moreover, most of the specifications and
verifications are performed at the processor level i.e., the statements of most
theorems only involve one (universally quantified) processor, as Sects. 5 and 6
will demonstrate.

After a brief presentation of the networks and their communication primi-
tives in Sects. 2 and 3, we describe our models and proof methodology in Sects. 4
and 5. We concentrate on the hypercube, and we make the hypothesis that the
behaviour of the processes that constitute the application is synchronous (i.e.,
either they run on a synchronous SIMD computer, or they are designed for a
MIMD architecture and include resynchronization phases). Verifying the correct-
ness of such a distributed program is understood here as proving its equivalence
with its sequential counterpart. Section 6 provides two illustrative examples,
Sect. 7 recalls some related works, and we conclude in Sect. 8.

2 Cayley Graphs and Interconnection Networks

Interconnection networks can be modelled by finite graphs: the vertices represent
the nodes and the edges are the communication lines. A special class of networks,
called symmetric interconnection networks, has the property that the network
viewed from any vertex looks the same (Vertex Symmetry). The Cayley graph
model is proposed in [1] for designing and analyzing symmetric interconnection
networks, such as the cycle, the torus and the hypercube presented here.

2.1 Cayley Graphs

Definition 1. Let G and S be a group and a subset of this group, the Cayley
digraph of G and S, denoted Cay(G,S), is such that its vertices are the elements
of G and its arcs are all ordered pairs (g, g ⊗ s) where g ∈ G, s ∈ S and ⊗ is
the law of the group.

The elements of a subset S of a group G are called generators of G, and S is
said to be a generating set, if every element of G can be expressed as a finite
product of their powers. We say that G is generated by S.
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If S is a generating set of G, then the digraph Cay(G,S) is strongly connected.
If S is unit free (does not contain the identity) and closed under inverses (if
s ∈ S, then s−1 ∈ S) then Cay(G,S) is a graph.

2.2 Cycle and Torus

The cycle/ring of length n, Cn, is the graph whose nodes are labelled by integers
ranging from 0 to n− 1 and whose edges connect i (0 ≤ i < n) to (i+1) mod n,
its degree is 2. It is the Cayley graph of the additive groupe ZZn generated
by {−1,+1}. The actions of the generators g1 and g2 of Cn on a vertex s are
expressed by s⊗ g1 and s⊗ g2, that we model by g1(s, n) and g2(s, n):{

g1(s, n) = (s + (n− 1)) mod n if s ∈ [0, n− 1]
g2(s, n) = (s+ 1) mod n if s ∈ [0, n− 1]

The torus Tn,m is the cartesian product of two cycles of lengths n and m. Tn,m

has n×m vertices, its degree is 4. It is the Cayley graph of the group ZZn ×ZZm

generated by S = {(0, 1), (0,−1), (1, 0), (−1, 0)}. See the torus T3,3 on Fig. 1.

2.3 Hypercube

The n-dimensional hypercube Hn consists of 2n processors, its degree is n. Its
nodes can be labelled by binary strings (x1x2 . . . xn); there is an edge between
two nodes if their labels differ in exactly one position (the dimension). Hn is also
the Cayley graph of the permutation group G generated by the n transpositions
gi = 〈2i−1, 2i〉, 1 ≤ i ≤ n on the set X = {1 . . . 2n}. With this view, each vertex
is a permutation (a1, a2, . . . , a2n) such that (a2i−1, a2i) = (2i − 1, 2i) if xi = 0
and (a2i−1, a2i) = (2i, 2i− 1) if xi = 1, see Fig. 2.
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Fig. 1. Cayley graph for the torus T3,3
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Fig. 2. Cayley graph for the hypercube H3

3 Communication Operations

We have developed Nqthm libraries for some widespread communication primi-
tives on these interconnection networks. Let us briefly recall them, more details
can be found in [14,9].
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– Broadcast: a node (processor) sends the same message to every other node.
– Scatter: a node distributes portions of a message among all the other nodes.
– Reduction: assume that each processor Pi, 1 ≤ i ≤ N , holds a value vi. Let

⊕ be a user-specified commutative, associative operation on the elements vi.
After the reduction computation, each processor Pi holds the value ⊕N

k=1vk.
– Reduction-to-one: the reduction-to-one operation is similar but deposits the

result ⊕N
k=1vk on a specified node.

