Skip to main content

On a Generalisation of Herbrand’s Theorem

  • Conference paper
  • First Online:
Computer Science Logic (CSL 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2142))

Included in the following conference series:

  • 766 Accesses

Abstract

In this paper we investigate the purely logical rule of term induction, i.e. induction deriving numerals instead of arbitrary terms. In this system it is not possible to bound the length of Herbrand disjunctions in terms of proof length and logical complexity of the end-formula as usual. The main result is that we can bound the length of the reduct of Herbrand disjunctions in this way. (Reducts are defined by omitting numerals.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Baaz. Über den allgemeinen Gehalt von Beweisen. In Contributions to General Algebra 6, pages 21–29. Hölder-Pichler-Tempsky, Teubner, 1988.

    Google Scholar 

  2. M. Baaz and A. Leitsch. On skolemization and proof complexity. Fund. Informaticae, 20(4):353–379, 1994.

    MATH  MathSciNet  Google Scholar 

  3. M. Baaz and A. Leitsch. Cut normal forms and proof complexity. Annals of Pure and Applied Logic, pages 127–177, 1997.

    Google Scholar 

  4. M. Baaz and A. Leitsch. Cut elimination by resolution. J. Symbolic Computation, 1999.

    Google Scholar 

  5. M. Baaz, A. Leitsch, and G. Moser. System Description: CutRes 0.1: Cut Elimination by Resolution. 1999.

    Google Scholar 

  6. M.Baaz and R. Zach. Generalizing theorems in real closed fields. Ann. of Pure and Applied Logics, 75:3–23, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  7. R.S. Boyer and J.S. Moore. A Computational Logic Handbook. Academia Press, 1988.

    Google Scholar 

  8. A. Bundy. The Automation of Proof By Mathematical Induction. Elsevier Science Publisher, 2001. To appear.

    Google Scholar 

  9. S. R. Buss. An introduction to proof theory. In S. R. Buss, editor, Handbook of Proof Theory, pages 1–79. Elsevier Science, 1998.

    Google Scholar 

  10. W.M. Farmer. A unification-theoretic method for investigating the k-provability problem. ANAP, pages 173–214, 1991.

    Google Scholar 

  11. H. Gericke. Mathematik in Antike und Orient. Springer Verlag, 1984.

    Google Scholar 

  12. D. Hilbert and P. Bernays. Grundlagen der Mathematik 2. Spinger Verlag, 1970.

    Google Scholar 

  13. J. Krajíćek and P. Pudlák. The number of proof lines and the size of proofs in first-order logic. Arch. Math. Logic, 27:69–84, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Leitsch. The Resolution Calculus. EATCS-Texts in Theoretical Computer Science. Springer, 1997.

    Google Scholar 

  15. R.J. Parikh. Some results on the length of proofs. Trans. Amer. Math. Soc., pages 29–36, 1973.

    Google Scholar 

  16. P. Pudlak. The lengths of proofs. In S. Buss editor, Handbook of Proof Theory, pages 547–639. Elsevier, 1998.

    Google Scholar 

  17. D. Richardson. Sets of theorems with short proofs. J. Symbolic Logic, 39(2):235–242, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  18. H. Schwichtenberg. Some applications of cut-elimination, pages 867–897. North Holland, 5th edition, 1989.

    Google Scholar 

  19. J. H. Siekmann. Unification Theory, pages 1–68. Academic Press, 1990.

    Google Scholar 

  20. G. Takeuti. Proof Theory. North-Holland, Amsterdam, 2nd edition, 1980.

    Google Scholar 

  21. C. Walther. Mathematical induction, volume 12, pages 122–227. Oxford University Press, 1994.

    MathSciNet  Google Scholar 

  22. C. Weidenbach. Sorted unification and tree automata. In Wolfgang Bibel and Peter H. Schmitt, editors, Automated Deduction-A Basis for Applications, volume 1 of Applied Logic, chapter 9, pages 291–320. Kluwer, 1998.

    Google Scholar 

  23. T. Yukami. Some results on speed-up. Ann. Japan Assoc. Philos. Sci., 6:195–205, 1984.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baaz, M., Moser, G. (2001). On a Generalisation of Herbrand’s Theorem. In: Fribourg, L. (eds) Computer Science Logic. CSL 2001. Lecture Notes in Computer Science, vol 2142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44802-0_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-44802-0_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42554-0

  • Online ISBN: 978-3-540-44802-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics