Reproducing Synchronization Bugs with Model
Checking

Karen Yorav, Sagi Katz, and Ron Kiper

Galileo Technology, Israel
{kareny,sagi,ron}@galileo.co.il

Abstract. In this paper we describe our experience in reproducing syn-
chronization bugs using a model checker. We demonstrate how model
checking technology can be utilized for more than just model checking.
Synchronization bugs are caused by physical phenomena which cause the
actual behavior of a chip to be different than predicted according to the
functional model. Traditionally, verification methods such as dynamic
simulation and model checking use a synchronous model, whereas the
actual behavior is according to an asynchronous model. Because of this,
synchronization bugs are very hard to trace. Using a model checker we
were able to create a model closer to the actual behavior, and retrace
many synchronization bugs. Because model checking allows us to intro-
duce non-determinism when checking a VLSI design, and because of its
ability to produce counter examples for specifications that fail, we find
that model checking is the ideal tool for reproducing synchronization
bugs.

1 Introduction

Finding bugs as early in the design flow as possible is the goal of all types
of verification techniques. The main method for functional verification used by
the VLSI industry today is dynamic simulation. In Galileo Technology we
use formal verification methods to complement the use of dynamic simulation.
The main formal verification method used is (symbolic) Model Checking [2].
Model checkers are automatic tools, capable of proving that a design meets its
specification. Model checking has two major advantages: it is exhaustive, i.e. it
covers all possible combinations of inputs, and when the design does not comply
with its specification the model checking tool presents a counter example to
prove this. The main limitation of model checking is that it can handle only
relatively small parts of a design.

When a functional bug is found in the early stages of design, it is relatively
easy to fix. However, sometimes a bug is revealed only after the first prototype
is manufactured and tested in the lab. In this case it is far more difficult to
identify the cause of the erroneous behavior. An interesting case is when the bug
that is seen in the lab was proven to be impossible by the model checking tool.
These bugs are caused by physical phenomena which cause the chip to behave
differently than expected according to the functional model used for verification.

T. Margaria and T. Melham (Eds.): CHARME 2001, LNCS 2144, pp. 98-[103l 2001.
© Springer-Verlag Berlin Heidelberg 2001



Reproducing Synchronization Bugs with Model Checking 99

One of the possible causes for such bugs, although not the only one, is the
violation of timing constraints on the boundary between asynchronous modules.
A typical case is when there are multiple clocks in the design, as in most chips
today. Problems arise when a signal (the output of a flip flop) from one clock
domain is passed into a different clock domain. Because of certain physical phe-
nomena, two signals that were coordinated in the source clock domain (changed
value together) may be passed to the target clock domain with one cycle delay
between them. If the design in the target clock domain depends on the coordi-
nation between these signals it can cause a synchronization bug.

Synchronization bugs are problematic for dynamic simulation, since the
model used for dynamic simulation is a deterministic synchronous model, and
does not take into account the possibility of the extra delay. To reproduce syn-
chronization bugs we need a non-deterministic model in which each signal cross-
ing the clock domain boundaries is either delayed by one clock cycle or not. It is
also necessary to check all possible timings of events, which is impossible with
simulation. Although the extra delay is caused by the violation of timing con-
straints, even if we introduce exact delays on gates and wires into the dynamic
simulation, synchronization bugs will not be found, since the delay is caused by
a physical phenomena (meta-stable states) which is not simulated.

The method we use is to replace synchronizer modules [I] in the design
with non-deterministic modules. Synchronizers are modules which are placed on
the signals of asynchronous interfaces. Because the space complexity of model
checking is very sensitive to the number of variables (flip flops) in the design and
the complexity of the behavior, we cannot simply replace all the synchronizers
with a sophisticated model that represents the real life behavior. We use several
models, each more sophisticated than the previous. We start with the most
simple and small, and move to the others only if necessary.

This work is unique in that it shows that it is possible to use model checking
in order to verify properties at a level which includes asynchronous physical
behaviors, behaviors which do not appear at the register transfer level.

The paper is organized as follows. In Sect. 2] we give a brief overview of
model checking of multi-clock systems and explain how synchronizers are used.
In Sect. B we describe our method for reproducing synchronization bugs, and in
Sect. Ml we conclude with some general remarks about our work.

2 Model Checking of Multi-clock Designs

Most real-life designs are multi-clock systems because different parts of the design
need to run at different paces. In such systems signals from one clock are driven
into flip-flops running on a different clock. Model checking of such systems is
either performed using a single clock, which does not represent all the possible
behaviors, or using multiple clocks, which is possible only on very small blocks.