– Prefix Like Computation: it is also similar to the reduction, but each pro-
cessor Pi ultimately holds the value ⊕i

k=1vk.
– Fold: assume that each processor Pi holds a vector zi of length l. After the

fold operation, each processor Pi holds a part of length l/N of
∑N

k=1 zk.
– Expand: conversely, after the expand operation, each processor Pi holds the

vector of length l ∗N which is the concatenation of all the vectors zi.

4 Modelling Methodology

Our purpose is to model in the Boyer-Moore logic the networks presented in
Sect. 2 and their ad hoc realizations of the communication operations of Sect. 3.
Every concept is given a purely functional representation.

4.1 Modelling the Networks

Every interconnection network is characterized by generators. The function that
computes s′, the label of the node that can be reached by applying the generator
gi to the node s (s′ = s ⊗ gi) in a graph of size n will be referred to as gi, i.e.
s′ = gi(s, n). We define a function Cayley for each graph, it returns its set
of vertices. In the case where the number of generators is fixed whatever the
size is (e.g. the cycle or the torus) the Cayley graph can be defined as follows:
starting from I(n), the identity element of σn (the group of all permutations
over n elements), we iteratively compute the vertices. At each step, new vertices
are computed, by application of the generators gi to the vertices obtained in the
previous iterations. The construction stops when no new vertex can be obtained.
The necessary number of steps is equal to the diameter of the graph. In the case
where the number of generators is a function of the size of the Cayley graph i.e.,
the graph is hierarchical (e.g. the hypercube), an alternative approach described
below can be taken.

Definition 2. The graph G(n), of dimension n, is hierarchical if there exists a
non null function K such that for n > 1, G(n) is decomposable into K(n) disjoint
hierarchical subgraphs that are isomorphic to G(n− 1).

We call Iso(i, G(n)), 1 ≤ i ≤ K(n), the i-th subgraph isomorphic to G(n).
G(n) can be associated with Cayley(n, n), where Cayley is defined as follows (k
is the level of decomposition):

funct Cayley(k, n) ≡
if k = 0 then {I(n)} else ⋃

1≤i≤K(k) Iso(i,Cayley(k − 1, n)) fi
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This methodology has been used to encode the interconnection networks
in Nqthm. For the hypercube, the function above is instanciated with K as the
constant function 2. We have also verified basic properties for each graph, such as
its finiteness and its vertex symmetry. Table 1 gives the corresponding numbers
of Nqthm events (an event is a function definition or a theorem).

Table 1. Number of events to model Cayley graphs in Nqthm

# definitions # intermediate lemmas # theorems
Cycle 14 60 16
Torus 26 108 20
Hypercube 14 32 3

4.2 Modelling the Neighbourhood of Communicating Processors

Our proof methodology makes use of invariants that call on the notion of neigh-
bourhood of a vertex. Neighb(s, t, n) represents the set of vertices that have
communicated, directly or not, with the vertex s at step t of the communica-
tion algorithm running on a network of size n. Depending on the communica-
tion operation, one or several direct neighbour(s), reachable by one or several
generators, are added to this set at each step; this is characterized by the set
Ct ≡ { i | g i(s, n) communicates with s at step t }.

funct Neighb(s, t, n) ≡
if t = 0 then {s}

else Neighb(s, t− 1, n) ∪ ⋃
i∈Ct

Neighb(g i(s, n), t− 1, n)
fi

Example. Neighbourhood for the broadcast in the hypercube. At every step t,
each processor communicates with its direct neighbour in the tth dimension, see
Fig. 3 where each number represents both the dimension and the step number.

funct Neighbbh(s, t, n) ≡
if t = 0 then {s}

else Neighbbh(s, t − 1, n)
∪ Neighbbh(gt(s, n), t − 1, n)

fi
1

2 2

3 3

3 3

source

Fig. 3. Broadcast on H3

4.3 Modelling the Communications

It remains to formalize, for every communication operation and every archi-
tecture, the code executed by each processor. For each operation, we define a
function that takes the following arguments:
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– s: the processor where the algorithm is running;
– k: the number of iterations;
– ini: initial state of the system (associative list of pairs of the form (s, valinit)

where s is a vertex and valinit is the initial state of its local register(s)). It is
associated with a function Take value such that Take value(s, ini) = valinit;

– n: the size of the network.

