Pruning Techniques for the SAT-Based Bounded
Model Checking Problem

Ofer Shtrichman

The Minerva Center for Verification of Reactive Systems, at the Dep. of Computer
Science and Applied Mathematics, The Weizmann Institute of Science, Israel;
and IBM Haifa Research Lab
ofers@summer.weizmann.ac.il

Abstract. Bounded Model Checking (BMC) is the problem of checking
if a model satisfies a temporal property in paths with bounded length
k. Propositional SAT-based BMC is conducted in a gradual manner, by
solving a series of SAT instances corresponding to formulations of the
problem with increasing k. We show how the gradual nature can be ex-
ploited for shortening the overall verification time. The concept is to reuse
constraints on the search space which are deduced while checking a k in-
stance, for speeding up the SAT checking of the consecutive k41 instance.
This technique can be seen as a generalization of ‘pervasive clauses’, a
technique introduced by Silva and Sakallah in the context of Automatic
Test Pattern Generation (ATPG). We define the general conditions for
reusability of constraints, and define a simple procedure for evaluating
them. This technique can theoretically be used in any solution that is
based on solving a series of closely related SAT instances (instances with
non-empty intersection between their set of clauses). We then continue
by showing how a similar procedure can be used for restricting the search
space of individual SAT instances corresponding to BMC invariant for-
mulas. Experiments demonstrated that both techniques have consistent
and significant positive effect.

1 Introduction

SAT-based verification of invariants (AGp) has been practiced for quite some
time (see, for example [6]) under different names and for various verification
tasks. Biere et. al. recently introduced the notion of Bounded Model Checking
(BMC) [1], which extends these methods to LTL and reduces the verification
problem to a pure propositional satisfiability problem. By doing so, it enables
to exploit the power of advanced standard CNF-SAT solvers.

The basic concept of BMC is to search for a counter example in executions
whose length is bounded by some integer k. For every model M, there exists a
finite bound D, called the Diameter of M, such that M satisfies a property p
iff no trace shorter or equal to D contradicts p. Thus, for a large enough k, this
method is complete.

The BMC problem can be efficiently reduced to a propositional satisfiability
problem whose size, in terms of number of variables, is linear in k. Since SAT is

T. Margaria and T. Melham (Eds.): CHARME 2001, LNCS 2144, pp. 58-[Z0] 2001.
© Springer-Verlag Berlin Heidelberg 2001

Pruning Techniques for the SAT-Based Bounded Model Checking Problem 59

worst case exponential in the number of variables, k£ has a crucial effect on the
ability to efficiently solve the BMC instance. Verification with BMC is normally
based on a gradual process, where k is increased until one of the following occurs:
a bug is found, the diameter D is reached, or the problem becomes intractable.
In fact, experiments with real designs have shown that it is seldom the case
that unsatisfiable instances (corresponding to bug free designs) can be efficiently
solved for k = Dff. Several methods were suggested recently to cope with this
problem, including a procedure which can be seen as an extended version of the
classic inductive proof: first, the property is proven correct up to cycle k. Then,
the procedure checks whether this fact implies that the property is also true in
cycle k+ 1. If not, k is increased, with the hope that the process will stop before
reaching D[I1]. In any case, BMC seems to be far more successful in falsification
than in verification.

The tool BMC that was developed as part of [I], which reduces SMV-compat-
ible models to a corresponding CNF-SAT problem, made it possible to evaluate
these methods in comparison with standard BDD-based model checkers. Several
such comparisons [2[12], caused BMC to gain recognition as a technique that
can frequently outperform classic BDD-based model checking.

In a previous research we demonstrated how the unique structure of BMC
invariant formulas can be exploited for various optimizations in the SAT solver,
including pre-computation of variable ordering and addition of constraints on
the search space [12]. In this paper we continue to explore ways in which generic
CNF SAT solvers can be tuned for BMC or for other domains with similar
characteristics. In particular, we investigate the possibility of exploiting BMC’s
gradual nature for speeding up the overall verification time. We will show how it
is possible to exploit information gathered while solving a k-instance, for solving
faster the consecutive k+ 1 instance. The basic idea is to reuse clauses that were
deduced while solving previous instances. These clauses, called conflict clauses
for reasons we will later explain, are naturally recorded in the standard SAT
procedure with the aim of pruning parts of the search tree.

