
Efficient Verification of a Class of Linear Hybrid
Automata Using Linear Programming�

Li Xuandong, Pei Yu, Zhao Jianhua, Li Yong, Zheng Tao, and Zheng Guoliang

State Key Laboratory of Novel Software Technology
Department of Computer Science and Technology

Nanjing University, Nanjing
Jiangsu, P.R. China 210093

lxd@nju.edu.cn

Abstract. In this paper, we show that for a class of linear hybrid au-
tomata called zero loop-closed automata, the satisfaction problem for
linear duration properties can be solved efficiently by linear program-
ming. We give an algorithm based on depth-first search method to solve
the problem by traversing all the simple paths (with no repeated node
occurrence) in an automaton and checking their corresponding sequences
of locations for a given linear duration property.

1 Introduction

The model checking problem for real-time hybrid systems is very difficult, even
for a well-formed class of hybrid systems - the class of linear hybrid automata
- the problem is still undecidable in general [1-4]. So an important question for
the analysis and design of hybrid systems is identification of subclasses of such
systems and corresponding restricted classes of analysis problems that can be
settled algorithmically [2].
In this paper, we consider the problem of checking linear hybrid automata

for linear duration properties. We show that for a class of linear hybrid au-
tomata called zero loop-closed automata, the satisfaction problem of linear du-
ration properties can be solved efficiently by linear programming. We give an
algorithm based on depth-first search method to solve the problem by traversing
all the simple paths (with no repeated node occurrence) in an automaton and
checking their corresponding sequences of locations for a given linear duration
property.
The paper is organized as follows. In next section, we recall the notion of

linear hybrid automata, and introduce linear duration properties. In Sect. 3,
we define zero loop-closed automata. Section 4 gives an efficient algorithm to
check zero loop-closed automata for linear duration properties. The last section
discusses the related work and contains some conclusion.
� This work is supported by the National Natural Science Foundation of China under
Grant 60073031 and Grant 69703009, and by International Institute for Software
Technology, The United Nations University (UNU/IIST).

T. Margaria and T. Melham (Eds.): CHARME 2001, LNCS 2144, pp. 465–479, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



466 L. Xuandong et al.

2 Linear Hybrid Automata and Linear Duration
Properties

2.1 Linear Hybrid Automata

A linear hybrid automaton is a conventional automaton extended with a finite
set of real-valued variables. We use a simplified version of linear hybrid automata
defined in [1]. The simplification is that any linear hybrid automaton considered
in this paper has just one initial location, no initial condition, and no transition
to the initial location (we suppose that each variable with an initial value is reset
to the initial value by the transitions from the initial location) .

Definition 1. A linear hybrid automaton is a tuple H = (Z,X, V,E, vI , α, β),
where

– Z is a finite set of system states.
– X is a finite set of real-numbered variables.
– V is a finite set of locations.
– E is transition relation whose elements are of the form (v, φ, ψ, v′) where v, v′

are in V , φ is a set of variable constraints which are of the form a ≤ x ≤ b,
and ψ is a set of reset actions which are of the form y := c (x ∈ X, y ∈ X,
a, b, c are real numbers, a and b may be ∞; if a (b) is −∞ (∞), then a ≤ x ≤ b
is taken to be x ≤ b (a ≤ x); if a = b, then a ≤ x ≤ b is taken to be x = a).

– vI is an initial location.
– α is a labeling function which maps each location in V to a state in Z.
– β is a labeling function which maps each location in V to a set of change
rates which are of the form

.
x= a (x ∈ X and a is a real number). For any

location v, for any x ∈ X, there is one and only one
.
x= a ∈ β(v).

��

Let us consider an example of a water-level monitor in [3]. The water level
in a tank is controlled through a monitor, which continuously senses the water
level and turns a pump on and off. The water level changes as a piecewise-linear
function of time. When the pump is off, the water level falls by two inches per
second; when the pump is on, the water level rises by one inch per second.
Suppose that initially the water level is one inch and the pump is on. There is a
delay of two seconds from the time that the monitor signals to change the status
of the pump to the time that the change becomes effective. The requirement
of the water-level monitor is that the monitor must keep the water level in
between 1 and 12 inches. A design of the monitor can be modelled by the hybrid
automaton depicted in Fig. 1. The initial location of the automaton is v0. The
other four locations v1, v2, v3, v4 are assigned with the system states s1, s2, s3, s4
respectively. In the locations v1 and v2, the pump is on; in the locations v3 and
v4, the pump is off. The variable y is used to model the water-level, and x is
used to specify the delays: whenever the control is in location v2 or v3, the value
of x indicates how long the signal to switch the pump off or on has been sent.



