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Abstract. Given a collection of connected components, it is often de-
sired to cluster together parts of strong correspondence, yielding a hier-
archical structure. We address the automation of this process and apply
heuristics to battle the combinatorial and computational complexity.
We define a cost function that captures the quality of a structure rela-
tive to the connections and favors shallow structures with a low degree
of branching. Finding a structure with minimal cost is NP -complete.
We present a greedy polynomial-time algorithm that approximates good
solutions incrementally by local evaluation of a heuristic function. We
argue for a heuristic function based on four criteria: the number of en-
closed connections, the number of components, the number of touched
connections and the depth of the structure.
We report on an application in the context of formal verification, where
our algorithm serves as a preprocessor for a temporal scaling technique,
called “Next” heuristic [2]. The latter is applicable in reachability anal-
ysis and is included in a recent version of the Mocha model checking
tool. We demonstrate performance and benefits of our method and use
an asynchronous parity computer and an opinion poll protocol as case
studies.

1 Introduction

Imposing a hierarchical structure on a collection of components is helpful in
many contexts for different reasons, such as better understanding and better
analysis.

Consider four items, call them A, B, C, and D. They may be connected in
some way, say by a mutual dependency. Let us assume that this gives rise to
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Fig. 1. Different ways to hierarchically partition a square

a ring structure, like in Fig. 1. Then, instead of viewing the system as a set
with 4 elements, we can understand it structured as {{A, B}, {C, D}}, like in
(i). Here, only two connections A-C and B-D need to be visible (or understood)
at the top level. With the new compounds {A, B} and {C, D} we found a more
abstract description of the same data, that can be refined on demand. Another
possible partition is {{A, D}, {B, C}}, but this requires all connections to be
visible at the top-level, and thus should be rejected in favor of the first. We can
partition in a hierarchic fashion: for example, {{{A, B}, C}, D}. In general,
given a set, we partition it, and apply the process recursively to each set in the
partition.

The set of distinguishable hierarchical partitions is adequately described as
the set of rooted trees over leaf nodes {A, B, C, D}. In Fig. 1, we draw these
trees as cascading boxes that may contain other boxes. Every box corresponds to
an intermediate node and the outermost box to the root. As a rule, we favor trees
that have a low degree of branching and are nevertheless shallow. The diagrams
(ii) and (iii) depict both not very good trees, since they are either too broad or
too deep. Moreover, it is desirable to minimize dependencies among remote tree
parts, i.e., the number of links crossing box boundaries should be low.
We can regard this as a general design problem, where trees form an architec-
tural hierarchy over atomic units. This modular description helps to see the same
system on different levels of abstraction or detail. The emphasis on modularity
and hierarchy is a central theme in software engineering, particularly in software
design notations such as Statecharts [10] and UML [3]. While the most appro-
priate hierarchical structure can best be chosen by the designer, automatically
constructing a hierarchical partition is required if no manually chosen structure
is available, or if the original structure is lost during translations between models
(e.g., during the process of abstraction).

Formal verification is a field where structure is particularly useful, since it
is generally considered infeasible to deal with unorganized descriptions. Struc-
ture helps to spot design flaws, but it can also be exploited to make algorithmic
treatment more efficient, or even possible at all. Well-known examples for this
are model checking problems. Model checking [4, 11] is a powerful technique for
discovering inconsistencies in high-level designs in hardware and communica-
tion protocols. Since it typically requires search in the global state-space, much
research aims at providing heuristics to make this step less time- and space-
consuming.
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Consider once more the example with the four components. Let us interpret
each atom as a process and each connection as the ability to synchronize on
some action. We view the system hierarchically decomposed as in Fig. 1 (i).
Tools such as the concurrency workbench [5] can analyze it in the following way.
First take the product of processes A and B. Now their synchronization can
be viewed as internal to this composite process, and we can apply a reduction
based on weak bisimulation minimizing the size. Analogously, compose C with
D and minimize. The obtained description is still adequate, since it shows the
same behavior (modulo the internal synchronization), but questions about this
behavior are algorithmically easier to answer.

An alternative method that benefits from a hierarchical structure is imple-
mented in a recent version of the model checking tool Mocha, and will form the
basis of the experiments in this paper. The technique, called “Next” heuristic, is
a heuristic for on-the-fly search based on compressing unobservable transitions
to a single meta-transition [2]. The basic idea is to describe the implementation
P in a hierarchical manner, so that P is a tree whose leaves are atomic processes,
and internal nodes compose their children and hide as many variables as possi-
ble. The basic reduction strategy, proposed by many researchers, is simple: while
computing the successors of a state of a process, apply the transition relation
repeatedly until a shared variable is accessed. This is applicable since changes
to a private state are treated as stuttering steps. The benefit is greatly ampli-
fied by applying the reduction in a recursive manner exploiting the hierarchical
structure, and has been shown to give significant reductions in space and time
requirements, particularly for well-structured systems such as rings and trees.

As it turns out, the gain depends heavily on the hierarchical partition we
impose. Ultimately, the run-time of the model checking algorithm can be seen as
a measure on how to compare different choices. However, in practice we would
look for qualifications that are faster to evaluate. And academically, run-time
comparisons are too dependent on low-level implementation details to give clear
analytic data. Thus we strive for a more abstract notion of comparison by means
of a cost measure. For typical measures, the problem of finding the best hierarchi-
cal decomposition is likely to be NP -hard, and hence we must look for heuristics
that are to be validated by experimentation.

In this paper, we strive to “discover” good hierarchies. We give a cost mea-
sure that allows us to compare hierarchical partitions, whenever the means of
connection can be adequately described by a hypergraph. Determining the best
structure for this measure is NP -complete. We present a greedy polynomial-time
algorithm, that approximates good hierarchical partitions by local evaluation of
a heuristic function. We corroborate applicability and usefulness via two case
studies with our implementation of this algorithm in the Mocha verification
tool. When applied to a tree-shaped topology, this results in significant time-
and memory-savings. In the second class of examples, the run-time performance
is not drastically improved.

Plan. The next section gives a formal definition of the problem and classifies its
complexity. In Sect. 3 we develop the algorithm to approximate good solutions.
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Table 1. The combinatorial explosion in the number of distinguishable tree-indexings

n 1 2 3 4 5 6 7 8 9 10
T (n) 1 1 4 26 236 2·752 39·208 660·032 12·818·912 282·137·824

Section 4 reports on experiments with sample problems. Section 5 reflects on the
limitation of our method, contrasts it to related work and lists open problems.

2 The Tree-Indexing Problem

In the following, we describe systems as hypergraphs, where the atomic units
correspond to vertices and their connections are represented by hyperedges.
E.g., in a reactive module description every hyperedge would correspond to a
variable shared by the modules it connects to. Hierarchical partitions introduce
an additional tree structure on top of this hypergraph and are augmented with
a cost value. We briefly treat combinatorial and computational complexity of
finding a tree of minimal cost.

A hypergraph H= (C, E) is a finite set of vertices C together with a multi
set E , where every hyperedge e ∈ E is a subset of C. We assume that every
e corresponds to a unique label 	e. Hyperedges of size 0 or 1 are disallowed.
We draw hyperedges as branching lines. This coincides with common graph
representation for the special case that every hyperedge is of size 2.

A tree-indexing T of a hypergraph H= (C, E) is a rooted tree over leaf nodes
C, where every internal node has at least two children. We draw internal nodes
as polygons, all contained polygons and vertices v ∈ C are children of this
node. The outermost polygon corresponds to the root. Every tree-indexing is
qualified by a cost value dependent on E . For instance, in Fig. 1, the tree-indexing
{{A, B }, {C, D}} is better than {A, B, C, D}, and thus should be of lower cost.

Combinatorial Complexity. Given a hypergraph with n labeled vertices, we want
to determine the number T (n) of distinguishable tree-indexings. This is in an
equivalent formulation recorded as Schröder’s fourth problem [13]. It can be
solved (for every fixed n) via a generating function method. Let ϕ(z) be the
ordinary generating function, where the nth coefficient corresponds to T (n). Let
ϕ̂(z) be its exponential transform. We can construct an equation, that ϕ̂(z) has
to satisfy according to the theory of admissible constructions [7]. Every tree-
indexing is either atomic, i.e. represented as z, or a set of at least two other
tree-indexings, namely its children. This can be expressed using the admissible
constructions Union and Set.

ϕ̂(z) = Union (z, Set (ϕ̂(z), cardinality ≥ 2)) (1)
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Equation (1) can be transcribed as follows.

ϕ̂(z) = z +
∑
k≥2

1
k! · (ϕ̂(z))k

⇐⇒ ϕ̂(z) = z + exp (ϕ̂(z)) − ϕ̂(z) − 1
⇐⇒ exp (ϕ̂(z)) = 2 ϕ̂(z)− z + 1

(2)

There is no closed form known for ϕ̂(z), ϕ(z), or T (n). However, for every fixed
n we can extract the nth coefficient of ϕ(z) with algebraic methods and thus
approximate T (n), as done in [6]. Table 1 gives an impression how fast this
series grows. Thus we have only little hope to perform an exhaustive search on
the domain of possible tree-indexings.

Computational Complexity. We can formulate the problem of finding a good
tree-indexing as an optimization problem relative to a fixed cost function. This
function should punish both deep structures and hyperedges that span over big
subtrees. For every e ∈ E let Te denote the smallest complete subtree of T , such
that every vertex v ∈ e is a leaf of Te. With leaves(T ) we denote the set of leaf
nodes in a tree T . The depth of T is the length of the longest descending path
from its root. The depth cost of a tree T is defined as a function

depth cost(T ) :=
{
2 if depth(T ) = 1
depth(T ) otherwise .

(3)

The cost of a tree-indexing T is then defined relative to H= (C, E).

cost(T ) :=
∑
e∈E

depth cost(Te) · |leaves (Te) | (4)

For example, the tree-indexing (i) in Fig. 1 has cost 2 · 2 · 2 + 2 · 2 · 4 = 24,
which is preferable to tree-indexings (ii) and (iii) with costs 4 · 2 · 4 = 32 and
2 · 2 + 2 · 3 + 2 · 3 · 4 = 34 respectively.

Edge-Guided Tree-Indexing: Given a hypergraph H= (C, E) and a number
K ∈ IN . Decide whether there exists a tree-indexing of cost at most K.

The problem Edge-Guided Tree-Indexing isNP -complete, even if we restrict
to the special case where H is a multi graph. Containment in NP holds, since we
can guess any tree-indexing and compute its cost in (non-deterministic) polyno-
mial time. ANP -hardness proof by reduction fromMinimum Cut Into Equal-
Sized Subsets is given in [12]. We expect Edge-Guided Tree-Indexing
to remain NP -hard for other non-trivial definitions of a cost function like∑

e |leaves(Te)|, though we do not have a proof for this. This precludes the
possibility to determine an optimal tree-indexing in polynomial time1 and sug-
gests the application of heuristics in order to find a reasonably good tree-indexing
efficiently.
1 Unless NP turns out to be equal to P .
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3 A Greedy Algorithm to Partition Hierarchically

In this section we develop a greedy-style algorithm that constructs a tree-
indexing by successively grouping together sets with strong correspondence. The
choice of these candidates relies on heuristics, which make use of a key obser-
vation: strong correspondences are likely to represented by a large number of
connections.

A schematic description of our proposed algorithm is given in Fig. 2. The
variable F is used to maintain a partial tree-indexing, i.e., a forest F with leaves
C. It is initialized as the forest with |C| trees, each consisting of a single node. The
priority queue Q is ordered according to a rating function r : ℘D × 2C

� → IR. ℘D

is the set of forests over leaves D ⊆ C and thus contains all possible sub-forests
of F . 2C

� denotes a multi set of hyperedges and initially corresponds to E . The
top element of the queue is a subset of F with maximal r-value.

The algorithm proceeds as follows. An initial set of candidates proposed
for grouping together is inserted in the priority queue. Then a small number
of executions of the while-loop follow. In each execution, the most promising
candidate A is dequeued and the data is updated: in the forest, the trees in
A are replaced by a tree with the fresh root A′ and children t ∈ A. Every set
containing trees t ∈ A is removed from the priority queue and new candidates
containing A′ are inserted. Hyperedges e ⊆ leaves(A′) are deleted, since they
should not influence later selections.

Algorithm: partition incrementally
input: hypergraph H = (C, E)
output: tree-indexing over leaves C

PriorityQueue Q := emptyQueue
Forest F := C
Forall considered candidates A ⊆ F

insert(A, Q)
While notempty(Q)

A := top(Q) /� pick best candidate �/

let A′ := fresh root node with children t ∈ A
F := (F \ A) ∪ {A′}
E := E \ {e | e ⊆ leaves(A′)} /� remove covered hyperedges �/
update(E , A, A′) /� replace all t ∈ A by A′ �/

Forall B ∈ Q with B ∩ A �= ∅
remove(B, Q)

Forall new candidates D containing A′

insert(D, Q)
Return F

Fig. 2. Incremental algorithm for constructing a tree-indexing
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This description leaves open the questions, what should be used as a rating
function and which candidates should be considered. We explain these aspects
of the algorithm in the following.

Developing a Good rating function. The local choice of the best candidate could
be performed by means of the cost function defined in (4), i.e., by picking the
candidate with lowest cost after clustering. We chose not to do so for two reasons.
First, the specific cost function was derived such that an NP -complete problem
could be encoded into it; for small variations of this definition, the proof failed
– thus, this particular definition is somehow artificial. Second, we would like to
tune the choice by means of parameters in the rating function. Doing this with
the cost function would almost certainly destroy the provable NP -hardness, and
thus the justification for the choice.

Instead, we develop a rating function subsequently by taking into account
the- – supposedly – crucial factors concerning the structure of the proposed can-
didate. Most importantly, we want to know the number of additional hyperedges
that are completely covered by this set, and thus can be hidden from the outside
without losing information.

Def 1 (cover number) Let H= (C, E) be a hypergraph, F a forest over leaves
C, A= {T1, . . . , Tk} ⊆ F . The cover number of A, in symbols 〈〈A〉〉, is defined
as the number of hyperedges covered by the trees in A.

〈〈{T1, . . . , Tk}〉〉 := ∣∣{	e

∣∣ e ∈ E , e ⊆ leaves(A), ∀i. e �⊆ leaves(T i)
}∣∣

Though this value tells a lot about a candidate, it is isolated not a good guideline.
Recall that the set C has naturally always the highest possible cover number
|{	e

∣∣ e ∈ E}|.
We relate the cover number to the size n of a candidate, where size matters

in terms of possible connections, which is
(
n
2

)
=O(n2). We propose the following

rating function.

rpref (A) :=
〈〈A〉〉
|A|2 (5)

In the following we refine rpref by adding more structural information.

Def 2 (touch of a candidate) Let H= (C, E) be a hypergraph and F be a for-
est over leaves C. Then the touch of A ⊆ F is defined as the labels from hyper-
edges that connect A with the rest of H.

touch(A) := {
	e

∣∣ e ∩ leaves(A) �= ∅ ∧ e �⊆ leaves(A) }

Def 3 (depth of a candidate) The depth of a tree with only one node
equals 0. Let F be a forest, A= {T1, . . . , Tk} ⊆ F . The depth of A is defined
as

depth ({T1, . . . , Tk}) := 1 + max
1≤i≤k

depth(T i)
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We do not want to cut out subsystems, that are multiply connected to the rest,
i.e., those who share many hyperedges with their complement. This is reflected by
the number of labels in the touch: if it is small, the candidate is more attractive.
Also, it is perceivable that preference should be given to candidates with small
depth. Hence we propose the following improved rating function.

r+pref (A) :=
〈〈A〉〉
|A|2 +

ε1
|touch(A)| +

ε2
depth(A) (6)

The parameters ε1 and ε2 are supposed to be chosen small and positive. For
the experiments in Sect. 4.1, the assignments ε1 := 1/1000, ε2 := 1/100000 were
used.

Restricting the Set of Considered Candidates. In our formulation of the algo-
rithm partition incrementally we remained unclear what the considered candi-
dates are. We want to weed out hopeless candidates, e.g., those not sharing
any labels, before adding them to our priority queue. In a positive formulation,
consider only candidates, that are extensions of interesting pairs.

Def 4 (interesting pair) Given a hypergraph H(C, E) and a forest F over
leaves C. An interesting pair {T1, T2} is a subset of F , such that touch(T1) ∩
touch(T2) �= ∅.

Clearly, every candidate that is not a superset of an interesting pair has cover
number 0 and thus can be neglected. As it turns out in our implementation,
the expensive part of the algorithm is the computation of the cover numbers.
First computing interesting pairs and then extending them to candidates is an
advantage.

The number of candidates can still be excessive. Consider a hyperedge con-
necting all vertices, then all pairs are interesting pairs. Since the number of
subsets of C is exponential in |C|, an exhaustive enumeration is not feasible for
large systems. If conservative techniques (like considering just extensions of in-
teresting pairs) do not suffice, we have to apply a more rigorous pruning, even
for the price of thereby ignoring good candidates. An obvious suggestion is to
consider only candidates up to a certain size k, thus establishing an upper bound
of nk+1−n−1 candidates. This k can be adjusted according to n, which provides
a simple and reasonable method to prune the search.

