Matchmaking for Structured Objects

Thomas Eiter!, Daniel Veit?, Jorg P. Miiller?, and Martin Schneider®

1 TU Vienna, Institute of Information Systems, Knowledge Based Systems Group,
Favoritenstrasse 11, A-1040 Vienna, Austria
eiter@kr.tuwien.ac.at
http://www.kr.tuwien.ac.at
2 Universitit Karlsruhe (TH), Information Management and System:s,
Englerstrasse 14, D-76131 Karlsruhe, Germany
veit@iw.uni-karlsruhe.de
http://www.iw.uni-karlsruhe.de
% Siemens AG, Corporate Technology, Intelligent Autonomous Systems,
Otto-Hahn-Ring 6, D-81739 Munich, Germany
joerg.mueller, martin.schneider@mchp.siemens.de
http://www.siemens.de

Abstract. A fundamental task in multi-agent systems is matchmaking, which is
to retrieve and classify service descriptions of agents that (best) match a given
service request. Several approaches to matchmaking have been proposed so
far, which involve computation of distances between service offers and service
requests that are both provided as aggregates of the same set of attributes which
have atomic values. In this paper, we consider the problem of matchmaking in the
setting where both service offers and requests are described in a richer language,
which has complex types built from basic types using constructors such as sets,
lists, or record aggregation. We investigate methods for computing distance
values of complex objects, based on a generic combination of distance values
of the object components, as well as domain-dependent distance functions. The
methods have been implemented in GRAPPA, the Generic Request Architecture for
Passive Provider Agents, which is a framework for developing open matchmaking
facilities that can handle complex objects described in XML. Using GRAPPA, a
large scale application has been built in the Human Resource Network project of
the Office for Labor Exchange of the German government, in which job offerings
have to be matched against a large database of unemployed persons and qualified
candidates should be retrieved.

Keywords: Emerging trends; data warehouses; systems and applications.

1 Introduction

Today, distributed and heterogeneous information systems which are connected via open
networks such as the Internet provide a huge, wide spread wealth of information. The
vast amount of information so accessible has created a strong need for powerful methods
and techniques that help in ranking the information retrieved in answer to a given query.

In multi-agent systems, this problem instantiates to the fundamental issue of classi-
fying and ranking agents in a system by their service descriptions, given that a particular

Matchmaking for Structured Objects 187

service is requested. For this task, special kinds of middle agents have been proposed,
among them matchmaking and brokering agents (see [12,9,11]), following the mediator
approach [17].

The key task in matchmaking is to compute the similarity of a given service request
to the service description of a given agent. This is usually done by computing a function
measuring the distance between the service request and the service description. Current
approaches to matchmaking assume that these descriptions are in a flat format, which
essentially is an aggregation of attributes over elementary domains. Distances are com-
puted using well-known methods for computing the distance between values for a single
attribute.

However, no methods for matchmaking of complex, structured service descriptions
have been provided so far. Such methods are needed, though, for emerging applications
that desire services descriptions in a data format which is structurally rich, and, moreover,
obeys to some acknowledged standard (e.g., XML) such that multiple, application-
independent use of this information is supported. In this paper, we address this issue
and investigate methods for matchmaking of service descriptions which are provided
as complex objects, built over possibly heterogeneous data types such as text, intervals,
or time data, using forms of aggregation such as sets, lists, or records. We pursue a
bottom up approach of combining distance values of components of complex objects
into a single distance value, which may use generic combination functions as well as
customized domain-dependent distance functions.

The main contributions of this paper can be summarized as follows:

e We provide methods for calculating the relevance of a service offer for a requested
service, both given as structured complex objects, through distance functions for
complex objects which combine distance values of their components. The latter may
be complex objects as well, built using common forms of aggregations such as lists,
sets, and records. Different from previous matchmaking approaches, ours is not based
on a fixed scheme but works for generic types of service descriptions. Furthermore,
service requests and offered service offers may be of different (yet fixed) type.

e We present the GRAPPA framework, which facilitates the development of matchmaking
applications involving complex service and request descriptions. At the generic level,
the schemes of the descriptions are stored as XML document type definitions (XML-
DTDs). Graprpra provides a number of predefined generic functions for combining
distance values of description components, and furthermore certain domain-specific
distance functions.

e We report on the Human Resource Network (HRNET), which is a large-scale applica-
tion for employment relaying that has been implemented for the German Office for
Labor Exchange on top of GRAPPA. In this application, hiring requests of employ-
ers have to be matched against the database of persons in Germany seeking a job
(currently, about 3.9 millions), in order to single out best-qualified candidates. Exper-
iments have shown that HRNET performs well, and a full-fledged system is planned
for the future.