Efficient Verification of a Class of Linear Hybrid Automata 467

�

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✲ ✲

✛

❄

✻

y = 10?e1

x := 0

y = 5?e3

x := 0

x = 2? e4 x = 2?e2

y := 1
e0

v0

s1

v1

ẋ = 1
ẏ = 1

s2

v2

ẋ = 1
ẏ = 1

s3

v3

ẋ = 1
ẏ = −2

s4

v4

ẋ = 1
ẏ = −2

Fig. 1. A hybrid automaton modelling a water-level monitor

We use sequences of locations to represent the untimed behaviour of linear
hybrid automata. A sequence of locations is of the form

v0
(φ0,ψ0)−→ v1

(φ1,ψ1)−→ . . .
(φm,ψm)−→ vm+1 ,

which indicates that the automaton start from location v0, move to vi+1 from vi
with executing the reset actions in set ψi when the variable constraints in set φi
are satisfied. For a linear hybrid automaton H = (Z,X, V,E, vI , α, β), if v0 is vI
and (vi, φi, ψi, vi+1) ∈ E for each i (0 ≤ i ≤ m), then the sequence of locations
represents a untimed behaviour of H.
The behaviour of linear hybrid automata can be represented by timed se-

quences. Any timed sequence is of the form (s1, t1)ˆ(s2, t2)ˆ . . . ˆ(sm, tm) where
si (1 ≤ i ≤ m) is a state and ti (1 ≤ i ≤ m) is a nonnegative real number, which
represents a behaviour of an automaton that the system starts at the state s1,
stays there for t1 time units, then changes to s2 and stays in s2 for t2 time units,
and so on.

Definition 2. For a linear hybrid automaton H = (Z,X, V,E, vI , α, β), a timed
sequence (s1, t1)ˆ(s2, t2)ˆ . . . ˆ(sm, tm) (m ≥ 1) represents a behaviour of H if
and only if there is a untimed behaviour of the automaton

v0
(φ0,ψ0)−→ v1

(φ1,ψ1)−→ . . .
(φm,ψm)−→ vm+1

such that

– for each i (1 ≤ i ≤ m), α(vi) = si; and
– t1, t2, . . . , tm satisfy all the variable constraints in φi (1 ≤ i ≤ m), i.e. for
each variable constraint a ≤ x ≤ b in φi, if there is a reset action x := c in
ψj (0 ≤ j < i) and x := d is not in ψk for any k (j < k < i), then

a ≤ c+ wj+1tj+1 + wj+2tj+2 + . . .+ witi ≤ b ,

where for each l (j < l ≤ i),
.
x= wl ∈ β(vl). ��



468 L. Xuandong et al.

For example, for the linear hybrid automaton depicted in Fig. 1, the timed
sequence (s1, 9)ˆ(s2, 2)ˆ(s3, 3.5)ˆ(s4, 2) is a behaviour.
For a linear hybrid automaton H, for a transition e = (v, φ, ψ, v′) in H, if e is

labeled with a variable constraint a ≤ x ≤ b, i.e. a ≤ x ≤ b ∈ φ, then we say that
x is tested by e; if e is labeled with a reset action x := c, i.e. x := c ∈ ψ, then
we say that x is reset by e. Notice that if a transition is labeled with a variable
constraint x = c, we can take it as the transition resets the variable x to c. For
example, for the automaton depicted in Fig. 1, we can say that the transitions
e1 and e3 reset the variable y to 10 and 5 respectively, and the transitions e2
and e4 reset the variable x to 2.

2.2 Linear Duration Properties

Linear duration properties are linear inequalities on integrated durations of sys-
tem states. Here we use Duration Calculus (DC) [5] to describe this kind of
properties. In DC, states are modelled as Boolean functions from reals (repre-
senting continuous time) to {0, 1}, where 1 denotes state presence, and 0 denotes
state absence. For a state S, the integral variable

∫
S of DC is a function from

bounded and closed intervals to reals which stands for the accumulated pres-
ence time (duration) of state S over the intervals, and is defined formally by∫
S[a, b]=̂

∫ b
a
S(t)dt, where [a, b] (b ≥ a) is a bounded interval of time. A linear

duration property in DC is of the form
∑n
i=1 ci

∫
Si ≤ M , where Sis are system

states and M , cis are real numbers.
The requirement of the water-level monitor is that the monitor must keep

the water level in between 1 and 12 inches, which can be expressed by linear
duration properties as well. We know that when the control is in locations v1 or
v2, the water level rises 1 inch per second, and when the control is in locations
v3 or v4, the water level falls by 2 inch per second. Furthermore, for an interval
[0, t], the accumulated time that the system stays in s1 or s2 is

∫
s1 +

∫
s2, and

the accumulated time that the system stays in s3 or s4 is
∫
s3+

∫
s4. Therefore,

the water level at time t, given that at the beginning the water level is one inch,
is 1 +

∫
s1 +

∫
s2 − 2(∫ s3 +

∫
s4). Hence, the requirement for the water-level

monitor can be described by the following linear duration properties

1 +
∫
s1 +

∫
s2 − 2(∫ s3 +

∫
s4) ≤ 12 ;

1 +
∫
s1 +

∫
s2 − 2(∫ s3 +

∫
s4) ≥ 1 .