The function returns the value(s) stored in the register(s) of the processor after
k iterations. For instance, a function Broadcasth(s, k, ini, n) is defined to model
the broadcast operation on a n-dimensional hypercube, see its Nqthm definition
in the next section.

4.4 Link with an MPI-Based Implementation

In this section we consider the link between our formal model and a source code
written in a usual programming language. This aspect is fundamental w.r.t. a
possible integration of our approach in a development environment. The overall
method described in this paper is adapted to the validation of applications de-
signed to run on distributed memory SIMD or MIMD target architectures, pro-
vided that synchronization takes place between the elementary point-to-point
send/receive operations. MPI (Message Passing Interface) [20] is a standard for
the realization of message passing procedures; MPICH is one of its implemen-
tations that allows to develop applications on a network of workstations. In
view of designing a methodology of transformation from a C program, using
MPI point-to-point primitives, to our formalism, we study the correspondance
between these two representations in the case of the collective operations pre-
sented in Sect. 3.

Here is our principle for implementing every procedure: since each processor
cannot know in which iteration it will receive (and then send) the message which
is broadcasted, scattered and the like, it executes “send” and “receive” operations
at every step. It receives both a message and a “flag” that indicates if this
message is relevant. In that case, it updates its register(s) and sets its own flag
to true. The C version of the broadcast function for Hn is given below.

int broadcast_h (char *s, int n, void *buffer, int count,
MPI_Datatype datatype, int *flag, void *mybuffer,
int *myflag, MPI_Comm comm)

{ char *neighb; /* neighbour in the k-th dimension */
int k; MPI_Status st;
MPI_Aint l; MPI_Type_extent(datatype,&l);
for (k=0; k<n; k++)
{ /* transfer of data with the neighbour: */
neighb = gen_hyper(k, s, n); /* permutation of the neighbour */
MPI_Send(mybuffer,count,datatype,PermutationToInt(neighb),k,comm);
MPI_Send(myflag,1,MPI_INT,PermutationToInt(neighb),k,comm);
MPI_Barrier(comm); /* synchronization */
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MPI_Recv(buffer,count,datatype,PermutationToInt(neighb),k,comm,&st);
MPI_Recv(flag,1,MPI_INT,PermutationToInt(neighb),k,comm,&st);
if (Hyper_sendp (*myflag)) /* if my flag is 1, data are unchanged */
{ }

else if (Hyper_sendp (*flag))
/* if the neighbour’s flag is 1, I update my data */
{ memcpy(mybuffer, buffer, count*l);

*myflag = 1;
}

/* otherwise, data are unchanged */
}
return 1;

}

int Hyper_sendp (int flag) { return (flag==1); }

The Nqthm function broadcast h (see below) is its faithful translation; it
is defined as described in the previous section. Its definition is recursive, its
parameter k corresponds to the iteration variable in the C function. It includes
standard hypotheses on the types and constraints related to the parameters,
systematically introduced in each function. Its second let gives the values of
the variables that characterize the data to be sent (though the “send” operation
is not explicit in our functional representation). The third let corresponds to
the variables associated with the data that are received from the neighbour(s).
In both cases, the Lisp expressions can be generated in a systematic way from
the C source, knowing the names of the Nqthm accessor functions (buf-rcv,
buf-snd, . . . ). A test is included to stop recursion; its condition corresponds to
the initialisation of the iteration variable in the C program, and the returned
value is given by the expression that computes the initial value of the set of
buffers for processor s (in ini). In the rest of the function body, there are as
many nested “if” statements as in the C function:

– in the case(s) where data are updated in the C function, the Lisp function re-
turns the new status of the set of buffers for processor s, using the expression
(cbuffer buffer (message t buffer)) which means that the new value
of mybuffer, resp. myflag, is buffer, resp. 1 (value t). In the broadcast
operation, the message to be sent is exactly the one that has been received.

– in the case(s) where data are unchanged in the C function, the value of
the set of buffers remains the same and the Lisp function recurses with k
decreased by 1. In the broadcast example, the corresponding expression is
(broadcast h s (sub1 k) ini n).

(defn broadcast_h (s k ini n)
(if (and (not (zerop n)) (numberp k) (leq k n)

...) ; + other hypotheses
(let ((neighb (gen_hyper k s n))) ; neighbour
(let (; data to be sent:

(mybuffer (buf-rcv (broadcast_h s (sub1 k) ini n)))
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(myflag (get-flag (buf-snd (broadcast_h s (sub1 k) ini n)))))
(let (; data received:

(buffer (get-msg (buf-snd
(broadcast_h neighb (sub1 k) ini n))))

(flag (get-flag (buf-snd
(broadcast_h neighb (sub1 k) ini n)))))

(if (zerop k) ; to stop recursion
(take_value s ini)
(if (hyper_sendp myflag) ; data are unchanged

(broadcast_h s (sub1 k) ini n)
(if (hyper_sendp flag)

; the new buffer contains ‘‘buffer’’ and ‘‘true’’:
(cbuffer buffer (message t buffer))
; otherwise data are unchanged
(broadcast_h s (sub1 k) ini n)))))))

(empty)))

(defn hyper_sendp (flag) (equal flag t))

5 Proof Methodology

5.1 Description of the Method

Our proof method is the same for every communication primitive and every
network. First we exhibit and prove an invariant I and then, using a proof
obligation O that is related to the function Neighb, we complete the proof of the
main theorem T . The invariant as well as the characteristics of Neighb depend
on the problem, but we will show that I can easily be deduced from T . The
form of T , I and O clearly demonstrates that the verifications are performed at
the processor level; they involve one (universally quantified) processor s. In the
following, we assume that the graph is built after tc iterations, Comm denotes the
communication function which needs tf iterations to complete, and S represents
the specification function. The form of T slightly differs according to whether
the operation involves a source processor or not. In the case where there is no
specific source, the equality T to be proven is of the form:

∀s ∈ Cayley(tc, n).Comm(s, tf , ini, n) = S(s,Cayley(tc, n), ini, n)

The statement of I generalizes the one of T to k iterations, considering the
neighbourhood of s. After k iterations, s holds the value given by the specification
function S applied to the values of the processors in its neighbourhood:

∀s ∈ Cayley(tc, n),∀k ≤ tf . Comm(s, k, ini, n) = S(s,Neighb(s, k, n), ini, n)

The proof obligation O necessary to get T states that, at the end of the
operation, every processor has taken part in the communication:

∀s ∈ Cayley(tc, n).Neighb(s, tf , n) = Cayley(tc, n)
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When the operation involves a source (e.g. broadcast), the idea is similar but
the theorems make use of the source, and they assume its uniqueness.

Table 2 gives the numbers of Nqthm events for the communication oper-
ations that we have validated using this methodology (the first column is for
the specification of the “neighbourhoods”, “-” means that the proofs are under
development).

Table 2. Communication operations in Nqthm (numbers of events)

Neighb. Broadcast Reduction Scatter Gather Prefix Fold Expand
Cycle 74 53 11 - - - - -
Torus 108 31 12 - - - - -
Hypercube 75 21 3 12 19 63 103 51

5.2 Example: Broadcast on the Hypercube

To validate the broadcast operation on Hn we prove that, after n steps, every
processor has received the message sent by the source.

∀s ∈ Cayleyh(n, n). Uniquenessp(Source(ini)) =⇒
Broadcasth(s, n, ini, n) = Take Value(Source(ini), ini)

The invariant I generalizes this statement:

∀s ∈ Cayleyh(n, n),∀k ≤ n. Uniquenessp(Source(ini)) =⇒
Broadcasth(s, k, ini, n) =
if s ∈ Neighbbh(Source(ini), k, n) then Take Value(Source(ini), ini)
else Take Value(s, ini)

The lemma O states that, after n steps, every processor is in the neighbour-
hood of the source.