Our results, and in particular the GRAPPA framework, can be readily applied in
building matchmaking facilities for agent systems. However, since the methods have

188 T. Eiter et al.

been developed at a generic level, they can be used for matching complex objects against
a database of complex objects in general, and in engineering facilities for this task.

In this paper, we focus on the task of matchmaking per se. We pursue an approach in
which the generic structure of offers and requests is given by offer and request class
descriptions, respectively.

2 Matchmaking Facilities for Complex Objects

We contract here matchmaking to the problem of performing multidimensional distance
computation on structured objects, which are composed bottom up from basic and com-
plex values. We next discuss the components which a generic facility for performing this
task should have, and after that in Section 2.2 the matchmaking process.

2.1 Components

As discussed in [12,2,9], a matchmaking facility needs certain components. In this spirit,
we propose that a matchmaker for complex objects has the following four components:
Data Types, Distance Functions, Service Scheme, and Service Repository. They have
the following roles.

Data Types: This component includes a kernel set of basic types B = {r1,...,7,}
which are supported by the matchmaking facility. This kernel may be extended by
customized types in applications. Complex types can be inductively constructed by

applying one of the following constructors. Let 7 and 7, . .. , 73 be any already defined
types: Set of 7, denoted { 7 }; Multiset of 7, denoted { 7 },,,; List of 7, denoted 7 ; Array
of dimension n of 7, denoted 7|1 : n]; Record of 71, ... , 7%, denoted (71, ..., 7x).

Each basic type 7 has an associated domain D(7) of values. For a complex type
7, its domain of values D(7) is defined by recursion to subtypes as usual, where sets,
multisets, and lists are defined as finite aggregations. Note that different types may have
overlapping or even the same sets of values; thus, subranges and synonym types may be
defined.
Distance Functions: A distance function on a domain D(7) isamap d : D(7) X
D(7) — R§ which assigns each pair (x,y) of values for 7 a unique nonnegative real
number. It is desired that d enjoys certain properties, which guarantees a meaningful
behavior. The following are some well-known axioms for distance functions:

(i) d(z,y) = 0<=z=yforallz,yc D(7). (Zero-Distance)
(i) d(z,y) =d(y,x) forall z,y € D(7). (Symmetry)
(i) d(z,z) < d(z,y) +d(y,z) forall x,y,z € D(7). (Triangle Inequality)

Any d which satisfies (1)—(iii) is a metric distance function. Its properties, in particular
(111), may be exploited for pruning the search space in matchmaking. However, not all
meaningful distance functions in practice are metric. We postulate, though, that each
distance function must satisfy (ii) and the if-direction of (i) (i.e., d(x,z) = 0 for all
x € D(1)).

Matchmaking for Structured Objects 189

The matchmaking facility must support for each type 7 at least one distance function
d. In particular, it must contain at least one atomic distance function for each basic type.
Besides tailored distance functions, a complex type 7 may have, as in GRAPPA, generic
distance functions d = f(dy,... ,d,,) which combine, by functions f, the distance
values at the top-level components 71, ... , 7, of 7, computed using respective distance
functions di, ... ,d,,, into a single distance value. For example, in case of a record
7 = (71, T2) the function f may be the average of the distances at the components 7;
and 7 (see [14] for further discussion).