3 Zero Loop-Closed Automata

Zero loop-closed automata form a subclass of linear hybrid automata. In the
following, we define this class of linear hybrid automata.
For a linear hybrid automaton H = (Z,X, V,E, vI , α, β) , a path segment

is a sequence of locations v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ . . .
(φm−1,ψm−1)−→ vm which satisfies

(vi, φi, ψi, vi+1) ∈ E for each i (1 ≤ i ≤ m−1). A path is a path segment starting
at vI . A path is called simple if all locations in the path are distinct. For a simple



Efficient Verification of a Class of Linear Hybrid Automata 469

path v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ . . .
(φm−1,ψm−1)−→ vm, if there is vi (1 < i ≤ m) such that

(vm, φ, ψ, vi) ∈ E, then the sequence

vi
(φi,ψi)−→ vi+1

(φi+1,ψi+1)−→ . . .
(φm−1,ψm−1)−→ vm

(φ,ψ)−→ vi

is a loop, vi is the loop-start node of the loop, v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ . . .
(φi−1,ψi−1)−→ vi

is a loop-enter path of the loop, and (vm, φ, ψ, vi) is the end transition in the
loop. Notice that a loop may have many different loop-enter paths. For a loop
ρ, if ρ1 is a loop-enter path of ρ, we say that ρ can be entered through ρ1. For
example, in the automaton depicted in Fig. 2, the sequence of locations

v2
(∅,{y:=0})−→ v3

({x≥5},∅)−→ v4
({y≥3},{x:=0})−→ v2

is a loop, and the sequence of locations

v0
(∅,{x:=−3,y:=1,z:=0})−→ v1

({z≥−5},{x:=0})−→ v2

is a loop-enter of the loop; and the sequence of locations

v5
(∅,{x:=0})−→ v6

({1≤y≤5},∅)−→ v7
({−1≤x≤2},{y:=1})−→ v5

is a loop, and the sequence of locations

v0
(∅,{x:=−3,y:=1,z:=0})−→ v1

({z≥−5},{x:=0})−→ v2
(∅,{y:=1,z:=2})−→ v5

is a loop-enter of the loop.

� ✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

ż = −2
ẏ = 0
ẋ = 3

s1

v1
ż = 2
ẏ = 2
ẋ = 2

s2

v2
ẏ = 2

ż = 0.5
ẋ = 1

s5

v5

ż = 1
ẏ = −1
ẋ = 1

s6

v6
ż = −1
ẏ = 1

ẋ = −2
s7

v7

ż = 2
ẏ = −1
ẋ = 0

s8

v8

ż = 1
ẏ = −2
ẋ = 1

s3

v3
ż = 3
ẏ = 1
ẋ = 0

s4

v4

z := 0
y := 1
x := −3

e0
v0

z ≥ −5
x := 0

e1

z := 2
y := 1

z := 0 e10

e5

z ≤ 20
e9

x ≥ 5
e3

y := 0 e2
e4

y ≥ 3
x := 0

1 ≤ y ≤ 5
e7

e8

−1 ≤ x ≤ 2
y := 1

x := 0e6

❅
❅

❅
❅

❅
❅

❅❅�

❄

✲

�
�

�
�

�
�

��✒

❄

✛

❄✻

✲ ✲ ✲ ✲

Fig. 2. A loop-closed automaton

Let v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ . . .
(φm−1,ψm−1)−→ vm be a path in a linear hybrid

automaton H. For a variable constraint a ≤ x ≤ b labeled on a transition
(vi, φi, ψi, vi+1) (1 < i < m), its reference point is a transition (vj , φj , ψj , vj+1)
(1 ≤ j < i) such that



470 L. Xuandong et al.

– x is reset by the transition (vj , φj , ψj , vj+1), and
– x is not reset by any transition (vk, φk, ψk, vk+1) (j < k < i),

which means that for calculating the value of x when the automaton stay in
vi along the path in order to check if the variable constraint a ≤ x ≤ b is
satisfied, we need to refer the value of x which is reset to by the transition
(vj , φj , ψj , vj+1). We say that the variable constraint a ≤ x ≤ b combines the
transitions (vi, φi, ψi, vi+1) and (vj , φj , ψj , vj+1).
Let H be a linear hybrid automaton, and ρ be a loop in H which is of

the form v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ . . .
(φm−1,ψm−1)−→ vm. We say that any transition

(vi
(φi,ψi)−→ vi+1) (1 ≤ i < m− 1), which is not the end transition of ρ, is inside ρ.

We defined that ρ is closed if any variable constraint does not combine transition
occurrences inside and outside of the loop, i.e. the following condition holds:

– for any variable constraint a ≤ x ≤ b labeled on a transition (vi, φi, ψi, vi+1)
(1 ≤ i < m) in ρ, its reference point is in ρ, i.e., for any simple path or loop

u1
(φ′

1,ψ
′
1)−→ u2

(φ′
2,ψ

′
2)−→ . . .

(φ′
n−1,ψ

′
n−1)−→ un

such that v1 = un, if there is no transition (vj , φj , ψj , vj+1) (1 ≤ j < i) in ρ
resetting x, then x is reset to c by the end transition (vm−1, φm−1, ψm−1, vm)
of ρ and by the transition (un−1, φ

′
n−1, ψ

′
n−1, un), i.e. x := c ∈ ψm−1 and

x := c ∈ ψ′
n−1; and

– for any variable constraint labeled on a transition outside ρ, its reference
point is not inside ρ, i.e., for any simple path segment

u1
(φ′

1,ψ
′
1)−→ u2

(φ′
2,ψ

′
2)−→ . . .

(φ′
n−1,ψ

′
n−1)−→ un

such that v1 = u1, there is no variable constraint a ≤ x ≤ b labeled on the
transition (un−1, φ

′
n−1, ψ

′
n−1, un) such that

– x is reset by a transition (vi−1, φi−1, ψi−1, vi) (1 < i < m− 1) inside ρ,
and

– x is not reset by the end transition (vm−1, φm−1, ψm−1, vm) of ρ and by
any transition (uk−1, φ

′
k−1, ψ

′
k−1, uk) (1 < k < n).

For example, in the automaton depicted in Fig. 2, the loop

v2
(∅,{y:=0})−→ v3

({x≥5},∅)−→ v4
({y≥3},{x:=0})−→ v2

is a closed loop. But it is not closed if we remove the reset action y := 0 from
the transition e2 since now for the variable constraint y ≥ 3 labeled on e4, its
reference point is e0 which is outside the loop. That a loop is closed implies that
the variable values inside the loop do not depend on their values outside the
loop, and that the variable values outside the loop do not depend on their values
inside the loop.

Definition 3. A linear hybrid automaton H is loop-closed if and only if any
loop in H is closed. ��



Efficient Verification of a Class of Linear Hybrid Automata 471

For example, the automaton depicted in Fig. 2 is a loop-closed automaton. Notice
that for some linear hybrid automata which are not loop-closed, we can construct
loop-closed automata with the same behaviour from them. For example, the
automaton depicted in Fig. 1 is not loop-closed, but we can construct a loop-
closed automaton with the same behaviour, which is depicted in Fig. 3.

�

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✲✲ ✲

✛

❄

✻

y = 10?

e1 x := 0

x = 2?

e2

y = 5?
x := 0

e3y = 10?
x := 0

e′
1

x = 2?

e′
4

y := 1
e0

v0

s1

v1

ẋ = 1
ẏ = 1

s2

v2

ẋ = 1
ẏ = 1

s3

v3

ẋ = 1
ẏ = −2

s4

v4

ẋ = 1
ẏ = −2

s1

v′
1

ẋ = 1
ẏ = 1

Fig. 3. A loop-closed automaton which has the same behaviour as the automaton in
Fig. 1

For a loop-closed automaton H, let ρ be a loop in H which is of the form

v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ . . .
(φm−1,ψm−1)−→ vm. We say that ρ is a zero loop if for any

variable constraint a ≤ x ≤ b in φi (1 ≤ i < m), a−d ≤ 0 and b−d ≥ 0 where d
is the value of x reset by the reference point of the variable constraint a ≤ x ≤ b,
i.e. d satisfies one of the following conditions:

– x is reset to d by a transition (vj , φj , ψj , vj+1) (1 ≤ j < i), but not reset by
any transition (vk, φk, ψk, vk+1) (j < k < i); or

– x is reset to d by the transition (vm−1, φm−1, ψm−1, vm), but not reset by
any transition (vk, φk, ψk, vk+1) (1 ≤ k < i).

A loop is called nonzero loop if it is not a zero loop. According to the variable
constraints on the transitions of a loop, if a loop is a zero loop, then a repetition
of the loop may take no time; if a loop is a nonzero loop, then a repetition
of the loop must take time. For example, in the automaton depicted in Fig. 2,

v5
(∅,{x:=0})−→ v6

({1≤y≤5},∅)−→ v7
({−1≤x≤2},{y:=1})−→ v5 and

v1
({z≥5},{x:=0})−→ v2

(∅,{z:=2,y:=1})−→ v5
({z≤20},∅)−→ v8

(∅,{z:=0})−→ v1

are a zero loop, while v2
(∅,{y:=0})−→ v3

({x≥5},∅)−→ v4
({y≥3},{x:=0})−→ v2 is a nonzero

loop.
For a loop-closed automaton H, let ρ be a loop in H which is of the form

v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ . . .
(φm−1,ψm−1)−→ vm. We say that ρ is free if it is not constrained



472 L. Xuandong et al.

by any variable constraint outside ρ, i.e. for any simple path segment

u1
(φ′

1,ψ
′
1)−→ u2

(φ′
2,ψ

′
2)−→ . . .

(φ′
n−1,ψ

′
n−1)−→ un

such that v1 = u1, for any variable constraint a ≤ x ≤ b labeled on the transition
(un−1, φ

′
n−1, ψ

′
n−1, un), x is reset by a transition (ui, φ

′
i, ψ

′
i, ui+1) (1 ≤ i < n −

1) or by the end transition (vm−1, φm−1, ψm−1, vm) of ρ. For example, in the
automaton depicted in Fig. 2, the nonzero loop

v2
(∅,{y:=0})−→ v3

({x≥5},∅)−→ v4
({y≥3},{x:=0})−→ v2

is free, but the zero loop v5
(∅,{x:=0})−→ v6

({1≤y≤5},∅)−→ v7
({−1≤x≤2},{y:=1})−→ v5 is not

free since it is constrained by the variable constraint z ≤ 20 on the transition
e9.

Definition 4. A zero loop-closed automaton is a loop-closed automaton in which
any nonzero loop is free. ��
For example, the automata depicted in Figs. 2 and 3 are zero loop-closed au-
tomata.
Although the definition of zero loop-closed automaton is not simple, we can

develop an efficient algorithm to check if a linear hybrid automaton is zero
loop-closed, which is described in the appendix. Zero loop-closed automata form
a decidable class of linear hybrid automata. We think there are a number of
real systems that are of the loop-closed property so that some of them can be
modelled by zero loop-closed automata. For example, for control systems, the
loop-closed property means that every repetition of a control process starts from
the same control conditions. In next section, we will show that the satisfaction
problem of zero loop-closed automata for linear duration properties can be solved
by linear programming.

4 Checking Zero Loop-Closed Automata for Linear
Duration Properties

In this section, we solve the problem of checking zero loop-closed automata for
linear duration properties.
The satisfaction problem of linear hybrid automata for linear duration prop-

erties are defined as follows. Let P =
∑n
i=1

∫
ciSi ≤ M be a linear duration

property, and σ = (s1, t1)ˆ(s2, t2)ˆ . . . ˆ(sm, tm) be a timed sequence. The in-
tegrated duration of Si over σ can be calculated as

∫
Si =

∑
j∈αi

δj where
αi = {j | (0 ≤ j ≤ m) ∧ (sj ⇒ Si)}. Let θ(σ,P) =

∑n
i=1 ci(

∑
j∈αi

δj). A timed
sequence σ satisfies a linear duration property P if and only if θ(σ,P) ≤ M . A
linear hybrid automaton satisfies a linear duration property if and only if every
timed sequence representing its behaviour satisfies the linear duration property.
Let H = (Z,X, V,E, vI , α, β) be a linear hybrid automaton, and ρ be a

sequence of locations of the form v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ . . .
(φm,ψm)−→ vm+1. We define



Efficient Verification of a Class of Linear Hybrid Automata 473

τ(ρ) to be the set of the timed sequences of the form (s1, t1)ˆ(s2, t2)ˆ . . . ˆ(sm, tm)
satisfying that

– si = α(vi) for each i (1 ≤ i ≤ m), and
– t1, t2, . . . , tm satisfy all the variable constraints in all φi (1 ≤ i ≤ m), i.e. for
each variable constraint a ≤ x ≤ b in φi,
– if there is a reset action x := c in ψj (1 ≤ j < i) and x := d is not in ψk
for any k (j < k < i), then

a ≤ c+ wj+1tj+1 + wj+2tj+2 + . . .+ witi ≤ b ;

– if x := c is not in any ψj (1 ≤ j < i) and x := d is in ψm, then

a ≤ d+ w1t1 + w2t2 + . . .+ witi ≤ b ;

– if x := c is not in any ψj (1 ≤ j < i) and in ψm, then

a ≤ w1t1 + w2t2 + . . .+ witi ≤ b ,

where for each l (1 ≤ l ≤ i),
.
x= wl ∈ β(vl).

We define that a sequence ρ of locations satisfies a linear duration property if
every timed sequence in τ(ρ) satisfies the linear duration property. It follows
that a linear hybrid automaton satisfies a linear duration property if its every
path satisfies the linear duration property.
Now let us consider to solve the problem for a finite path of a linear hy-

brid automaton. Let ρ = v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ . . .
(φm,ψm)−→ vm+1 be a path in a

linear hybrid automaton H, and every timed sequence in τ(ρ) be of the form
(s1, t1)ˆ(s2, t2)ˆ . . . ˆ(sm, tm). We know that t1, t2, . . . , tm should satisfy all the
variable constraints in all φi (1 ≤ i ≤ m), which forms a group of linear in-
equalities denoted by C. If the group C of linear inequalities has no solution,
then τ(ρ) = ∅, which means that there is no timed sequence representing the be-
haviour of H corresponding to ρ; otherwise the problem of checking if ρ satisfies
a linear duration property P =

∑n
i=1

∫
ciSi ≤ M is equivalent to the problem

of finding the maximum value of the linear function

n∑
i=1

ci(
∑
u∈αi

tu) where αi = {u | (1 ≤ u ≤ m) ∧ (su ⇒ Si)}

subject to the linear constraint C and checking whether it is not greater than
M . The latter is a linear programming problem. So we reduce the problem into
a linear programming problem for a finite path of a linear hybrid automaton.
We know that for a linear hybrid automaton, there could be infinite paths

and the number of paths could be infinite. So we attempt to solve the problem
based on a finite set of finite paths. In the following, we show how to solve the
problem for zero loop-closed automata based on a finite set of finite sequences
of locations.