∀s ∈ Cayleyh(n, n). s ∈ Neighbbh(Source(ini), n, n)

6 Applicative Examples

The libraries we have developed can be used for the verification of application
programs (we verify that they are equivalent to their sequential counterparts).

6.1 Computational Geometry Algorithm

This algorithm [19] solves a problem of computational geometry: given a query
point z, determine whether it lies in a region R. Here, z is a planar point and R
is a polygon. For a N -polygon, the program can be implemented on a hypercube
with N = 2n processors. Initially, a source processor s holds the query point z
and the set E of the N edges ei that defines the polygon. The algorithm is:
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1. the source s scatters the edges over the network, one edge per processor
2. it broadcasts the query point to all other processors
3. each processor Pi calls on a function Intersectp that returns li = 1 (otherwise

0) if its edge intersects the horizontal line containing z to the left of z
4. every processor computes

∑N
i=1 li; it is a reduction procedure with the ad-

dition as operator. If this sum is odd then z is internal to the polygon.

Each processor has two buffers, their values are enclosed in brackets in the
function definitions below and are accessible by the functions acc1 and acc2.
We model each step of the algorithm by a function Stepi. The expressions
Build inii(. . .) give the global state of the network after the step number i.

1. The source processor s sends to each processor Pi the edge ei:

Step1(Pi, s, E, z, n) ≡
[ Scatterh(Pi, n,Build ini0(s, E), n) ; if Pi = s then z else ⊥]

Correctness lemma: each Pi has received the edge ei.

∀Pi, s ∈ Cayley(n, n). Step1(Pi, s, E, z, n) = [ei ; if Pi = s then z else ⊥]

2. The processor s broadcasts z to every other processor:

Step2(Pi, s, E, z, n) ≡
[ acc1(Step1(Pi, s, E, z, n)) ; contents of the 1st buffer unchanged
Broadcasth(Pi, n,Build ini1(. . .), n) ]

Correctness lemma: each Pi has received z.

∀Pi, s ∈ Cayley(n, n). Step2(Pi, s, E, z, n) = [ ei ; z ]

3. Each processor Pi computes li:

Step3(Pi, s, E, z, n) ≡
[ Intersectp(acc1(Step2(Pi, s, E, z, n)), acc2(Step2(Pi, s, E, z, n))) ;
acc2(Step2(Pi, s, E, z, n))) ] ; contents of the 2nd buffer unchanged

Correctness lemma: each Pi has correctly computed its li.

∀Pi, s ∈ Cayley(n, n). Step3(Pi, s, E, z, n) = [ Intersectp(ei, z) ; z ]

4. Each processor computes
∑2n

k=1 lk:

Step4(Pi, s, E, z, n) ≡
[ Reduction Sumh(Pi, n,Build ini3(. . .), n) ;
acc2(Step3(Pi, s, E, z, n))) ] ; contents of the 2nd buffer unchanged

Correctness of the complete algorithm: each processor knows if z is internal
or external to the polygon.

∀Pi, s ∈ Cayley(n, n). Step4(Pi, s, E, z, n) = [
∑2n

k=1 Intersectp(ek, z) ; z ]
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6.2 Matrix-Vector Product

Let us consider the algorithm proposed in [9] to perform a matrix-vector multi-
plication on the hypercube. Consider the product y = Ax where A is an n × n
matrix and x and y are vectors of length n. The algorithm computes y on Hd

(there are p = 2d processors, n is evenly divisible by p, and d is even i.e.,
√
p = 2

d
2

is a natural number).

Decomposition and Assignment of Data. The matrix A is decomposed
into square blocks of size (n/

√
p) × (n/

√
p). Each block is denoted A[α, β], α, β

running from 0 to
√
p−1, see Fig. 4. The input vector x and product vector y are

also divided into
√
p pieces. The subvector number β of x, resp. the subvector

number α of y, will be denoted X [β], resp. Y[α]. Each pair of subscripts (α, β)
can be associated with one of the p processors of Hd, which will be in charge of
computing its contribution to Y[α] in terms of A[α, β] and X [β]. This processor
will be referred to as Pαβ ; its registers initially holds the data A[α, β] and X [β].