Service Description Scheme (SDS): This component contains generic de-
scriptions of the service offers and requests, given as types, that the matchmaking facility
can handle. Particular service descriptions are instances of these generic descriptions
(i.e., complex values of the types). The SDS consists of the following three parts:

1. OSDS: A scheme (type) for the definition of a service offer.
2. RSDS: A scheme (type) for the definition of a service request.
3. MAP: A mapping which assigns each component R; of the scheme RSDS=(R;. ... ,Ry)
a function
MAP(R;) : D(0SDS) — D(Ry),

such that MAP(R;) = fz,(S1,...,Sk), where fg, is a function on functions and
S4,...,S¢ are subschemes of 0SDS, viewed as deconstructor functions on the in-
stances of 0SDS. Informally, MAP(R;) (o) constructs for the service request component
R; a value, given any service offer o. We thus can construct a request object MAP(0) =
(MAP(R4)(0), ... ,MAP(R,)(0)) from o, which can be used for computing the distance
between o and a given request object . Any non-record type RSDS is viewed as record
type (RSDS), and MAP defined for it this way.

Notice that in current matchmaking systems, 0SDS and RSDS coincide, and MAP
is identity, i.e., MAP(R;) = R;. There, MAP is identity for several components (e.g.,
MAP(Workstatus) = Workstatus, where we use Workstatus to name the compo-
nent of this type), while it assigns to Profession™ the list obtained by concatenating
DesiredJob and Job™, i.e., MAP(Profession™) = DesiredJob@Job™, where “@”
denotes concatenation of lists (as previously, components are named here by their types).

Special cases are that RSDS is a subscheme of 0SDS and vice versa. Here MAP is
straightforward: in the former case, it projects out components of 0SDS, while in the
latter, fg, (S1,...,Sk) may add missing attributes to a service offer and assign dummy
values to them. In practice, fg, may perform various complex operations such as merging
lists, taking the union of sets, combining values into a complex value (e.g., assemble
dates) etc.

Service Repository: The matchmaking facility maintains an up-to-date repository
of service descriptions for all services offers which are advertised to it.

2.2 Matchmaking Process

When the matchmaker receives a query, which consists of an instance r of RSDS, and an
(optional) query requirement (best match, k-nearest neighbors, etc), then it computes the

190 T. Eiter et al.

answer to the query and sends the result back to the querying requester agent. Basically,
the matchmaker must compute the distance between r and each service offer o in the
service repository, and then select those o which qualify for the answer. The distance
between r and o is measured by d(r, MAP(0)), where d is the distance function for RSDS
and MAP(o) is the conversion of o into the request object.

This process can be implemented in many ways. For details concerning this issue
see [14,5,15].

2.3 The Grarra Matchmaking Framework

GraPppA, the Generic Request Architecture for Passive Provider Agents, is a generic
framework that instantiates the general matchmaking facility for complex objects de-
scribed in the previous section. It is designed for computing k-nearest-neighbor match-
ings of multidimensional requests against multidimensional offers.

Generic algorithms to incorporate Data Types, Distance Functions and Service Descrip-
tion Schemes are implemented. The main Data Types considered are Numbers, Intervals,
Time and Time Intervals as well as Free Text. For the latter one distance functions from
the Information Retrieval domain (see [10]) are implemented. For further details see [14,
51

As complex distance functions Minimum Link Distance (see [4]), Hausdorff Distance
as well as a Weighted Average Distance are incorporated.

Both the 0SDS and the RSDS are mapped to XML-DTDs. Service offers and re-
quests, respectively, are instantiated XML documents. An example is shown in Figure 1.
A requester can query the ServiceRepository, which contains XML documents in-
stantiating 0SDS, by sending an XML document which instantiates the RSDS to the
GRrAPPA matchmaker.

3 Application

Because of its genericity, our approach and the GRAPPA framework is not restricted to
agent systems and can be applied in different domains.

This is exemplified by two projects in which GRAPPA has been applied so far: The
Human Resource Network (HRNET), a large-scale application for the mediation of jobs
described in Section 3.1, and the Cooperation Market (CoMA) of the Siemens AG. In
the following we will only report on the HRNET project.