474 L. Xuandong et al.

Let H be a linear hybrid automaton, and ρ be a path in H which is of the

form v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ . . .
(φm−1,ψm−1)−→ vm. If ρ is not a simple path, then we

can find vi and vj (1 ≤ i < j ≤ m) such that vi = vj , and then we can get a path
ρ1 which is constructed from ρ by removing any vk (i < k ≤ j). By applying the
above elimination step repeatedly, we can get a simple path ρ′. We say that ρ
is an extension of ρ′. We define that any simple path is an extension of itself. It
is clear that a linear hybrid automaton H satisfies a linear duration property P
if and only if for any simple path ρ in H, any extension of ρ satisfies P. In the
following, for a linear duration property P, for a simple path ρ in a zero loop-
closed automaton, we define a sequence of locations such that any extension of
ρ satisfies P if and only if the sequence of locations satisfies P.
For a sequence ρ of locations in a zero loop-closed automaton, for a linear

duration property P, by linear programming we can calculate the supremum of
the set {θ(σ,P) | σ ∈ τ(ρ)}. If the supremum is larger than zero, we say that ρ
is violable for P, otherwise we say that ρ is not violable for P. Notice that if a
sequence ρ of locations is violable for a linear duration property P, by repeating
ρ with finite many times we can construct a sequence of locations which does
not satisfy P.
LetH = (Z,X, V,E, vI , α, β) be a linear hybrid automaton, and P be a linear

duration property which is of the form
∑n
i=1

∫
ciSi ≤ M . For a location v in H,

if there is Si (1 ≤ i ≤ n) such that α(v)⇒ Si and ci > 0, then we say that v is
positive for P. Notice that for a zero loop-closed automaton H, for a sequence ρ
of locations in H which is violable for a linear duration property P, there must
be a location in ρ which is positive for P.
For two sequences of locations

ρ1 = v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ . . .
(φm−1,ψm−1)−→ vm and

ρ2 = u1
(φ′

1,ψ
′
1)−→ u2

(φ′
2,ψ

′
2)−→ . . .

(φ′
n−1,ψ

′
n−1)−→ un

such that vm = u1, let ρ1 � ρ2 be the sequence of locations

v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ . . .
(φm−1,ψm−1)−→ vm

(φ′
1,ψ

′
1)−→ u2

(φ′
2,ψ

′
2)−→ . . .

(φ′
n−1,ψ

′
n−1)−→ un .

For a linear hybrid automaton, we can find all loops using depth-first search
method whose algorithm is described in the appendix. According to the order
that the loops are found out, for any loop ρ we let o(ρ) be a integer which
represents the position of ρ in the order.

Let ρ = v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ . . .
(φm−1,ψm−1)−→ vm be a loop in a zero loop-

closed automaton, ρ1 be a loop-enter path of ρ, and for each i (1 < i < m),

ρi = ρ1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ . . .
(φi−1,ψi−1)−→ vi. For any linear duration property

P =∑n
i=1

∫
ciSi ≤ M , let µ(ρ1, ρ,P) be a sequence of locations, which is defined

recursively as follows:
– if ρ is a nonzero loop, then

µ(ρ1, ρ,P) =
{
v1 if ρ′ is not violable for P
v1

(∅,∅)−→ v
(∅,ψm−1)−→ vm if ρ′ is violable for P ,



Efficient Verification of a Class of Linear Hybrid Automata 475

where v is a location in ρ′ which is positive for P and

ρ′ = v1
(φ1,ψ1)−→ w2

(φ2,ψ2)−→ w3
(φ3,ψ3)−→ . . .

(φm−2,ψm−2)−→ wm−1
(φm−1,ψm−1)−→ vm

where for each i (1 < i < m), if there is not any loop which can be entered
through ρi, then wi = vi, otherwise

wi = µ(ρi, ρi1,P) � µ(ρi, ρi2,P) � . . . � µ(ρi, ρini
,P)

where ρi1, ρi2, . . . , ρini are all the loops which can be entered through ρi and
which are such that o(ρij) < o(ρij+1) for any j (1 ≤ j < ni);

– if ρ is a zero loop, then

µ(ρ1, ρ,P)
= v1

(φ′
1,ψ1)−→ w2

(φ′
2,ψ2)−→ w3

(φ′
3,ψ3)−→ . . .

(φ′
m−2,ψm−2)−→ wm−1

(φ′
m−1,ψm−1)−→ vm

where
– for each i (1 < i < m), if there is not any loop which can be entered
through ρi, then wi = vi, otherwise

wi = µ(ρi, ρi1,P) � µ(ρi, ρi2,P) � . . . � µ(ρi, ρini ,P)
where ρi1, ρi2, . . . , ρini

are all the loops which can be entered through ρi
and which are such that o(ρij) < o(ρij+1) for any j (1 ≤ j < ni), and

– for each i (1 < i < m), φ′
i = φi1 ∪ φi2 ∪ φi3,

φi1 = {d ≤ x | a ≤ x ≤ b ∈ φi and a = d} ,
φi2 = {x ≤ d | a ≤ x ≤ b ∈ φi and b = d} ,
φi3 = {x = d | a ≤ x ≤ b ∈ φi and a = b = d} ,

where d is such that x := d ∈ ψj (1 ≤ j < i) and x := c �∈ ψk for any
k (j < k < i) or that x := d ∈ ψm−1 (1 ≤ j < i) and x := c �∈ ψk for any
k (1 ≤ k < i).

