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Abstract. Multi-Dimensional Expressions (MDX) provide an interface for
asking several related OLAP queries simultaneously. An interesting problem is
how to optimize the execution of an MDX query, given that most data
warehouses maintain a set of redundant materialized views to accelerate OLAP
operations. A number of greedy and approximation algorithms have been
proposed for different versions of the problem. In this paper we evaluate
experimentally their performance using the APB and TPC-H benchmarks,
concluding that they do not scale well for realistic workloads. Motivated by this
fact, we developed two novel greedy algorithms. Our algorithms construct the
execution plan in a top-down manner by identifying in each step the most
beneficial view, instead of finding the most promising query. We show by
extensive experimentation that our methods outperform the existing ones in
most cases.

1 Introduction

Data warehouses have been successfully employed for assisting decision-making by
offering a global view of the enterprise data and providing mechanisms for On-Line
Analytical Processing (OLAP) [CCS93]. A common technique to accelerate OLAP
operations is to store some redundant data, either statically [Gupt97, GM99, SDN98]
or dynamically [KR99].

Most of OLAP literature assumes that queries are sent to the system one at a time.
In multi-user environments, however, many queries can be submitted concurrently. In
addition, the new API proposed by Microsoft [MS] for Multi-Dimensional
Expressions (MDX), which becomes de-facto standard for many products, allows the
user to formulate multiple OLAP operations in a single MDX expression. For a set of
OLAP queries, an optimized execution plan can be constructed to minimize the total
execution time, given a set of materialized views. This is similar to the multiple query
optimization problem for general SQL queries [PS88, S88, SS94, RSSB00], but due
to the restricted nature of the problem, better techniques can be developed.

Zhao et al. [ZDNS98] were the first ones to deal with the problem of multiple
query optimization in OLAP environments. They designed three new join operators,
namely: Shared scan for Hash-based Star Join, Shared Index Join and Shared Scan
for Hash-based and Index-based Star Join. These operators are based on common
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subtask sharing among the simultaneous OLAP queries. Such subtasks include the
scanning of the base tables, the creation of hash tables for hash based joins, or the
filtering of the base tables in the case of index based joins. Their results indicate that
there are substantial savings by using these operators in relational database systems.
In the same paper they propose three greedy algorithms for creating the optimized
execution plan for an MDX query, using the new join operators. Liang et. al [LOY00]
also present approximation algorithms for the same problem.

In this paper we use the TPC-H [TPC] and APB [APB] benchmarks in addition to
a 10-dimensional synthetic database, to test the performance of the above-mentioned
algorithms under a realistic workload. Our experimental results suggest that the
existing algorithms do not scale well when we relax the constraints for the view
selection problem. We observed that in many cases when we allowed more space for
materialized views, the execution cost of the plan derived by the optimization
algorithms was higher than the case where no materialization was allowed.

Motivated by this fact, we propose a novel greedy algorithm, named Best View
First (BVF) that doesn't suffer from this problem. Our algorithm follows a top-down
approach by trying to identify the most beneficial view in each iteration, as opposed
to finding the most promising query to add to the execution plan. Although the
performance of BVF is very good in the general case, it deteriorates when the number
of materialized views is small. To avoid this, we also propose a multilevel version of
BVF (MBVF). We show by extensive experimentation that our methods outperform
the existing ones in most realistic cases.

The rest of the paper is organized as follows: In section 2 we introduce some basic
concepts and we review the work of [ZDNS98] and [LOY00]. In section 3 we identify
the drawbacks of the current approaches and in section 4 we describe our methods.
Section 5 presents our experimental results while section 6 summarizes our
conclusions.

2 Background

A multidimensional expression (MDX) [MS] provides a common interface for
decision support applications to communicate with OLAP servers. Here we are
interested on the feature of expressing several related OLAP queries with a single
MDX expression. Therefore, an MDX expression can be decomposed into a set Q of
group-by SQL queries. The intuition behind optimizing an MDX expression is to
construct subsets of Q that share star joins, assuming a star schema for the warehouse.
Usually, when the selectivity of the queries is low, hash-based star joins [Su96] are
used; otherwise, the index-based star join method [OQ97] can be applied. [ZDNS98]
introduced three shared join operators to perform the star joins.