In the algorithm, the number of forests – initially n – decreases by one with
each execution of the while loop. Operations like evaluating the rating function,
testing B∩A �= ∅, and constructing new candidates containingA′ can be assumed
to be O(n), thus one execution of the while loop has the run-time bound O(n ·
nk+1). The whole algorithm partition incrementally has n executions of the while
loop, which yields the polynomial bound O(nk+3) on its run-time.

4 Experimental Results

We implemented the algorithm from Sect. 3 in an experimental version of the
Mocha verification tool [1]. For symbolic (BDD-based) model checking, the
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Java implementation makes use of native libraries. However, our experiments
do not make use of this option and perform the check in a purely enumerative
manner. Therefore, given run-times and memory requirements are those of the
Java Virtual Machine, executing on a Sun Enterprise 450 with UltraSPARC-II
processors, 300 MHz. A contingent of 128 MB of memory was allocated, run-
times are in milliseconds. Together with an optimization in the enumerative
check called “Next” heuristic [2], we are able to corroborate effectiveness and
usability of our algorithm in some simple examples. We consider an asynchronous
parity computer and an opinion poll protocol. The Mocha specifications are
given in [12].

Note that in these experiments the checked property influences the obtained
structure. InMocha every property relies on variables of the system. These vari-
ables can not be hidden and therefore are neglected in the partition algorithm,
i.e., they are ignored in the evaluation of the rating function.

4.1 Asynchronous Parity Computer

This example models a parity computer, designed as a binary tree (Fig. 3). The
leaf nodes are Client modules (abbreviated with C ), communicating a binary
value to the next higher Join. A simple hand-shake protocol is devised by the
two variables req and ack . All components are supposed to move asynchronously.
Thus the join nodes have to wait for both values to be present, before reporting
their exclusive-or upwards. The Root component, after receiving the result of
the computation, hands down an acknowledgment. When a client receives an
acknowledgment, it is able to devise a fresh value.
We consider binary trees with N client nodes, where N varies from 3 to 8. The
number of variables increases linearly with N , whereas the state-space grows
exponentially. The sample question we pose is whether the module Root will
ever output a value zero or one. We expect our model checking algorithm to
falsify the claim, that it never will.

Reachability involves computing the successors of every state encountered,
starting with the initial states. Consider the set S of all the processes. Then,
successors of a state are computed by executing one step of one of the processes
in S. Now suppose, we cluster the processes Join00, C000, and C001 into one
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Fig. 4. Parity computers N = 3, . . . , 8, partitioned with rating function rpref

composite process called P , and replace these three processes in S with P . It
is clear that the communication between J00 with its children clients can be
hidden from the rest of the system. Consequently, in reachability analysis of S,
when we compute the successors due to execution of P , we can let the sub-
processes in P repeatedly execute until Join00 communicates with its parent
Join0. This is formalized in Mocha by substituting P by a construct next Θ
for P , where atomic transitions correspond to sequences of transitions of P until
a variable shared with the remaining system is accessed. The modified search
yields an improved performance as it cuts down on unnecessary interleavings.2

This scheme can be applied repeatedly. It should be clear that the effectiveness
of the scheme depends on the hierarchical partition.

An intuitively good choice for this hierarchical partition is grouping to-
gether bottom up. Detecting this algorithmically is subtle. E.g., the difference
between {Join0, Join00} and {Client000, Join00} is only minor, since both
pairs cover exactly two variables. An incautious technique easily runs into er-
rands, as to be seen in Fig. 4. Using rpref as rating function in the algorithm
partition incrementally leads to uncomfortably deep hierarchies.

The more sophisticated rating function r+pref performs far better, as seen
in Fig. 5. The parameters ε1 and ε2 were calibrated to ε1 := 1/1000 and
ε2 := 1/100000, giving shallow structures a smaller bonus than those touching
only few variables.