A similar idea was proposed by Silva and Sakallah [8] for the case of Au-
tomatic Test Pattern Generation (ATPG). They refer to the reused clauses as
pervasive clauses and explain, in ATPG terms, under what conditions they are
formed: if a circuit is tested with two fault models (i.e. the circuit formula is
conjuncted with different formulas, each representing a different fault state. See
the above reference for more details), the conflict clauses that were deduced from
the circuit itself when checking the first instance are declared pervasive. These
clauses can therefore be reused when checking the second instance. The authors
define the more general question of ‘when can clauses be declared pervasive’ as
an open problem. In this sense this paper addresses this challenge: we investigate
the necessary conditions under which a conflict clause can be shared by two or
more general SAT instances, and show a simple decision procedure for their eval-
uation. In Section [l we will show how a similar procedure can be used as part

! Finding D in of itself is a hard problem, which we will not discuss in this paper.

60 O. Shtrichman

of a different technique, called constraints replication, to add more constraints
to a single SAT instance.

Experiments with both techniques proved their effectiveness. In a significant
number of the test cases the overall verification time was reduced by 50 percent
or more. More important, these improvements are rather consistent. As far as
our experiments can show (15 different designs), the new techniques consistently
reduces or leaves almost unaffected the solving time. Consistency has a strong
practical advantage: rather than implementing it as a one more user activated
flag, it encourages a change in the default configuration of the relevant tools.

The rest of the paper is structured as follows. We begin by giving necessary
background on BMC and SAT in the next two sections. In Section Ml we describe
the technical details of the suggested decision mechanism, and prove its sound-
ness. In Section [fl we show how the same technique can be used for restricting
the search space within a given SAT instance, as long as this instance stems
from an invariant formula. In Section [6l we describe another related work called
incremental satisfiability, which we believe will be better understood after read-
ing the suggested method. Experimental results from our benchmark are given
in Section [1, and some conclusions and ideas for future research are presented
in Section [8.

2 Bounded Model Checking of Invariants

We focus on bounded model checking of invariants (AGp formulas). The general
structure of the corresponding BMC instance is the following:

k—1 k
of e Ion N plii+ 1) A\ ~P) (1)
i=0 =]

where I is the initial state, p(i,7+ 1) is the transition between cycles ¢ and i+ 1,
and P; is the property in cycle i. Thus, this formula can be satisfied iff there
exists a reachable state in cycle ¢ (j <4 < k) which contradicts the property P;.
The values of j and k can vary according to the range in which we are looking
for the bug. j = 0 and j = k are the two extremes corresponding to a full and
exact search, respectively.

Our experiments were made on top of the enhanced versions of BMC [I] and
Grasp [13l14], as were described in [I2]. BMC takes an SMV — compatible model
and generates a propositional SAT instance according to Equation (). It also
uses various heuristics to generate a variable ordering file, which is later used by
Grasp to accelerate its search.

3 SAT Checking and Resolution

In this section we briefly outline the principles adopted by modern propositional
SAT-checkers, and in particular those which Grasp is based on. Our description
follows closely the one in [13].

Pruning Techniques for the SAT-Based Bounded Model Checking Problem 61

Most of the modern SAT-checkers are variations of the well known Davis-
Putnam procedure [4]. The procedure is based on a backtracking search algo-
rithm that, at each node in the search tree, first decides on an assignment (i.e.
both a variable and a Boolean value, which determines the next sub-tree to be
traversed) and then iteratively applies the unit clause rule. The procedure back-
tracks once the current partial assignment contradicts one of the clauses. Each
time that such a conflict occurs, Grasp analyzes the cause of the conflict. This
analysis produces two distinct pieces of information:

1. The decision level which the procedure should backtrack to. Unlike the origi-
nal Davis-Putnam procedure, Grasp supports non-chronological backtracks,
thus if the current decision level is d, it can jump back to d—i where 1 <1 < d.
The mechanism for computing the backtrack level is elaborated in [13].

2. New clauses, called conflict clauses, are resolved and added to the clause
database, thereby avoiding future occurrences of the same conflict. For ex-
ample, if the assignment x = T,y = F,z = F inevitably leads to a conflict,
the addition of the conflict clause 7 = (—x V y V z) will cause the search
procedure to backtrack immediately if the above assignment is repeated. In
Section Bl we will further elaborate on the resolution process which Grasp
uses for computing these new clauses.

Conflict clauses are of special interest to us, because they possess valuable infor-
mation for restricting the search. They are a result of time-consuming reasoning
process, which can potentially be shared between SAT instances. It should be
noted here that adding clauses that are consistent with the SAT instance (with-
out adding new variables) typically makes the instance easier to solve, because
it prunes parts of the search tree. This is only an empirical observation, not a
theoretical result. Additional clauses can also slow down the process. First, there
is an overhead associated with more clauses. This overhead is significant espe-
cially when deciding dynamically the next variable. Typically the next variable
is chosen by a procedure which loops over all literals, looking for e.g. the assign-
ment which leads to the maximum number of satisfied clauses. More clauses,
therefore, slows down this proces&@. Secondly, the added clauses are not equally
effective. The addition of one clause can prevent the formation of another, more
effective clause, by pruning the sub-tree in which the other clause would have
been created. These potential overheads caused most modern SAT solvers to
permit a user restriction on the size and number of added clauses.

4 Constraints Sharing

Sharing conflict clauses between SAT instances can be applied whenever solving
two or more SAT instances with non-empty intersection between their clauses
sets. Constraints sharing is thereby expected to be far more effective in cases

2 In our case we used predetermined static variable ordering, which eliminates this
particular overhead.

62 O. Shtrichman

where the solution is based on solving a series of SAT instances which share a
large number of clauses. BMC and AI Planning problems [9] are two such cases.
Pervasive clauses, the restricted version of constraints sharing, was also used in
the past for several EDA problems [8l5], as was previously mentioned.

We begin the description of this technique with several simple definitions. In
the following discussion, we use the same variables to denote CNF formulas and
their associated sets of clauses. The difference will be clear from the context.

Let S; and S5 be two sets of clauses associated with two CNF SAT instances,
and (g represent the set of clauses that are common to S; and Ss, i.e. py =
S1NS2. We will also need ¢; = S; \ po (¢ € {1,2}), the non-overlapping subsets
of S1 and Ss. Finally, let ¢ be a set of clauses that is deducible from g, denoted
by ¢o F 1. Based on the following claim, we will be able to reuse 1 (which is
computed while checking S;) when checking Sy, by checking Sa A 1:

Claim. if o 1 then S, is satisfiable iff Sy A ¢ is satisfiable.

The claim is easy to justify: since ¢g F ¢ then Sy + 1, which implies that
So < Sy A . Thus, Sy is satisfiable iff Sy A v is satisfiable.

In the general case, it is not common that two SAT instances share a large
number of clauses. There is also a difficulty in mapping the variables between
the two instances. However, according to Equation () it is apparent that with
the exception of the clause ¢, : (\/f:j -P), ¢
Thus, ¢; is comprised of the single clause cﬁ

In order to compute v, we need to isolate it from the set of conflict clauses
that are deduced while checking S;. Only then we can reuse it while checking
S5. One solution to the isolation problem is to check ¢ rather than S;. In the
BMC case this can be done by omitting ¢, from S;. However, there are two
drawbacks to this solution. First, ¢y represents the transition relation, which is
assumed to be consistent and therefore satisfiable. Experiments with this option
demonstrated that typically ¢ is trivially satisfied and, as a result, only a small
number of conflict clauses are computed. Second, unlike solving S7, this is an
extra computation task which we prefer to avoid.

Thus, we are looking for a method to isolate i) while checking S;. Before
we suggest an isolation mechanism, in the next sub-section we describe in more
detail the mechanism which Grasp uses for computing conflict clauses.

% is a subset of ¢}, for all t > k.

4.1 Derivation of Conflict Clauses

We explain the mechanism of deriving new conflict clauses by following a sim-
plified version of an example first given by Silva and Sakallah in [I3]. Assume
the clause data base includes the clauses listed in Fig. [[(a), the current truth
assignment is {5 = 0}, and the current decision assignment is 1 = 1. Then
the resulting partial implication graph depicted in Fig. [l (b) describes the unit
clause propagation process implied by this decision assignment.

3 Note that this is true even if P; is not an atomic proposition. In this case the equiv-
alence \/7_ P, = _,(pi = P;) AN\/|_, pi is used, where p; is a new propositional
variable.

Pruning Techniques for the SAT-Based Bounded Model Checking Problem 63

c1 = (—\.’El \2 :BQ)
c2 = (_‘21 Va3V 3!15) Conflict
T4

Decision
c3 = (—\22 V:B4) 1 =1

cqg = (—\23 \2 —|{E4)

(a) (b)

Fig.1. A clause data base (a) and a partial implication graph (b) of the assignment
z1 = 1 shows how this assignment, together with assignments that were made in earlier
decision levels, leads to a conflict.

Each node in this graph corresponds to a variable assignment. The incom-
ing directed edges (z1,x;)...(x;, ;) labeled by clause ¢ represent the fact that
x1...74, x; are c’s literals and that the current value of x1, ..., z; implies the value
of z; according to the unit clause rule. Thus, vertices that have no incoming
edges correspond to decision assignments. The partial implication graph in this
case ends with a conflict vertex. Indeed the assignment x; = 1 leads to a con-
flict in the value of x4, which implies that either c3 or ¢4 cannot be satisfied.
When such a conflict is identified, Grasp determines those variable assignments
that are directly responsible for the conflict. In the above example these are
{z1 = 1,25 = 0}. The conjunction of these assignments therefore represents a
sufficient condition for the conflict to arise. Consequently, the negation of this
conjunction must be satisfied if the SAT instance is satisfiable. We can thereby
add the new conflict clause 7 : (-z1 V x5) to the clause database, with the hope
that it will speed up the search.

4.2 Isolating v

In Section Hlwe argued that it is necessary to identify those conflict clauses which
are deduced solely from . These will be the reusable pervasive clauses. The
description of the derivation process in the previous subsection sheds light on
how this can be achieved. Under the assumption that it is possible to identify
in advance the partition of Sy into 1 and g, we suggest the following isolation
procedure:

1. Mark ¢q clauses.
2. For every conflict clause m, if all clauses leading to the conflict are marked,
then mark 7 and add it to .

In the BMC case, marking ¢ clauses is easy, because we know that all clauses
except ¢, belong to ¢y.

We demonstrate the isolation procedure by considering a case in which ¢;
from the example in Section Bl is in 1, and cs3...c4 € @g. According to step 1,
cs...cq4 are marked. While resolving the conflict in e.g. ¢4, we observe that the

64 O. Shtrichman

unmarked clause c; is one of the clauses that lead to the conflict. We therefore
do not mark the new conflicting clause 7 and do not add it to .

Claim. By following the isolation procedure, we compute v such that ¢g = 1.

Proof. The set of clauses in S in any given time is comprised of three distinct
subsets: g, 1 and ., where @, is the set of the dynamically added conflict
clauses. To prove the claim we use induction on the size of ¢, . Initially ¢, and
1 are empty, thus obviously g F % is true in the base case. For the induction
step, we assume g - ¥ and add 7 to ¢,. We will focus on those cases where 1
is updated and denote the updated v by v, i.e. 90’ = 1) Aw. There are two such
cases:

1. 7 is derived from ¢q only. In this case pg F 7. Together with the induction
hypothesis we get g = 1 A m, which implies ¢q F 1)'.

2. Otherwise, 7 is derived from g U IT (where IT is a subset of ¢.). We are
interested in the case in which v is updated. According to step 2, this can
only happen if all the clauses in IT are marked. In this case we have:

(1) o -9 (induction hypothesis)

(2) po A Il + 7 (assumption of case 2)

(3) v 1II (II’s clauses are marked, therefore they were added to 1.)
(4) poF 1T (from 1,3)

(5) wo b m (from 2,4)

(6) wo b Am (from 1, 5)

and from (6), we have that @g - 1’
O

Once 9 is computed and saved to a file, we can simply merge it, after mapping
the variable names, with Sz. Sy A ¢ should typically be solved faster than S,
alone.

4.3 Implementation

While so far we referred to two SAT instances, the gradual nature of BMC allows
to accumulate information from all previously checked instances with a lower k.

In the previous subsection we showed, given the list of ¢ clauses, how to alter
the SAT checker so it can generate v . In Fig. 2] we suggest a procedure which,
based on this new feature, merges constraints sharing into the iterative BMC
process. Constraints from previous runs are saved in a file called <model>.psi
together with their corresponding k (line 2 in the procedure refers to this figure
through the variable ‘index’). These constraints are later merged into each new
instance with a higher k. The procedure is bounded by the global variable D
which holds the diameter of the design.

Pruning Techniques for the SAT-Based Bounded Model Checking Problem 65

Bool Solve (model M, from j, to k, jump size jmp)
1. Generate the file M. j-k.cnf where ¢q clauses are marked.
2. Add M.psi clauses with index < k to M. j-k.cnf. Mark them as o clauses.
3. SAT-solve M. j-k.cnf while adding 1 clauses to M.psi.
4. If result = unsatisfiable
if (k < D) return Solve (M, k + 1,k + jmp, jmp) else return True.
else print trace, and return False.

Fig. 2. An iterative Bounded Model Checking procedure with constraints sharing.

5 Internal Constraints Replication

In [T2] we suggested a technique called constraints replication, which adds con-
straints to ¢f based on the almost symmetric structure of this formula (without
the initial state Iy, ¢f has k equal parts up to variable names). In order to de-
scribe this technique we will use two new notations: x; denotes a variable x in
cycle i, and 7V denotes the clause obtained by shifting 7 cycles each variable
in the clause 7. For example, if 7 = (23, ys) then 72 = (x5, ys). We will use a
similar notation for set of clauses.

Let m be a conflict clause which is deduced from a set of clauses S C ¥, i.e.
S+ 7. We claim that if S@) ¢ ok, then S 70 Consequently, the replicated
clause ™™ is also a conflict clause which can be added to @f. The problem is that
since @f is not completely symmetric (due to Iy), it is not always the case that
S c ok (ignoring, temporarily, the question of i’s range). In [I2] we suggested
a two-step ’trial and error’ approach to solve this problem. Given a conflict clause
x, first generate all replicated clauses by simultaneously increasing or decreasing
the variables indices in m, as long as they stay in the range 0..k. In the second
step, which we refer to as the simulation phase, check if the complement of
each replicated clause indeed leads to a conflict (recall that by definition every
assignment that satisfies the negation of a conflict clause must lead to a conflict).
If yes, add 7 to k. If not — discard it.

5.1 An Alternative Solution

The problem with the simulation phase is that checking whether a given partial
assignment leads to a conflict may require a large computational effort. If we
choose to minimize the overhead by limiting the search time, we take the risk
that some ‘good’ replicated clauses are discarded.

Based on a procedure similar to the one described in Section 2] we would
now like to offer an alternative to the simulation phase. This method will always
identify the good replicated clauses and will hardly require any overhead. For the
sake of simplicity we will handle here @§ rather than <p§?. Only minor adjustments
are needed for handling the more general case.

66 O. Shtrichman

Our goal is to check efficiently whether a given set of clauses S has a shifted set
S and compute the range of i. The following procedure utilizes ks structure
to achieve this goal:

1. While generating ¢f, mark each clause c if ¢ € @f for i = 0..k (all clauses
except Iy and cp.

2. For every conflict clause m, if all clauses leading to the conflict (the S clauses)
are marked, then mark 7 as ‘replicable’. In addition, record ls and hg, the
lowest and highest cycle index in S, respectively.