The first operator is the shared scan for hash-based star join. Let q1 and q2 be two
queries which can be answered by the same materialized view v. Consequently they
will share some (or all) of their dimensions. Assume that both queries are non-
selective, so hash-based join is used. To answer q1 we construct hash tables for its
dimensions and we probe each tuple of v against the hash tables. Observe that for q2

we don't need to rebuild the hash tables for the common dimensions. Furthermore,
only one scanning of v is necessary. Consider now that we have a set Q of queries all
of which use hash-based star join and let L be the lattice of the data-cube and MV be



the set of materialized views. We want to assign each q∈Q to a view v∈MV such that
the total execution time is minimized. If v is used by at least one query, its
contribution to the total execution cost is:
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where Size(v) is the number of tuples in v, tI/O is the time to fetch a tuple from the disk
to the main memory, and thash_join(v) is the total time to generate the hash tables for the
dimensions of v and to perform the hash join. Let q be a query that is answered by
v≡mv(q). Then the total execution cost is increased by:
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where tCPU(q,v) is the time per tuple to process the selections in q and to evaluate the
aggregate function. Let MV'⊆MV be the set of materialized views which are selected
to answer the queries in Q. The total cost of the execution plan is:
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The problem of finding the optimal execution plan is equivalent to minimizing
hash
totalt  which is likely to be NP-hard. [LOY00] provide an exhaustive algorithm which

runs in exponential time. Since the algorithm is impractical for real life applications,
they also describe an approximation algorithm. They reduce the problem to a directed
Steiner tree problem and apply the algorithm of Zelikovsky [Zeli97]. The solution is
O(|Q|ε) times worse than the optimal, where 0 < ε ≤ 1.

The second operator is the shared scan index-based join. Similar to the previous
case, a set of queries are answered by the same view v, but there are bitmap indexes
that can be used to accelerate all queries. The read and execution cost are defined as
before, the only difference being that they are scaled according to the selectivity of

the indexes (see [KP00] for details). The aim is to minimize the total cost index
totalt . In

addition to an exact exponential method, [LOY00] propose a polynomial
approximation algorithm that delivers a plan whose execution cost is O(|Q|) times the
optimal.

The third operator is the shared scan for hash-based and index-based star joins. As
the name implies, this is a combination of the previous two cases. [ZDNS98] propose
three heuristic algorithms to construct an execution plan: i) the Two Phase Local
Optimal algorithm (TPLO) which constructs the optimal plan for each query and then
merges the individual plans, ii) the Extended Two Phase Local Greedy algorithm
(ETPLG) which constructs the execution plan incrementally, adding one query at a
time and starting from the most general queries, and iii) the Global Greedy algorithm
(GG) which is similar to ETPLG but allows modifications to the already constructed
part of the plan. [LOY00] propose another algorithm, named GG-c, which is similar
to ETPLG but the order that the queries are inserted is defined dynamically.

None of the above algorithms scales well, when the number of materialized views
increases. In the next section we present an example that highlights the scalability
problem and verify experimentally that it affects severely the performance of the
algorithms under realistic workloads.



3 Motivation

Figure 1 shows an instance of the multiple query optimization problem where {v1, v2,
v3} is the set of materialized views and {q1, q2} are the queries. We assume for
simplicity that all queries use hash-based star join. Let 1=O/It ,
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combination of queries and views that result in minimum increase of the total cost, so
it will assign q1 to v1. At the next step q2 will be assigned to v2 resulting to a total cost
of 277.5. Assume that v3 is the fact table of the warehouse and v1, v2 are materialized
views. If no materialization were allowed, GG-c would choose v3 for both queries
resulting to a cost of 224. We observe that by materializing redundant views, the
performance deteriorates instead of improving. Similar examples can be also
constructed for the other algorithms.