3.1 HRNET for the German Office for Labor Exchange

The Human Resource Network (HRNET) is an application of GRAPPA for matching open
jobs in companies, which are defined by an employer, to profiles of job applicants (i.e.,
unemployed persons), stored in various data bases. The current version of HRNET is
a prototype system that has been developed for the Office for Labor Exchange of the
German government, and demonstrates the feasibility of a partially automated approach
to employment relaying. Based on its success, a full-fledged system is planned for the
near future. Note that it promises a high return of investment: reducing the relaying time

Matchmaking for Structured Objects 191

Table 1. RSDS of HRNET as XML-DTD and an instance (computer scientist)

XML-DTD for RSDS:

XML instance for computer scientist:

<?xml version="1.0" encoding="UTF-8"7>

<!ELEMENT RSDS (Profession*, Experience, CarRequired,

Location, Requirements, WorkStatus,
WorkMode, WorkType, Salary)>
<!ELEMENT Experience (Experiencelevel, Profession*)>
<!ELEMENT Location (ZipCode, Town, Country)>
<!ELEMENT Requirements (GeneralRequirement,
SpecialRequirement, Language)>
<!ELEMENT GeneralRequirement (Description, Level)>
<!ELEMENT SpecialRequirements (Description, Level)>
<!ELEMENT Languages (Description, Level)>
<!ELEMENT DesiredJob (\#PCDATA)>
<!ELEMENT Description (\#PCDATA)>
<!ELEMENT Duration (\#PCDATA)>
<!ELEMENT Profession (\#PCDATA)>
<!ELEMENT Car (\#PCDATA)>
<!ELEMENT ZipCode (\#PCDATA)>
<!ELEMENT Town (\#PCDATA)>
<!ELEMENT Country (\#PCDATA)>
<!ELEMENT RegionalPreference (\#PCDATA)>
<!ELEMENT Level (\#PCDATA)>
<!ELEMENT WorkStatus (\#PCDATA)>
<!ELEMENT WorkMode (\#PCDATA)>
<!ELEMENT WorkType (\#PCDATA)>
<!ELEMENT Salary (\#PCDATA)>
<!ELEMENT ExperienceLevel (\#PCDATA)>
<!ELEMENT CarRequired (\#PCDATA)>

<RSDS>
<Profession>Computer Scientist</profession>
<Profession>Mathematician</profession>
<Experience>
<ExperienceLevel>expert</ExperiencelLevel>
<Profession>Computer Scientist</profession>
<Profession>Mathematician</profession>
</Experience>
<CarRequired>false</CarRequired>
<Location>
<ZipCode>81541</ZipCode>
<Town>Munich</Town>
<Country>Germany</Country>
</Location>
<Requirements>
<GeneralRequirement>
<Description>soft skills</Description>
<Level>very good</level>
</GeneralRequirement>

</Requirements>

<Description>We are looking for...
</Description>
<WorkStatus>employed</WorkStatus>
<WorkMode>in office</WorkMode>
<WorkType>fulltime</WorkType>
<Salary>40.000 Euro</Salary>

</RSDS>

of unemployed persons (currently, about 3.9 millions) just by one day on average will
save the German government more than a hundred million dollars a year.

In the HRNET system architecture each company supplies its open positions to a
designated GUI-Agent, which has the role of a requester agent in the system. The GUI-
Agent queries the matchmaker by sending to HRNET the description of the open position
which should be filled.

The service repository of HRNET consists of a collection of data sources. Most of them
are databases wrapped by a database wrapper agent. One of them is the central database
of the Office for Labor Exchange of the German government, in which all currently
unemployed persons in Germany are stored. Another one we used is the Siemens AG
internal employee database. Further databases can be easily integrated.

If the number of applicants exceeds a certain limit in a database, the database wrapper
agents supplies only a preselection of profiles to the matchmaker. This preselection
eliminates all profiles which do not match any of the values in Profession™ of a given
job offer (RSDS instance). In HRNET, the RSDS and 0SDS schemes are, as required by
GRrAPPA, converted to XML-DTDs which are considered as the document classes of
these types. The XML-DTD of RSDS, together with an instance, is shown in Table 1.

Besides the generic basic types and distance functions, HRNET uses customized
basic types including RegionalPreference, Level and WorkStatus. The default
distance functions for these types are defined using distance matrices and exact matching
functions. The distances for complex types are computed by using the Hausdorff distance
and weighted averages.