2 A well-known method for reducing state-space in asynchronous systems is based on
partial-order reductions [9]. The “Next” heuristic is incomparable to this method,
see [2].
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Fig. 5. r+
pref yields shallower hierarchical partitions with lower cost values than rpref

Table 2. Parity computer: Comparison of two heuristic functions

N partition |table| check

3 162 95 1·121
4 853 645 4·921
5 740 1·943 17·086
6 2·811 16·045 161·394
7 9·928 58·351 694·834
8 47·239 410·901 5·442·315

N partition |table| check

3 105 51 973
4 148 117 1·707
5 627 139 1·780
6 2·097 205 3·000
7 10·592 271 4·395
8 50·664 469 8·322

N partition |table| check

3 57 51 404
4 75 117 1·097
5 127 139 1·726
6 516 205 2·929
7 247 271 4·364
8 342 469 8·184

Using rpref as rating function r+
pref , ε1 := 10−3,ε2 := 10−5 r+

pref with |A| ≤ 2

The deep hierarchical structure obtained by using rpref lead to excessive
number of explored states, whereas with r+pref the growth of the explored state
space with increasing N is only moderate. This gap is also reflected by the
significantly higher cost values. Table 2 shows the run-time data in detail. With
“partition” we denote the preprocessing time used by partition incrementally
and “check” corresponds to the run-time of the model checking algorithm. The
number of explored states is recorded under “|table|”, Mocha keeps the states
in a hash table. Note that the property we check does not hold, thus the model
checking algorithm is able to abort without exploring all reachable states.

In the left and middle table, the time consumed for computing the hierar-
chical partition exceeds the model checking time for bigger examples. This is
because we chose not to restrict the candidate size here, which yields a number
of candidates increasing exponentially in N . The obtained hierarchical partitions
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Fig. 6. Opinion poll: Hierarchically partitioned according to rating function r+
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in the middle and the right table are identical – due to the tree structure, the
best rated candidate here is always of size two.

4.2 Opinion Poll Protocol

The second sample problem is meant to demonstrate the behavior of our heuristic
in a setting, where there is no obviously preferable choice.

Consider a poll for a public opinion. There is a line of N pollers Pi and two
non-connected lines of citizen Ai and Bi, plus two special citizen C and D. Poller
P1 starts raising an issue with a Yes/No question. Let us assume that the way
one asks influences the answer. Poller P1 starts of with an opinion he got from a
random source (called Master). Poller Pi+1 is influenced by Pi. The citizen are
influenced by one other citizen and the poller who interviews them. For instance,
Ai+1 is influenced by Ai’s and Pi’s opinions, and A1 is influenced by a random
source NA and P1. The communication pattern is indicated by arrows in Fig. 6.

For N = 1, 2, 3, 4 we considered three invariants: (i) a false property that is
easy to falsify, (ii) a false property that requires a special scenario (called bad
property in the following), and (iii) a true property.

The experiments compare plain enumerative model-checking and application
of the “Next” heuristic, where the preprocessing follows one of the following
strategies. a. 2-merge: Group any pair with a connection without further prefer-
ence, i.e., use sig (〈〈.〉〉) as rating function and consider only candidates of size 2,
b. pref : Partition incrementally according to rating function rpref , and c. pref+:
Partition incrementally according to rating function r+pref . For the latter, we in-
cluded the results of the preprocessing in Fig. 6. It is interesting to note that
sometimes triples were preferred to pairs.

The quantitative comparison is listed in Table 3. For the false properties
(i) and (ii) the enumerative check is up to five times slower, if sophisticated
heuristics are applied. Apparently it is more tedious to reach a counter-example
scenario here, if more structure is given. For the true property (iii), the enu-
merative check speeds up by a third, when the “Next” heuristic is applied. For
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Table 3. Opinion poll protocol: Run-time comparison of three rating functions

(i) false Judgment: System = (result = DontKnow)
N\Method plain 2-merge pref pref+

1 742
2 (partition)

854 (check)
280 (partition)
754 (check)

274 (partition)
861 (check)

2 3·713 32 (partition)
4·313 (check)

1·808 (partition)
6·862 (check)

1·886 (partition)
6·850 (check)

3 32·181 7 (partition)
26·330 (check)

1·790 (partition)
87·708 (check)

2·047 (partition)
88·879 (check)

4 345·071 22 (partition)
435·529 (check)

5·256 (partition)
1·390·739 (check)

4·828 (partition)
1·351·527 (check)

(ii) bad Judgment: System = NoNegativeResult
N\Method plain 2-merge pref pref+

1 1·113 2 (partition)
916 (check)

238 (partition)
766 (check)

203 (partition)
886 (check)

2 4·846 5 (partition)
3·930 (check)