✻

❄

n√
p

✲✛
n√
p

✻

❄

n

✲✛ n

A[α, β]

X [β]

Y[α]
= ×

Fig. 4. Distribution of data

Simplified Matrix–Vector Product. The method is the following (see Fig. 5
for the algorithms of the fold and expand operations):

– Pαβ computes its contribution to Y[α]. This is a vector of length n/
√
p which

we denote by Z[α, β]; thus Z[α, β] = A[α, β] × X [β] and Y[α] = ΣβZ[α, β]

– The second step uses the fold operation to sum vectors Z[α, β]. This opera-
tion is executed between a group of

√
p processors; it requires log2(

√
p) = d

2
steps, halving the length of the vectors involved at each step. Within each
step, a processor first divides its vector z into two equal size subvectors, z1
and z2 (notation (z1|z2)). One of these subvectors is sent to another processor
P , and a subvector w is received from P . It is summed element-by-element
with the retained subvector. As a result, each processor Pαβ has a unique,
n/p-length portion of the fully summed vector denoted Y[α][β].
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– The last step uses the expand operation. Each processor in the row has a
subvector z = Y[α][β]. At each step, it sends z to another processor P and
receives w from P . These two subvectors are concatenated in the correct
order, as indicated by the notation ’|’, to form the updated value of z. This
operation requires log2(

√
p) steps. This primitive combines the subvectors

Y[α][β] and places the complete vector Y[α] in each processor of row α.

Fold operation for Pαβ Expand operation for Pαβ

z := Z[α, β]
for i := 0 to log2(

√
p)− 1

(z1|z2) = z

P := Pαβ with ith bit of β flipped
if bit i of β is 1 then

Send z1 to processor P
Receive w from processor P
z := z2 + w

else
Send z2 to processor P
Receive w from processor P
z := z1 + w

Y[α][β] := z

z := Y[α][β]

for i := log2(
√

p)− 1 to 0
P := Pαβ with ith bit of β flipped
Send z to processor P
Receive w from processor P
if bit i of β is 1 then

z := w|z
else

z := z|w
Y[α] := z

Fig. 5. Communication primitives for processor Pαβ

As in the previous example, we model each step of the algorithm by a function
Stepi, which is associated with an intermediate correctness lemma.

1. Each processor Pαβ of a d-dimensional hypercube computes locally a matrix-
vector product. The expression acc1(Take value(Pαβ ,Build ini0(. . .))) re-
turns A[α, β] and acc2(Take value(Pαβ ,Build ini0(. . .))) returns X [β].

Step1(Pαβ , A,X, d) ≡
Matrix Vector Product(acc1(Take value(Pαβ ,Build ini0(. . .)))

acc2(Take value(Pαβ ,Build ini0(. . .))))

2. Pαβ computes Y[α][β] by applying the fold operation. The function Build ini1
returns the global state of the network after the first step.

Step2(Pαβ , A,X, d) ≡ Fold(Pαβ ,
d
2 ,Build ini1(. . .), d)

Correctness lemma: each Pαβ has received Y[α][β].

∀Pαβ ∈ Cayley(d, d). Step2(Pαβ , A,X, d) =
(
∑

e∈Neighb(Pαβ , d
2 ,d)Matrix Vector Product(A[αe, βe],X [βe]))[β]

3. The processor Pαβ computes Y[α] by applying the expand operation. The
function Build ini2 returns the global state after the second step.

Step3(Pαβ , A,X, d) ≡ Expand(Pαβ ,
d
2 ,Build ini2(. . .), d)
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Correctness lemma: Processor Pαβ has computed Y[α].

∀Pαβ ∈ Cayley(d, d). Step3(Pαβ , A,X, d) =∑
e∈Neighb(Pαβ , d

2 ,d)Matrix Vector Product(A[αe, βe],X [βe])

Correctness of the complete algorithm:

∀Pαβ ∈ Cayley(d, d). Step3(Pαβ , A,X, d) =∑√
p−1

j=0 Matrix Vector Product(A[α, j],X [j])

7 Related Works

The validation of applications involving distributed processes has been widely
studied. Many approaches are related to the verification of communication pro-
tocols and make use of model checking techniques; some others put the emphasis
on the correct parallelization of sequential code, like [5]. Here we focus only on
works which are close to ours i.e., that are concerned with the verification of
the equivalence between a parallel algorithm and its sequential counterpart, by
means of theorem proving techniques. They can be classified into two main cat-
egories.