Let ρ be a simple path of a zero loop-closed automaton which is of the

form v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ . . .
(φm−1,ψm−1)−→ vm, and for each i (1 < i < m),

ρi = v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ . . .
(φi−1,ψi−1)−→ vi. For any linear duration property P, let

ω(ρ,P) be a sequence of locations, which is defined as follows:

ω(ρ,P) = v1
(φ1,ψ1)−→ w2

(φ2,ψ2)−→ w3
(φ3,ψ3)−→ . . .

(φm−2,ψm−2)−→ wm−1
(φm−1,ψm−1)−→ vm

where for each i (1 < i < m), if there is not any loop which can be entered
through ρi, then wi = vi, otherwise

wi = µ(ρi, ρi1,P) � µ(ρi, ρi2,P) � . . . � µ(ρi, ρini ,P)
where ρi1, ρi2, . . . , ρini are all the loops which can be entered through ρi and
which are such that o(ρij) < o(ρij+1) for any j (1 ≤ j < ni).



476 L. Xuandong et al.

Lemma 1. Let H be a zero loop-closed automaton, and P be a linear duration
property. For any simple path ρ in H, any extension of ρ satisfies P if and only
if ω(ρ,P) satisfies P. ��
The detailed proof of Lemma 1 is omitted here because of space consideration.
By Lemma 1, we can get the following theorem.

Theorem 1. A zero loop-closed automaton H satisfies a linear duration prop-
erty P if and only if for each simple path ρ of H, ω(ρ,P) satisfies P. ��

currentpath := 〈vI〉;
repeat

node := the last node of currentpath;
if node has no new successive node
then delete the last node of currentpath
else begin

node := a new successive node of node;
construct ω(ρ, P) for the current path ρ;
check if ω(ρ, P) satisfies P;
if no, then return false;
if node is not in currentpath
then append node to currentpath;

end
until currentpath = 〈〉;
return true.

Fig. 4. Algorithm checking zero loop-closed automata for linear duration properties

Based on Theorem 1, we can develop an efficient algorithm to check if a zero
loop-closed automaton (X,V,E, vI , α, β) satisfies a linear duration property. The
algorithm is based on depth-first search method and described in Fig. 4. The
main data structure in the algorithm is a list currentpath of locations which is
used to record the current paths. We traverse all simple paths to check if there
is a simple path ρ such that ω(ρ,P) does not satisfy P. In the algorithm, we
need to solve linear programs. Linear programming is well studied, and can be
solved with a polynomial-time algorithm in general. The number of the linear
programs we need to solve equals the number of all nonzero loops and simple
paths in the automaton. The number of variables in each linear program is not
larger than the numbers of the locations in the longest simple paths and in all
the loops.

5 Conclusion

In this paper, we have shown that for a class of linear hybrid automata called
zero loop-closed automata, the satisfaction problem for linear duration properties



Efficient Verification of a Class of Linear Hybrid Automata 477

can be solved efficiently by linear programming. In general the model checking
problem is undecidable for the class of linear hybrid automata. This paper gives
a new result for the decidability of the model checking problem because the class
of zero loop-closed automata is not contained by the decidable classes of hybrid
systems we have found in the literature so far. In [2], the decidability of a class
of linear hybrid systems called integration graphs is reduced to the verification
problem for timed automata. In integration graphs, it is not allowed to test a
variable in a loop which has different change rate in different locations. So the
class of integration graphs does not contain that of zero loop-closed automata.
In [4], a class of hybrid automata, initialized rectangular automata, are proved to
be decidable for linear temporal logic (LTL) requirements. A symbolic method is
presented in [7] such that the tool HYTECH [8] which runs a symbolic procedure
can terminate on initialized rectangular automata. Any initialized rectangular
automaton requires that any variable must be reset when its change rate is
changed. So the class of zero loop-closed automata is not contained by that of
initialized rectangular automata. In [3], an automatic approach, which attempt
to construct the reachable region by symbolic execution, has been presented.
But the procedures often do not terminate.
The idea to check linear duration properties by linear programming comes

from [6] in which the problem for real-time automata is solved by linear pro-
gramming technique, which is well established. By developing the techniques in
[6], we show that by linear programming the problem can be solved totally for
a class of linear hybrid automata in [9,10]. In [9,10], we describe the decidable
class of linear hybrid automata by using an extension of regular expressions with
time constraints, but do not give any direct definition of the decidable hybrid au-
tomata, and the presented algorithm is of high complexity in some case because
we need to unfold loops so that the number and size of the linear programs we
need to solve become very large. Compared with the work in [9,10], this paper
makes two new contributions: First the class of zero loop-closed automata pre-
sented this paper is not included by the decidable class of linear hybrid automata
defined in [9,10], and secondly the approach in this paper is based on automata
directly and leads itself to an efficient implementation.
The algorithm presented in this paper has been implemented. We think there

are a number of real systems that are of the loop-closed property (for example,
for control systems, the loop-closed property means that every repetition of a
control process starts from the same control conditions). An important topic for
future work is to do case studies in practical use.