1·625 (partition)
7·130 (check)

1·667 (partition)
6·561 (check)

3 32·580 7 (partition)
29·324 (check)

1·788 (partition)
87·827 (check)

1·920 (partition)
73·350 (check)

4 385·951 20 (partition)
375·977 (check)

5·476 (partition)
1·665·765 (check)

6·458 (partition)
1·306·961 (check)

(iii) true Judgment: System = ˜((result = DontKnow) & (result = Yes))
N\Method plain 2-merge pref pref+

1 30·565 2 (partition)
23·689 (check)

290 (partition)
24·369 (check)

292 (partition)
24·423 (check)

2 610·131 5 (partition)
454·089 (check)

1·787 (partition)
482·600 (check)

2·148 (partition)
482·214 (check)

3 8·488·532 17 (partition)
6·392·536 (check)

2·301 (partition)
5·920·255 (check)

2·357 (partition)
5·865·170 (check)

4 93·557·192 23 (partition)
60·934·073 (check)

5·733 (partition)
57·762·294 (check)

5·068 (partition)
57·165·981 (check)

larger N the more sophisticated clustering techniques pref and pref+ perform
slightly better than 2-merge.

5 Conclusion

We developed a notion of hierarchical partitions and introduced a method to
compare different structures by means of a cost function. This is applicable,
whenever the relationship of entities can be adequately described via hyper-
edges. For the presented cost function, the problem of determining an optimal
hierarchical partition is NP -complete [12].

We presented a scalable greedy method to compute approximately good hi-
erarchical partitions based on a heuristic rating function. We argued that – in
order to achieve a good result – this function should be based on four crite-
ria: number of covered hyperedges, size, number of occurring hyperedges, and
structural depth. This is corroborated by qualitative and quantitative data. We
implemented our algorithm in an experimental version of the Mocha model
checking tool and measured its performance on small and medium sized exam-
ples.
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It should be noted that our proposed method gives no guarantee on how
the obtained result compares to an optimal solution. Since we apply a variation
of local search, it is to be expected that our algorithm can get caught in local
optima. Moreover, optimality in the sense of least cost does not necessarily imply
minimal time- or space-consumption when running a model checking algorithm.
In general, we cannot expect to express such subtle behavioral properties of a
system via a simple function, i.e., a function that is fast to evaluate.

Though our case studies suggest that in the rating function both touch and
depth of the candidates should be taken into account, it remains open, how
this should be reflected. The values for the parameters ε1 and ε2 in (6) were
chosen according to fit the parity computer example. It would be desirable to
investigate the impact of parameter changes in general, but we seem to lack apt
mathematical means to do so.

Related Work. Hierarchical structures find a wide range of application in de-
sign, description and physical organization of both software and hardware. In
particular, the decomposition of large circuits in VLSI layout turns out to be a
crucial problem and has received a respectable amount of attention [14]. Here
the partitions are typically shallow (i.e., of depth two) and mainly motivated
by size constraints that single components have to meet. Optimality is typically
described as the least number of components with as few as possibly connections.

Similar structures, called classification trees (e.g. [8]), are used as expres-
sive decision trees over large sets of data. The internal nodes are labeled by
distinguishing criteria and all leaf nodes are distinguishable. Finding expressive
classification trees is computationally hard.

Though various advanced techniques have been developed for these problems,
to the best of our knowledge none of them is applicable in the considered case.
In our setting, every tree-indexing is a feasible solution, there is no constraint
satisfaction component and there might well be two leaves that are alike.

Open Problems. We noted that finding an optimal solution with respect to
our cost function is NP -hard, but this does not preclude the existence of a
polynomial approximation scheme. Also, it remains unknown, how the com-
putational complexity compares with respect to other cost functions, like
depth cost(T ) := depth(T ) or cost(T ) :=∑

e |leaves(Te)|. It is conjectured that
the tree-indexing problem remains NP -complete in both cases.

Future Work. Our proposed method is not limited toMocha, but can be applied
in other settings where connected entities have to be structured or re-structured.
The parameters can be adjusted accordingly. An interesting mean to make use
of the obtained partitions could be to construct property preserving abstractions
based on this particular hierarchy.

We believe that other areas of research can benefit from a more analytic
quantification of good structures. As an example we list refactoring [15], where
structures of software systems are conservatively modified according to a set of
schema transformations, design patterns, or hot spots.
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