In order to evaluate this situation under realistic conditions, we employed datasets
from the TPC-H benchmark [TPC], the APB benchmark [APB] and a 10-dimensional
synthetic database (SYNTH), where the size of the fact table was 6M, 1.3M and 20M
tuples, respectively (see [KP00] for details). Since there is no standard benchmark for
MDX, we constructed a set of 100 synthetic MDX queries. Each of them can be
analyzed into 2 sets of 2 related SQL group-by queries (q2_2 query set).  We used this
relatively small query set, in order to be able to run an exhaustive algorithm and
compare the cost of the plans with the optimal one. We varied the available space for
the materialized views (Smax) from 0.01% to 10% of the size of the entire data cube
(i.e. the case where all nodes in the lattice are materialized). We used the
GreedySelect [HRU96] algorithm to select the set of materialized views.

We employed the shared operators and we compared the plans delivered by the
optimization algorithms, against the optimal plan. All the queries used hash-based star
join. We implemented the greedy algorithm of  [ZDNS98] (GG) and the one of
[LOY00] (GG-c). We also implemented the Steiner-tree-based approximation
algorithm of [LOY00] for hash-based queries (Steiner-1). We set ε = 1, since for
smaller values of ε the complexity of the algorithm increases while its performance
doesn’t change considerably, as the experiments of Liang et. al. suggest. For
obtaining the optimal plan, we used an exhaustive algorithm whose running time (for
Smax = 10%) was 5300, 290 and 91 sec, for the SYNTH, the TPC-H and APB datasets
respectively.

Although the query set is too small to make safe conclusions, we can identify the
instability problems. There is a point where the cost of the execution plan increases
although more materialized views are available. Moreover, we observed that for the
SYNTH dataset, when Smax varied from 1% to 5%, the execution cost of the plans
delivered by GG, GG-c and Steiner-1, is higher in the presence of materialized views
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Fig. 1. Two instances of the multiple-query optimization problem.v1|=100, |v2|=150, |v3|=200



(i.e. we could achieve lower cost if we had executed the queries against the base
tables).

The performance of the algorithms is affected by the tightness of the problem. Let
AVQ be the average number of materialized views that can by used to answer each
group-by query. We identify three regions: (i) The high-tightness region where the
value of AVQ is small (i.e. very few views can answer each query). Since the search
space is small, the algorithms can easily find a near optimal solution. (ii) The low-
tightness region where AVQ is large. Here, each query can be answered by many
views, so there are numerous possible execution plans. Therefore there exist many
near-optimal plans and there is a high probability for the algorithms to choose one of
them. (iii) The hard-region, which is between the high-tightness and the low-tightness
regions. The problems in the hard region have a quite large number of solutions, but
only few of them are close to the optimal, so it is difficult to locate one of these plans.

In figure 2 we draw the cost of the plan for GG and the optimal plan versus AVQ.
For the SYNTH dataset the transition between the three regions is obvious. For TPC-
H, observe that for small values of AVQ, the solution of GG is identical to the optimal
one. Therefore the high execution cost for the plan is due to the specific instance of
the problem. We can identify the hard region at the right part of the diagrams, when
the trend for GG moves to the opposite direction of the optimal plan. Similar results
were also observed for APB and for other query setsm, for all algortithms.

In summary, existing algorithms suffer from scalability problems, when the
number of materialized views is increased. In the next section we will present two
novel greedy algorithms, which have better behavior and outperform the existing ones
in most cases.

4 Improved Algorithms

The intuition behind our first algorithm, named Best View First (BVF), is simple:
Instead of constructing the global execution plan by adding the queries one by one
(bottom-up approach), we use a top-down approach. At each iteration the most
beneficial view best_view ∈ MV is selected, based on a savings metric, and all the
queries which are covered by best_view and have not been assigned to another view
yet, are inserted in the global plan. The process continues until all queries are covered.
Figure 3 shows the pseudocode of BVF.
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Fig. 2. Total execution cost versus AVQ



The savings metric is defined as follows: Let v∈MV, and let VQ⊆Q be the set of
queries that can be answered by v. Let C(q,ui) be the cost of answering q∈VQ, by
using ui∈MV and )),(min()(
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is the best cost of answering all queries in VQ individually (i.e. without using any
shared operator). Let cost(v) be the cost of executing all queries in VQ against v, by
utilizing the shared operators. savings(v) equals to the difference between s_cost(v)
and cost(v).