3. For each replicable clause 7, add a replicated clause 7(* for i in the range
—lg...(k — hg).

Ezample 1. Consider the conflict clause 7 : (—21 V 22) which is deducible from
the set of clauses S:

ch=(~11 VYV z)

= (-w1V —z3)

(c} ..y are structurally equivalent to c;..c4 of Fig. [l Here we use the notation in
which subscripts represent cycle numbers). If ¢}..cj are marked in step 1, then
7 is replicable. We note that [g = 1 and hg = 3. Thus, if e.g. kK = 5, we can add
(in addition to 7 itself) the replicated clauses:

a0 (mzoVz) W (maVzg) m@ o (mas Vo).

5.2 When Do Replicated Clauses Become Pervasive?

After defining the conditions for adding clauses both outside (pervasive clauses)
and inside (replicated clauses) the SAT instance, we now investigate the circum-
stances in which these two techniques can be combined, i.e. when do replicated
clauses become pervasive. We once again use S to denote the set of clauses that
imply the conflict clause .

Claim. A replicated clause 79 is pervasive if 7 is pervasive (where i is in the
range as defined in step 2 of the procedure listed in Section [E1]).

Proof. Given that 7 is pervasive, it implies that S C <p§+1. Since 7 is also

replicable, S only includes clauses that were marked in step 1 of the procedure.

Together this implies that S ¢ goé“ and therefore goﬁ“ F 7. Thus, 7 can

be reused with ™, O

6 More Related Work: Incremental Satisfiability

The idea of solving SAT instances incrementally can be attributed to Hooker
[7]. He proposed an algorithm that given a satisfiable instance and an additional
clause, it checks whether the satisfiability is preserved when the new clause

Pruning Techniques for the SAT-Based Bounded Model Checking Problem 67

is added to the formula. His experiments showed that solving large instances
incrementally can be faster than solving them as one monolithic formula. It was
later extended by Kim et al. [10] and used for path delay fault testing, a process
in which the effect of faults on delays in certain paths is checked. The large
number of paths typically requires the partition of the problem into a series of
instances, each representing a subset of the tested paths. All the paths share the
same prefix P, which empirically is far larger than the suffixes s;...s;. Incremental
satisfiability is then used in the following way. A satisfying assignment for P is
sought, and conflict clauses are added to P (those clauses that are deducible
directly from P). If P is unsatisfiable, the process halts because the conjunction
of P with S; for all 7 is obviously unsatisfiable. Otherwise, the trace is used as
an initial assignment when checking each of the instances P A S; for all 7. In case
the initial trace does not lead to a satisfying assignment, the standard backtrack
process is invoked.

The resemblance between their and our work is rather clear: the prefix P in
their work is 9 = S; NSy in ours. The addition of conflict clauses that were
computed while looking for a satisfying assignment to P is equivalent to the
option of checking g directly. In Section [@] we argued that this is ineffective in
the BMC case, because (g is satisfied too fast for creating a substantial number
of conflict clauses, which are essential for speeding up the search later.

7 Experimental Results

To experiment with the two suggested techniques, we randomly chose 15 dif-
ferent hardware designs from IBM’s internal benchmark set. The results of this
experiment show that constraints sharing has a consistent positive effect, or only
marginal negative effect due to its overhead. However, as was explained in Sec-
tion B] this consistency can not be guaranteed for all future cases. Replicating
clauses and sharing them, as described in Section [§, also had a very positive
effect, although somewhat less consistent.

The results of the 15 cases can be divided into 3 groups: the first group
includes 6 designs, which were solved at least 50 percent faster due to the sug-
gested techniques. The second group includes 7 designs, which are solved very
fast with or without the new techniques. The satisfying assignment is found in
these cases before a significant number of conflict clauses are created, and there-
fore sharing them or replicating them has little effect, if any. In some of these
cases the overhead is larger than the benefit, which results in a small negative
effect. The last group includes 2 designs that timed-out with all methods.

In Fig. Bl we present results of five representative cases from the first two
groups.