A D-flip-flop passes the value from its input (called “d”) to its output (called

q”) at every transition of the clock from zero to one. The correct behavior of a
flip flop is guaranteed only under certain conditions of setup and hold times on d,



100 K. Yorav, S. Katz, and R. Kiper

which means that d must be stable for a certain amount of time before and after
the rising edge of the clock. If these conditions are not maintained it is possible
that the flip flop will pass the wrong value to its output, or enter a meta-stable
state, which means that the output of the flip-flop is undetermined and may
stay this way until the next rising edge of the clock. Any other component of
the design that examines the output of a flip flop in a meta-stable state may
interpret it as either zero or one.

Assume that the output of flip flop a is the input to the flip flop b. If a
is running on a different clock than b then whenever a changes value it may
violate setup and hold conditions for b, since the change is not synchronized
with b’s clock, and b might output the wrong value, or enter a meta-stable state.
The design methodology for multi-clock systems is that the interface between
clock domains must use a full handshake protocol, so that the design on b’s side
must acknowledge the change in a’s value before a is allowed to change again.
This solves the problem of b getting the wrong value because it is guaranteed
that by the next cycle a has been stable long enough and b will get the correct
value. The only effect here is that b changes value one cycle later than it should
have. The solution for the problem of meta-stable states is the introduction of a
synchronizer between a and b.

A typical synchronizer [I] decreases the probability of an internal flip-flop
entering a meta-stable state by placing two D-flip-flops in a row (Fig. ). The
probability of s; entering a meta-stable state because of a change in a’s value is
very small. If this happens, so may stabilize on zero or one, or enter a meta-stable
state itself. The probability of this is even smaller.

Source clock domain Target clock domain
| Synchronizer
FF. ! FF.
4 ! d S S> q S
clkl ; \ clk2

Fig. 1. A typical synchronizer

Each synchronizer creates a delay on its input signal, but it is possible to have
different delays on different signals because of slight timing differences. This
happens when two different signals that cross clock domains create different
effects on their synchronizers - one will pass the change of value in time and
the other “misses” a clock cycle (because there was not enough setup time) and
passes the change only in the following cycle. Thus, signals that were coordinated
in one clock domain are passed to the other clock domain with a delay of one
cycle between them. Synchronization bugs occur when the correct behavior of
the design inadvertently depends on the coordination of two signals, and this
coordination is broken by the additional delay on one of them. This error will



Reproducing Synchronization Bugs with Model Checking 101

not be revealed during verification with dynamic simulation since in simulation
the coordination between signals is preserved.

3 Reproducing Synchronization Bugs

Normally, model checking fails to detect synchronization bugs because it ignores
the non-deterministic behavior of synchronizers. We show how careful manip-
ulation of the design can create a more accurate model. We present a simple
version of the module with which we substitute the synchronizers in the design.
We then describe more complicated, and more accurate modules. We need more
than one version because using a complicated synchronizer may make the model
checking task impractical. We strive to make the behavior of the synchronizer as
simple as possible, not to add more variables (flip flops) than necessary, and not
to add non-determinism if not necessary, while making sure that the behaviors
we add are actually possible, or else we will find false bugs.

3.1 Introducing Early Signals

The situation is that a bug was found in the lab, on real hardware, and needs
to be reproduced. A specification @ claiming that the erroneous behavior is
impossible is checked on the design and is proved to be correct. We suspect that
this is a synchronization bug. Our goal is to refine the model of the design so
that it is closer to the real behavior of synchronizers in a chip.

As explained in Sect. [2] it is possible that the first flip flop inside the syn-
chronizer will not pass a change in value in the cycle that it happens, but only
one cycle later. To model this behavior we override the synchronizer code with
a non-deterministic environment model. Instead of a 1-cycle delay, the new syn-
chronizer module may pass a change on the input signal 1-cycle early. The effect
on the coordination between different signals is the same, since it allows for any
two input signals that change value at the same cycle in the source clock domain
to be passed to the target clock domain with a difference of 1 cycle between
them (even though one of them is early instead of the other being late).

The new synchronizer module is written in the language of the environment,
since this language allows for non-determinism. We use IBM’s RuleBase model
checker [3], and the modules are written in EDL - RuleBase’s Environment De-
scription Language. The semantics of this language is simple. The next clause
describes the value of a variable in cycle n+1 based on variable values in cycle n.
The expression {ex1,...,exy} stands for the non-deterministic choice of one of
the values exq, ..., exy. Following is the code for the stable_early synchronizer.
Its input is either always passed on time, or always one cycle early.