192 T. Eiter et al.

Table 2. HRNET matchmaker results

job offering (request) k=

/ quality of k-th bestmatch| 1 | 5 | 10 | 20 | 50 | 100
r1 : Computer scientist 61 %|45 %|39 %|33 %|23 %|13 %
ro . Bus driver 72 %|68 %|61 %|52 %|43 %|30 %
rs : Anesthesia male nurse 40 %|23 %|14 %|12 %|10 %| 8 %
rq : Clerk 36 %|35 %|31 %|26 %|22 %|12 %
rs . Truck driver 79 %|70 %|65 %|60 %|55 %|40 %
re¢ : Haircutter 48 %|46 %|39 %|36 %|25 %|12 %
r7 : Taxi driver 81 %|79 % |75 %|60 %|43 %|20 %
rg : Interpreter 52 %\47 %|38 %|34 %(28 %|12 %
rg : Children nurse 68 %|67 %|57 %|51 %|29 %|14 %
r10 : Engine fitter 59 %|40 %|36 %|29 %|21 %|15 %

3.2 Experiments

In this section, we give a sample of the set of experiments that we have conducted with the
HRNET system. It appeared that in these experiments, the HRNET matchmaker performed
quite well and was ranking the job applicants (i.e., 0SDS instances) realistically.

Precison. In the first experiment, we considered ten different job offerings (requests)
ri,...,710, Which were supplied to a GUI-Agent for querying the matchmaker. Table 2
shows the results for a k£ best matches (i.e., nearest neighbors) query, where for each k the
quality of the last (worst) among the &£ matches is reported. The quality is the similarity
between the request r; and the applicant profile (offer) o measured by 1 —d(r;, o), where
d(r;,0) is the (normalized) distance value. Request r; is the computer scientist instance
of RSDS shown in Table 1; the other requests instantiated RSDS to jobs in different areas.

It is, of course, difficult to judge the quality of matchings computed by the HRNET
matchmaker to the one of a human matchmaker, and in particular whether it computes
“human like” rankings. Rankings compiled by a human matchmaker may be subjective,
and different human experts may come up with different rankings. However, inspection
has shown that among a larger set of profiles, the best candidate singled out by the
matchmaker is the same one would manually select.

Recall. In a further experiment, we modified the data repository by adding two
further 0SDS instances that should match the request r; intuitively high. One of them
was intuitively an exact match (quality 100%), and the other one was a profile which
intuitively supported more desired properties than the previous best match, which was
61%. As expected, the exact match was the new best best and had a score of 100%. The
second best match was the other addition to the data repository. It obtained a significantly
better score (85%) than the previous best match.

Matchmaking for Structured Objects 193

4 Related Work

[8] considered matchmaking in the context of emerging information integration tech-
nologies, where potential providers and requesters send messages describing their capa-
bilities and needs of information (or goods). They presented two matchmakers: COINS
(COmmon INterest Seeker), which is based on free text matchmaking using a distance
measure from information retrieval [10], and SHADE (SHared DEpendency Engineer-
ing), which uses a subset of KIF [6] and a structured logic text representation called MAX
[7]. While COINS aimed at e-commerce, SHADE aimed at the engineering domain.

Complementing the theoretical work in ([2,3]), Sycara and coworkers addressed
the matchmaking problem in practice. They developed and implemented the LARKS
matchmaker (LAnguage for Advertisement and Request for Knowledge Sharing) de-
scribed in [13,12]. In LARKS, the matchmaking process runs through three major steps:
(1) Context matching, (2) syntactical matching, and (3) semantical matching. Step 2 is
divided into a comparison of profiles, a similarity matching, and a signature matching.
Compared to previous approaches, LARKS provides higher expressiveness for service
descriptions. Like those, however, LARKS has a static scheme for service descriptions,
which restricts its application to agents that comply with this fixed description format.

In the context of electronic auctions, [16] introduce a service classification agent
which has meta knowledge and access to nested ontologies. This agent dynamically
generates unique agent and auction descriptions which classify an agent’s services and
auction subjects, respectively. A requester obtains from it the name of the best auction
to its needs.

In IMPACT [1,11], so called Yellow Pages Servers play the role of matchmaker
agents. Offers and requests are described in a simple data structure which represents a
service by a verb and one or two nouns (e.g., sell:car, create:plan(flight)). The match-
making process computes the similarity of descriptions from shortest paths in directed
acyclic graphs that are built over the sets of verbs and nouns, respectively, where edges
have weights reflecting their distance.