The last instances of designs 3, 8, 9 and 10 are satisfiable, while design 14
is unsatisfiable in all 5 instances. The C-Sharing strategy refers to constraints
sharing, where the ‘added clauses’ line indicates the number of clauses that were
added to each instance. The Flip strategy is a variation of the C-Sharing strategy:
rather than using the same configuration for all instances (by ‘configurations’ we

68 O. Shtrichman

Strategy Design # 10 Design # 14

k— |27 |28 |29 |30 |31 14 |15 |16 |17 |18
Normal |time(sec) 61 [102 |174 (144 |14 10 |91 192 |* *
C-Sharing|time(sec) 63 |77 |80 |47 |16 10 |58 |155 |1.6E4*
added clauses||0 973 (1092 (1208 |1253 |||0 925 [2117 |3474 (6116

Flip time(sec) - 50 |- 62 |- - 31 |- 4219|-
added clauses||0 1112|1206 |1361 {1408 |||0 972 |1827 [3152 |6057
C+rep time 48 |21 19 (44 |30 13 48 214 (6211 |*

replicated 2094 |1704 1216 {1075 {450 |{||5932 (5656 |7778 |1.7E4*
added clauses||0 482 (1113 |1536 (2014 |||0 3374|5773 |9806 |1.6E4

Strategy Design # 3 Design # 9
k—|10 |11 |12 |13 |14 34 |35 |86 |37 |38
Normal |time (sec) 3 10 |13 |238 |1 34 |39 (43 |49 |61
C-Sharing|time (sec) 3 12 |7 751 35 (38 |44 |47 |58

added clauses||0 207 [571 [955 |1553 |||0 4 8 9 10

Flip time (sec) - 9 - 8 - - 42 |- 53 |-
added clauses||0 255 656 (1126 {1709 |[|0 12 13 17 18
C + rep |time 4 14 11 23 2 25 (28 (31 33 |45

replicated 1229 1508 {1954 2277 |0 32 |33 |34 |35 |1.5E4
added clauses||0 726 1877 |3024 {4380 |||0 33 |67 |102 (138

strategy Design # 8
k—|31 |32 |33 |34 |35
Normal |time (sec) 13 (14 (14 |18 |38
C-Sharing|time (sec) 13 |14 |15 (18 |29
added clauses||0 4 9 11 14
Flip time (sec) - 15 |- 22 |-
added clauses||0 11 14 |18 |20
C + rep |time (sec) 15 |16 |18 (19 |29
replicated 58 |30 |62 |32 |4638
added clauses||0 60 |91 155 |188

Fig. 3. Representative results of four strategies show the advantage of constraints shar-
ing and replicated clauses in reducing the overall verification time. C-sharing refers to
the standard constraints sharing procedure, and the Flip strategy refers to a procedure
where the search strategy alternates in each instance. C' + rep is the same as C-Sharing,
with the addition of internally replicated clauses. Best results are bold-faced, and as-
terisks (*) represent run times exceeding 20,000 sec.

refer to different ordering strategies, as were listed in [12]), we switched it every
run. The instances in the odd columns were solved with an alternative configu-
ration, and are therefore left empty to avoid confusion. The generally — better
results are related to the different set of clauses that were added to each of these
instances. This was a repeating phenomenon in the experiments we conducted,
which indicates that adding clauses that were deduced by a different configu-
ration can cause larger portions of the search space to be pruned. Obviously
this can only be a good strategy if the alternative strategy similarly performs,

Pruning Techniques for the SAT-Based Bounded Model Checking Problem 69

on average, as the default one. The C + rep strategy is the same as C-sharing,
with the addition of replicated clauses. The ‘replicated’ line refers to the number
of replicated clauses that were added. These clauses can become pervasive (see
Section[5.2), which explains the increase in the number of ‘added clauses’ in the
last line.

8 Summary

We introduced constraints sharing, a technique for sharing information between
SAT instances whose clauses sets have a non empty intersection. This technique
can be seen as a generalization of an older method called pervasive clauses,
which was first introduced in the context of ATPG. We showed how this tech-
nique exploits the gradual nature of bounded model checking for shortening the
overall verification time. We also showed how the same principle can be used,
in the case of invariants checking, for adding constraints within a single SAT
instance. Experimental results demonstrate the rather consistent positive effect
that both of these methods have. Based on this observation, we implemented
the two improvements as part of the default configuration of our versions of BMC
and Grasp.