Module stable_early (/*INPUT*/ d)(/*OUTPUT*/ q)
VAR

sl, s2 : boolean;

Status : {Early,no_shift};
ASSIGN



102 K. Yorav, S. Katz, and R. Kiper

next(sl) := d;
next(s2) := sl;
next(Status) := Status;
DEFINE
q := if (Status=Early) then sl else s2 endif;

The VAR section declares the internal variables of this module: s1, s2, and
Status, which decides whether the input value d will be early or not. Status can
have one of two possible values - Farly or no_shift. In the ASSIGN section
the behavior of the variables is defined so that s1 has the value of d delayed by
one cycle, and s2 has the value of d delayed by two cycles. The value of Status
never changes, and ¢ is defined according to it.

The initial value for all the variables is left undefined, so Status can be either
FEarly or no_shift. This means that each instance of the synchronizer will either
be always early, or always on time. This behavior is reasonable because it is
likely that a synchronizer that causes a delay will do so for long periods of time.
We do not set an initial value for s1 and s2 because all of our designs have a
reset signal, so initial values do not matter.

We replace every synchronizer in the design with the stable_early module,
and check the same specification . If it fails, the counter example produced by
the model checker gives an example of how the different timing of signals passing
between clock domains can cause an error. This counter example displays a be-
havior which, although impossible in the regular model used for model checking,
is possible in the actual chip, and is therefore a valid counter example.

3.2 Other Versions of Synchronizer Modules

For a large design we do not want to replace all of the synchronizers with non-
deterministic versions, since this can make model checking impossible. However,
if we replace only some of the synchronizers then the stable_early module is
no longer sufficient. If signals a and b pass through synchronizers, but only
a’s synchronizer is replaced, then there is only the possibility that a is early
and not that b is early. For this reason we introduce the stable_early_and_late
synchronizer, which allows for signals to be either early or late.

We add a variable s3 defined by: next(s3) := s2. We allow the Status variable
to take an extra value “Late” so that if Status = Late then g := s3. The result
is that ¢ can be delayed by either 1, 2, or 3 cycles after d. We can now replace
some of the original synchronizers in the design with this version, leaving some of
them intact. We restrict our model so that either there are no late synchronizers
or there are no early synchronizers (we do mix Farly and no_shift, or Late and
no-shift). This prevents the possibility of two cycles difference between signals
that were coordinated, which cannot happen in reality.

In both of the previous versions the delay caused by a single synchronizer
was fixed, although in reality it is possible for a synchronizer to add a delay only
part of the time. For this reason we have a dynamic_early_and_late synchronizer
module, in which the Status variable can change value in the middle of a run.



Reproducing Synchronization Bugs with Model Checking 103

We add an input boolean variable called allow_change, and define Status so
that it cannot change when allow_change = False. When allow_change = True
the Status variable can non-deterministically change value (or not), the only
limitation being that it is not allowed to change from Farly to Late or visa
versa, because such a change is physically impossible.

Most of the time when using this version we allowed Status to change only
once in each run, because this behavior is closer to the real behavior of the chip
(the delay of a synchronizer changes only very rarely). This also reduces the
running times of model checking.

4 Our Experience and Conclusions

Galileo Technology develops VLSI chips for the communication markets. Formal
verification using RuleBase is an integral part of the verification process of our
products. The technique described here was used on several designs, some of
which were very large. The design which started the work described here, for
example, is a communication system controller, with around 1 Million gates. It is
impossible to verify designs of this size using a model checker, so we verify smaller
units separately. This unit includes two clock domains, running at different rates.
Most of the time the model checking effort was done using the same clock for
both domains, and using the stable_early or stable_early_and_late versions, but
other versions were used as well, including complicated ones not described here.
All together we were able to find several significant bugs which would have been
extremely difficult to find otherwise. It is interesting to note that the main bug
in this example was found using the simple stable_early_and_late module. In
fact, most bugs are found using the simple stable versions, because most of the
bugs are conceptual bugs, where the designer did not consider synchronization
issues at all. In this case, it is enough to break the coordination between signals
once and the design will exhibit wrong behavior.

The experience described in this paper shows that model checking is a very
powerful tool. It can be used in many ways, to solve problems which are difficult
to solve using other tools. The VLSI design flow is long and complicated, and we
believe that there are other such problems where model checking can be applied.
For example, we intend to investigate the possibility of using model checking to
solve timing problems and to check performance.

References

1. L. Glasser and D. Dopperpuhl. The design and analysis of VLSI circuits. Addison-
Wesley, 1985.

2. K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. Kluwer Academic Publishers, 1993.

3. The RuleBase homepage at IBM:
http://www.haifa.il.ibm.com/projects/verification/RB_homepage/|


http://www.haifa.il.ibm.com/projects/verification/RB_homepage/

	Introduction
	Model Checking of Multi-clock Designs
	Reproducing Synchronization Bugs
	Introducing Early Signals
	Other Versions of Synchronizer Modules

	Our Experience and Conclusions