References

1. Thomas A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th
Annual IEEE Symposium on Logic in Computer Science (LICS 1996), pp. 278-292.

2. Y. Kesten, A. Pnueli, J. Sifakis, S. Yovine. Integration Graphs: A Class of Decidable
Hybrid Systems. In Hybrid System, LNCS 736, pp.179-208.



478 L. Xuandong et al.

3. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H.Ho, X. Nicollin,
A. Olivero, J. Sifakis, S. Yovine. The algorithmic analysis of hybrid systems. In
Theoretical Computer Science, 138(1995), pp.3-34.

4. Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s
Decidable About Hybrid Automata? In Journal of Computer and System Sciences,
57:94-124, 1998.

5. Zhou Chaochen, C.A.R. Hoare, A.P. Ravn. A Calculus of Durations. In Information
Processing Letter, 40, 5, 1991, pp.269-276.

6. C. Zhou, J. Zhang, L. Yang, and X. Li. Linear Duration Invariants. In Formal
Techniques in Real-Time and Fault-Tolerant Systems, LNCS 863, pp.88-109.

7. Thomas A. Henzinger, Rupak Majumdar. Symbolic Model Checking for Rectangu-
lar Hybrid Systems. In Proceedings of the Sixth Workshop on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 00), Lecture Notes in Com-
puter Science, Springer, 2000.

8. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: a model checker for hybrid
systems. In Software Tools for Technology Transfer, 1:110-122, 1997.

9. Li Xuandong, Dang Van Hung, and Zheng Tao. Checking Hybrid Automata for
Linear Duration Invariants. In Advances in Computing Science - ASIAN’97, LNCS
1345, Springer-Verlag, 1997, pp.166-1180.

10. Li Xuandong, Zheng Tao, Hou Jianmin, Zhao Jianhua, and Zheng Guoliang. Hy-
brid Regular Expressions. In Hybrid Systems: Computation and Control, LNCS
1386, Springer-Verlag, 1998, pp.384-399.

A Algorithm to Check if a Linear Hybrid Automaton is
Zero Loop-Closed

An efficient algorithm is described in Fig. 5, which is to check if a linear hy-
brid automaton (X,V,E, vI , α, β) is zero loop-closed. The algorithm is based on
depth-first search method. The main data structure in the algorithm includes a
list currentpath of locations which is used to record the current paths, and a
set loopset of loops which records all the loops in the automaton. The algorithm
consists of three steps. First, we find out all loops and check if any simple path
is such that any loop satisfies that for any variable constraint in the loop, its
reference point is in the loop. Then we check if any loop is such that any other
loop with the same loop-start node satisfies that for any variable constraint in
the loop, its reference point is in the loop. Last, for any loop, from the loop-start
node we traverse all simple path segment to check if any simple path segment
satisfies that for any variable constraint outside a loop, its reference point is not
inside the loop; and if any simple path segment is such that any nonzero loop
is free. The complexity of the algorithm is proportional to the number of the
simple paths and the size of the longest simple path in an automaton.



Efficient Verification of a Class of Linear Hybrid Automata 479

currentpath := 〈vI〉; loopset := ∅;
repeat

node := the last node of currentpath;
if node has no new successive node
then delete the last node of currentpath
else begin

node := a new successive node of node;
if node is in currentpath (we discover a loop)
then begin

put the loop into loopset;
check if the current path is such that the loop satisfies
that for any variable constraint in the loop,
its reference point is in the loop;
if no (the loop is not closed), then return false;

end
else append node to currentpath;

end
until currentpath = 〈〉;
for any loop in loopset do

begin check if the loop is such that any other loop with the same
loop-start node satisfies that for any variable constraint
in the loop, its reference point is in the loop;
if no, then return false;

end;

for any loop in loopset with a loop-start node v do
begin currentpath := 〈v〉;
repeat

node := the last node of currentpath;
if node has no new successive node
then delete the last node of currentpath
else begin

node := a new successive node of node;
check if the current path satisfies that
for any variable constraint outside a loop,
its reference point is not inside the loop;
if no, then return false;
check if the current path is such that any nonzero loop is free;
if no, then return false;
if node is not in currentpath
then append node to currentpath;

end
until currentpath = 〈〉;

end;
return true.

Fig. 5. Algorithm for checking if a linear hybrid automaton is zero loop-closed


	Introduction
	Linear Hybrid Automata and Linear Duration Properties
	Linear Hybrid Automata
	Linear Duration Properties

	Zero Loop-Closed Automata
	Checking Zero Loop-Closed Automata for Linear Duration Properties
	Conclusion
	Algorithm to Check if a Linear Hybrid Automaton is Zero Loop-Closed