The complexity of the algorithm is polynomial. To prove this, observe first that
Cmin(q) can be calculated in constant time if we store the relevant information in the
lattice during the process of materializing the set MV. Then s_cost(v) and cost(v) are
calculated in O(|VQ|) = O(|Q|) time in the worst case. The inner part of the for-loop is
executed O(|AMV|) = O(|MV|) times. The while-loop is executed O(|Q|) times
because in the worst case, only one query is extracted from AQ in each iteration.
Therefore, the complexity of BVF is O(|Q|2⋅|MV|).
Theorem 1: BVF delivers an execution plan whose cost decreases monotonically
when the number of materialized views increases. The proof can be found in the full
version of the paper [KP00]. It follows that:
Lemma 1: BVF delivers an execution plan P whose cost is less or equal to the cost of
executing all queries against the base tables of the warehouse by using shared star
join.

Theorem 1 together with lemma 1, guarantee that BVF avoids the pitfalls of the
previous algorithms. Note that there is no assurance for the performance of BVF
compared to the optimal one, since the cost of answering all the queries from the base
tables can be arbitrary far from the cost of the optimal plan. Consider again the
example of figure 1, except that there are 100 queries that are answered by {v1, v3}
and 100 queries that are answered by {v2, v3}. savings for v1 and v2 is zero, while

ALGORITHM BVF(MV, Q)
/* MV:={v1,v2, …,v|MV|} is the set of materialized views */
/* Q:={q1,q2, …,q|Q|} is the set of queries */
AMV:=MV /* set of unassigned materialized views */
AQ:=Q /* set of unassigned queries */
GlobalPlan:=∅
while AQ≠∅

Let best_view be the view with the highest savings value
/* newSet is a set of queries that share an operator */
newSet.answered_by_view:=best_view
newSet.queries:= {q∈AQ: q is answered by best_view}
GlobalPlan:=GlobalPlan ∪ newSet
AMV:=AMV-best_view
AQ:=AQ-{q∈AQ: q is answered by best_view}

endwhile
return GlobalPlan

Fig. 3.  Best View First (BVF) greedy algorithm



savings(v3) = 11100 + 16650 – 620 = 27130, so all queries are assigned to v3. The cost
for the plan is 620. However, if we assign to v1 all the queries that are bellow it and do
the same for v2, the cost of the plan is 525. We can make this example arbitrarily bad,
by adding more queries bellow v1 and v2.

In general, BVF tends to construct a small number of sets, where each set contains
many queries that share the same star join. This behavior usually results to high cost
plans when there are a lot of queries and a small number of materialized views. To
overcome this problem, we developed a multilevel version of BVF, called MBVF. The
idea is that we can recursively explore the plan delivered by BVF by assigning some
of the queries to views that are lower in the lattice (i.e. less general views) in order to
lower the cost. MBVF works as follows (see [KP00]): First it calls BVF to produce an
initial plan, called LowerPlan. Then, it selects from LowerPlan the view v which is
higher in the lattice (i.e. the more general view). It assigns to v the queries that cannot
be answered by any other view and calls BVF again for the remaining views and
queries to produce newPlan. v and its assigned queries plus the newPlan compose the
complete plan. If its cost is lower that the original plan, the process continues for
newPlan, else the algorithm terminates. In the worst case, the algorithm will terminate
after examining all the views. Therefore, the complexity is O(|Q|2⋅|MV|2).

Lemma 2: The cost of the execution plan delivered by MBVF is in the worst case
equal to the cost of the plan produced by BVF.

Note that lemma 2 does not imply that the behavior of MBVF is monotonic. It is
possible that the cost of the plan derived by MBVF increases when more materialized
views are available, but still it will be less or equal to the cost of BVF’s plan.

5 Experimental evaluation

In order to test the behavior of our algorithms under realistic conditions, we
constructed three families of synthetic query sets larger than q2_2. Each query set
contains 100 MDX queries. An MDX query can be analyzed into S sets of |QSET|
related SQL group-by queries. We generated the query sets as follows: For each
MDX query we have randomly chosen S nodes q1, q2, ..., qS in the corresponding
lattice. Then, for each qi, 1 ≤ i ≤ S, we randomly selected |QSET| nodes in the sub-lattice
which is rooted in qi. We denote each query set as q|QSET|_S. For instance, the set
q50_1 captures the case where an MDX expression contains only related queries,
while in q1_50 the group-by queries are totally random.