There are two experimental research directions that can be based on these
techniques. First, using constraints sharing when checking two different proper-
ties of the same design. Although the percentage of shared clauses is expected
to be smaller in this case (the property’s clauses are different, and they impose
a different cone of influence), it should nevertheless accelerate the overall ver-
ification time. Secondly, using the same techniques in other domains, such as
AT Planning problems. SAT-based planning has been used in the past in a very
similar way to BMC: a solution is found by solving a series of SAT instances,
where each instance corresponds to a different number of allowed steps in the
plan. See e.g. [3] and [9] for more details on this subject.

References

1. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proceedings of the Workshop on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS99), Lect. Notes in Comp. Sci. Springer-
Verlag, 1999.

2. A. Biere, E. Clarke, R. Raimi, and Y. Zhu. Verifying safety properties of a power
pcT™ microprocessor using symbolic model checking without bdds. In N. Halb-
wachs and D. Peled, editors, Proc. 11*" Intl. Conference on Computer Aided Ver-
tfication (CAV’99), Lect. Notes in Comp. Sci. Springer-Verlag, 1999.

3. R.I. Brafman and H. H. Hoos. To encode or not to encode: linear planning. IJCAI,
pages 988-993, 1999.

4. M. Davis and H. Putnam. A computing procedure for quantification theory. J.
ACM, 7:201-215, 1960.

5. L.G.e. Silva, L.M. Silveira, and J.P.M. Silva. Algorithms for solving boolean sat-
isfiability in combinational circuits. In Proceedings of the IEEE/ACM Design,
Automation and Test in Europe Conference (DATE), March 1999.

70

10

11.

12.

13.

14.

O. Shtrichman

J.F. Groote, J.W.C. Koorn, and S.F.M. van Vlijmen. The safety guaranteeing
system at station Hoorn-Kersenboogerd. Logic Group Preprint Series 121, Utrecht
University, 1994.

J. N. Hooker. Solving the incremental satisfiability problem. Journal of Logic
Programming, 15:177-186, 1993.

J.P.M. Silva and K. A. Sakallah. Robust search algorithms for test pattern gen-
eration. In Proceedings of the IEEE Fault-Tolerant Computing Symposium, June
1997.

H. Kautz and B. Selman. Planning as satisfiability. In Proc. of the 10" European
Conf. on Al pages 359-363, 1992.

J. Kim, J. Whittemore, J.P.M. Silva, and K. A. Sakallah. Incremental boolean
satisfiability and its application to delay fault testing. In IEEE/ACM International
Workshop on Logic Synthesis (IWLS), June 1999.

M. Sheeran, S. Singh, and G. Stalmarck. Checking safety properties using induction
and a sat-solver. In Hunt and Johnson, editors, Proc. Int. Conf. on Formal Methods
in Computer-Aided Design (FMCAD 2000), 2000.

O. Shtrichman. Tuning SAT checkers for bounded model checking. In E.A. Emer-
son and A.P. Sistla, editors, Proc. 12" Intl. Conference on Computer Aided Veri-
fication (CAV’00), Lect. Notes in Comp. Sci. Springer-Verlag, 2000.

J.P.M. Silva and K. A. Sakallah. GRASP — a new search algorithm for satisfiability.
Technical Report TR-CSE-292996, Univerisity of Michigen, 1996.

J.P.M. Silva and K. A. Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEEFE Transactions on Computers, 48:506-516, 1999.

	Introduction
	Bounded Model Checking of Invariants
	SAT Checking and Resolution
	Constraints Sharing
	Derivation of Conflict Clauses
	Isolating $psi $
	Implementation

	Internal Constraints Replication
	An Alternative Solution
	When Do Replicated Clauses Become Pervasive?

	More Related Work: Incremental Satisfiability
	Experimental Results
	Summary