5 Conclusion

In this paper, we have considered the problem of matchmaking given that service de-
scriptions are complex objects, formulated in a rich language. Furthermore, we have
presented various methods for computing distance values between complex objects and
the GraPPA framework, which can be used for building matchmaking facilities. As the
HRNET application has shown, GRAPPA is an attractive tool for developing application-
specific matchmakers.

Our ongoing and future work comprises several issues. One is to exploit the properties
of metric distance functions and to design algorithms which avoid scan the entire service
repository. The development of specific distance functions is another issue. Last, but not
least, an important issue is to improve the efficiency of the access to the service repository,
which currently is a bottleneck of the system. In our future work we also intend to transfer
matchmaking algorithms into the multi-attribute auction domain.

An interesting issue is the use of self-trained neural networks in the design of cus-
tomized distance functions which reflect the judgment of a human expert as close as

194 T. Eiter et al.

possible. Hence important future work will be to implement neural networks computing
distance functions for information classification via matchmaking. Finally, a full scale
implementation of the HRNET prototype and the development of further applications of
GRAPPA complement our research.

References

1. K. Arisha, T. Eiter, S. Kraus, F. Ozcan, R. Ross, and V.S Subrahmanian. IMPACT: A Platform
for Collaborating Agents. IEEE Intelligent Systems, 14(2):64—72, March/April 1999.

2. K. Decker, K. Sycara, and M. Williamson. Matchmaking and brokering. In International
Conference on Multi-Agent Systems (ICMAS96), December 1996.

3. K. Decker, K. Sycara, and M. Williamson. Middle-agents for the internet. In Proceedings
of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI-97), pages
578-583, August 1997.

4. T. Eiter and H. Mannila. Distance measures for point sets and their computation. Acta
Informatica, 34:109-133, 1997.

5. T.Eiter, D. Veit, J.P. Muller, and M. Schneider. Matchmaking for Structured Objects. Extended
version, manuscript, 2000.

6. M. R. Genesereth and R. E. Fikes. Knowledge Interchange Format, Version 3.0 Reference
Manual. Technical Report Logic-92-1, Computer Science Department, Stanford University,
June 1992. http://www-ksl.stanford.edu/knowledge-sharing/papers/kif.ps.

7. D. Kuokka. The Deliberative Integration of Planning, Execution, and Learning. PhD thesis,
School of Computer Science, Carnegie Mellon University, 1990.

8. D. Kuokka and L. Harada. Integrating information via matchmaking. Journal of Intelligent
Information Systems, 6(2/3):261-279, 1996.

9. M. Nodine, W. Bohrer, and A. H. H. Ngu. Semantic brokering over dynamic heterogenous
data sources in InfoSleuth. In Proceedings of the Fifteenth International Conference on Data
Engeneering, pages 358-365, August 1999.

10. G. Salton. Automatic Text Processing. Addison-Wesley, 1989.

11. V.S Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Ozcan, and R. Ross. Heterogenous
Agent Systems. MIT Press, June 2000. (ISBN: 0262194368).

12. K. Sycara, J. Lu, and M. Klusch. Interoperability among heterogenous software agents on
the internet. Technical Report CMU-RI-TR-98-22, The Robotics Institute Carnegie Mellon
University, Pittsburgh, October 1998.

13. K. Sycara, J. Lu, M. Klusch, and S. Widoff. Dynamic service matchmaking among agents
in open information environments. ACM SIGMOD Record 28 (1), Special Issue on Semantic
Interoperability in Global Information Systems, pages 47-53, 1999.

14. D. Veit. Matchmaking algorithms for autonomous agent systems. Master’s thesis, Institute
of Computer Science, University of Gie3en, Germany, 1999.

15. D. Veit, J.P. Muller, M. Schneider, and B. Fiehn. Spt: Matchmaking for autonomous agents in
electronic marketplaces. In Proceedings of the Fifth International Conference on Autonomous
Agents, 2001.

16. P. Weinstein and W. Birmingham. Service classification in a proto-organic society of agent.
In Proceedings of the IJCAI-97 Workshop on Artificial Intelligence in Digital Libraries, 1997.

17. G. Wiederhold. Intelligent Integration of Information. In Proceedings of ACM SIGMOD
Conference on Management of Data, pages 434-437, Washington, DC, 1993.