In the first set of experiments, we assume that all queries use hash based star join.
Figure 4 presents the cost of the plan versus Smax (the cost was calculated using the
cost model from section 2). GG and GG-c produced similar results and Steiner-1
outperformed them in most cases, so we only include the later algorithm in our
figures. The SYNTH dataset is not shown due to lack of space; however the results
were similar. The first row refers to the q50_1 query set which is very skewed.
Therefore it is easy to identify sets of queries that share their star joins. BVF is worse
than Steiner-1 for small values of Smax (i.e. small number of materialized views), but
when Smax increases Steiner-1 goes into the hard-region and its performance
deteriorates. There are cases where the cost of its solution is higher that the Top_Only
case (i.e. when there are no materialized views). BVF on the other hand, doesn’t



suffer from the hard-region problem, due to its monotonic property, so it is always
better that the Top_Only case, and outperforms Steiner-1 when Smax increases

MBVF was found to be better in all cases. For small values of Smax the algorithm is
almost identical to Steiner-1, but when the later goes into the hard-region, MBVF
follows the trend of BVF. Observe that MBVF is not monotonic. However, since it is
bounded by BVF, it exits the hard region fast, and even inside the hard region, the cost
of the plans does not increase dramatically.

In the second row of figure 4, we present the results for the q1_50 query set.
Although the trend is the same, observe that the cost of the plans of both BVF and
MBVF approach the cost of the Top_Only plan. The reason is that the group-by
queries inside q1_50 are random, so there is a small probability that there exist many
sets of related queries. Therefore, BVF and MBVF tend to construct plans with one or
two sets and assign it to a general view, or even to the base tables. Similar results
were obtained for the q25_2 query set.

In the next experiment, we tested the general case where some of the group-by
queries of each MDX are processed by hash-based star join, while the rest use index-
based hash join. We run experiments where the percentage of the group-by queries
that could use index-based star join was set to 50%, 25% and 10%. The subset of
queries that could use the indices was randomly selected from our previous query
sets. We did not consider the quite unrealistic case where all the queries would benefit
from the indices. Our results suggest that the trend in all the tested cases was the
same. In figure 5 we present the results for the 25% case (only GG-c is presented in
the diagrams, since it delivered the best plans).

The results are similar with the case where only hash-based star joins are allowed.
Observe however, that the distance of the produced plans from the Top_Only plan has
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(a) TPC-H dataset (b) APB dataset

Fig. 4. Total execution cost versus Smax. All queries use hash based star join. The first row refers
to the q50_1 query set and the second to the q1_50 query set



increased in most cases. This is because the algorithms deliver plans that include
shared index-based star joins, so they can achieve, in general, lower execution cost.

6 Conclusions

In this paper we conducted an extensive experimental study on the existing algorithms
for optimizing multiple dimensional queries simultaneously in multidimensional
databases, using realistic datasets. We concluded that the existing algorithms do not
scale well if a set of views is materialized to accelerate the OLAP operations.
Specifically, we identified the existence of a hard-region in the process of
constructing an optimized execution plan, which appears when the number of
materialized views increases. Inside the hard region the behavior of the algorithms is
unstable, and the delivered plans that use materialized views can be worse than
executing all queries from the base tables.

Motivated by this fact, we developed a novel greedy algorithm (BVF), which is
monotonic and its worst-case performance is bounded by the case where no
materialized views are available. Our algorithm outperforms the existing ones beyond
the point that they enter the hard-region. However, BVF tends to deliver poor plans
when the number of materialized views is small. As a solution, we developed a
multilevel variation of BVF. MBVF is bounded by BVF, although it does not have the
monotonic property. Our experiments indicate that for realistic workloads MBVF
outperforms its competitors in most cases.
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Fig. 5. Total execution cost versus Smax.  25% of the queries can use index based star join. The
first row refers to the q50_1 query set and the second to the q1_50 query set.
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