In the first one, the algorithm is modelled as a function that takes as argu-
ment the set of data distributed in the system (its state) and returns the state
obtained after one computation step. The proof consists in showing that the
state after a number N of iterations satisfies the specification. The function and
the data structures give an explicit view of the network. In [7], we prove the
correctness of a parallel algorithm for finding the maximum of set of values on a
n×n 4-neighbour torus, using Nqthm. The method uses two recursive functions
to model the network; the main data structure is a list of list of natural num-
bers. Point-to-point communications are expressed by updating the elements of
this list according to the values of their neighbours. In [11], RRL is used in con-
junction with powerlists data structures [17]. The authors verify the Batcher’s
Merge Sorting Network and prove correct the mapping of multi-dimensional ar-
rays expressed as powerlists into hypercube networks. The verification of the
FFT with ACL2 is described in [6]; the underlying representation is also based
on powerlists. This notation is well suited to the specification and verification
of certain types of parallel algorithms running on regular structures. Kornerup
discusses in [13] the modelling of hypercube algorithms with this notation.

The second approach makes explicit the send and receive point-to-point prim-
itives and the network structure. The algorithm is expressed by a function which
describes the updating of the global state of the system, which consists of the
private states of the processes together with the bag of messages that are in
transit (sent but not yet accepted by the destination process). This model allows
the specification of asynchronous communications, which could introduce non-
determinism. To model nondeterminacy, a free variable oracle gives a symbolic
view of the list of messages that are in transit. Hesselink explains this modelling
methodology in [10]. The function that expresses the distributed algorithm takes
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as parameters the global state s, the oracle ora, the iteration number n and the
description of the network (a graph) g. The proof methodology is based on in-
variants describing properties of the global state, and proofs are performed with
Nqthm. Arbitrary interconnection networks can be considered, the only hypoth-
esis is that the corresponding graph is connected.

There are common aspects between these approaches and ours. Like in the
first one, we consider synchronized algorithms and the point-to-point communi-
cations are implicit in the formal model. A similarity with both approaches is
that we use an explicit representation of the interconnection networks. However,
a major advantage of modelling these structures by means of Cayley graphs is
that our proof methodology works at the processor level instead of having to rea-
son on the whole network. The graph is not encoded as a static structure, but
the processor neighbours are dynamically computed using the generator func-
tions. In many cases, the correspondance between this processor view and the
global system view is straightforward. In a near future, we plan to consider more
complex applications and to improve our method with techniques like the one
described in [18] to map a “uniprocessor” view to a “multiprocessor” one.

8 Conclusion

We have proposed a new approach for the validation of parallel algorithms run-
ning on symmetric interconnection networks. The proof methodology exploits
their topological properties. We have built reusable libraries for reasoning about
widespread networks and their collective communication primitives. Two ex-
amples have illustrated the usefulness of these libraries to perform correctness
verifications for distributed programs; other applications are being developed.
Table 3 gives the corresponding numbers of Nqthm events. In each case, about
70 % of events have simply been imported from the libraries (without reproving
them). A part of the remaining 30 % could be generated automatically, from the
contents of the source code and from the specification. However, human interven-
tion is needed for the other ones. Since there is a common basis in the underlying
reasoning related to most of them, we plan to design a development environment
with an interactive user-interface where the programmer could input his source
code and the specification, ask for the generation of the corresponding events by
means of a mechanized translator, and then guide the proof tool when needed.
To that goal, we are currently re-implementing our libraries in the up-to-date
prover Acl2 [12].

Table 3. Numbers of Nqthm events for the verification of the examples

# Events # Events reused # Events specific
(def. + lemmas) from our libraries to the algorithm

Computational Geometry 142 111 (78 %) 31 (22 %)
Matrix-vector product 417 286 (68 %) 131 (32 %)
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