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Abstract. The multiplicative fragment of Non commutative Logic (cal-
led MNL) has a proof nets theory [AR00] with a correctness criterion
based on long trips for cut-free proof nets. Recently, R.Maieli has devel-
oped another criterion in the Danos-Regnier style [Mai00]. Both are in
exponential time. We give a quadratic criterion in the Danos contractibil-
ity criterion style.

1 Introduction

Non commutative Logic (NL) is a unification of linear logic [Gir87] and cyclic
linear logic [Gir89,Yet90,Abr91] (a classical conservative extension of the Lambek
calculus [Lam58]). It includes all linear connectives: multiplicatives, additives,
exponentials and constants. Recents results [AR00,Rue00,MR00] introduce proof
nets, sequent calculus, phase semantics and all the importants theorems like cut
elimination and sequentialisation. The central notion is the structure of order
varieties. Let a be an order variety on a base set X U {z}, provided a point of
view (the element z) o can be seen as a partial order on X. Order varieties can
be presented in different ways by changing the point of view and are invariant
under the change of presentation: one uses rootless planar trees called seaweeds.
Thus this structure allows focusing on any formula to apply a rule.

Proof nets are graph representations of NL derivations. Then a proof net with
conclusion A is obtained as an interpretation of a sequent calculus proof of A:
we say that it can be sequentialized. But the corresponding cut-free derivation
of the formula A is not unique in general. It introduces some irrelevant order
on the sequent rules. For instance, a derivation I ending with - A% B,C%® D
implies an order on the two rules introducing the principal connectives of A% B
and C% D, but the proof net corresponding to II does not depend on such order.

A contracting proof structure is a hypergraph built in accordance with the
syntax of proof nets and seaweeds. A proof structure is a particular contracting
one. To know if a such structure is a proof net or not, we use a correctness
criterion. The Maieli one is in the Danos-Regnier criterion style: at first it uses
a switching condition and tests if we obtain an acyclic connected graph. Then
for each V link, we check the associated order varieties.

It is known that the proof nets of multiplicative linear logic have a linear
time correctness criterion [Gue99]. The first step towards a linear algorithm is



to have a contractibility criterion (the Danos one [Dan90]) which can be seen as a
parsing algorithm. One can reformulate it in terms of a sort of unification. Then
a direct implementation leads a quasi-linear algorithm, and sharp study give the
exact complexity. Up to now, there was no polynomial criterion for MNL.

Here we present a set of shrinking rules for MNL proof structures charac-
terising MNL proof nets as the only structures that contract to a seaweed. We
show that this contractibility criterion is quadratic. This idea is extended by a
presentation as a parsing algorithm. So this work may be a decisive step towards
a linear MNL correctness criterion.

Notations. One writes X WY for the disjoint union of the sets X and Y. Let w
and 7 be orders respectively on the sets X and Y. Let z be in X. One writes
w[7/x] the order on (X\{z})UY defined by w[r/z](y, ) iff w(y, z) or 7(y, z) or
w(y,z)if z €Y orw(z,z) if y € Y. Let f and g be positive functions. One writes
g(n) = O(f(n)) to denote that f = O(g) and g = O(f).

2 Order Varieties

2.1 Order Varieties and Orders

Definition 1 (order varieties). Let X be a set. An order variety on X is a
ternary relation o which is:

cyclic: Ve,y,2 € X,a(x,y,2) = aly, z,x),

anti-reflexive: Vo, y € X, —a(z, z,y),

transitive:  Vz,y,2,t € X,a(z,y,2) and a(z,t,z) = aly, z,t),

spreading: Vo,y,2,t € X,a(z,y,2) = alt,y, z) or a(z,t,2) or a(z,y,t).

Definition 2 (series-parallel orders). Let w and 7 be two partial orders on
disjoint sets X and Y respectively. Their serial sum (resp. parallel sum) w < 7
(resp. w || 7) is a partial order on X UY defined respectively by:

(w<m)(z,y) iff e<pyorz<,yor(zeX andy€eY),
(Wl 7)(zy) iff <,y orz<,y.

Definition 3 (closure). Let w = (X, <) be a partial order on X and z € X.

Let < denote the binary relation: x < y iff x < y and z is comparable neither
with x mor y. The closure of w is the ternary relation W on X defined by:

W(x,y,2) iff <y<z ory<z<z or z<x<y or

z T Yy
r<y or y<z or z<x.

Facts 1. i) If w is a partial order on X then @ is an order variety on X,
ii) The closure identifies serial and parallel sums of partial orders on disjoint
sets.



Definition 4 (gluing). Let w and 7 be two partial orders on disjoint sets X

and Y respectively. The gluing w7 of w and 7 is the following order variety on
XuY:

wrkT=w<<T=w|T=T<w

Definition 5. Let a be an order variety on a set X and x € X. The order ay
induced by a and z is the partial order on X\{z} defined by:

az(y, 2) iff a(z,y, 2)
One writes « for the unique partial order on {z}.

Proposition 1. Let a be an order variety on a set X, x € X and w be a partial
order on X\{z}. Then

apxrz=a and (W*xx)y=w

Fact 2. Let a be an order variety on a non-empty set. « is series-parallel iff
there exists a series-parallel order w such that @ = @. In other words, series-
parallel order varieties are exactly those can be represented by series-parallel
orders.

Definition 6 (seaweed). Let o = @ be a series-parallel order variety on X
(#X > 2) such that w is written as a (non-unique) binary tree T with leaves
labelled by elements of X, and root and nodes labelled by e (serial composition)
or o (parallel composition).

A seaweed S representing « is a rootless planar tree with leaves labelled by

elements of X and ternary nodes labelled by e or o, defined by removing the root
of T':

a = w<T = wxT = w|r7

By convention orders are represented with top root and then seaweeds are ori-
ented anti-clockwise:

R — a
a<b<c = a% = /K
b ¢ b ¢

One extends the definition of seaweeds to the rootless planar trees on n-ary-
nodes (n > 3).




Definition 7 (normal form). Let a be a series-parallel order variety. Let the
seaweeds representing « be considered modulo assocativity of o and e: there is
not two nodes linked with a same label, and there is not binary or unary nodes.
The equivalence class of such seaweeds modulo commutativity of o has a unique
representative which is said in normal form.

The uniqueness comes from the next proposition.

Remark 1. A seaweed is in normal form if it has n-ary nodes and verifies that all
paths between two leaves are a sequence of alternate e and o nodes. Afterwards
for a seaweed (not specially in normal form) we denote such alternate paths
between arbitrary leaves x and y by the following figure:

This notation does not presuppose that this alternate path starts by a e-node
and finishes by a o-node.

Ezample 1. Let a be the closure of [((a < b) <¢) || d] < [e]|| (f < (g < h) <19)].
Then the path between d and g is

ba
c
i h

To be convenient we only use seaweeds in normal form. So o-nodes are com-
mutative. When it is not ambiguous, we use an order variety instead of its
representation.

2.2 Seesaw and Entropy

Definitions 8. Let w and 7 be series-parallel orders on a same given set. The
equivalence relation seesaw is defined by w = 7. The relation entropy < is defined
byw LT iff wCTandw CT.

Proposition 2. In the case of series-parallel orders, seesaw (resp. entropy)
turns out to be the least equivalence —~ (resp. the least reflexive transitive re-
lation) given by:

(w1 || wa) v (w1 < wa) (resp. wwy || we] Qwlwr < wa] )



Facts 3. i) Entropy is a partial order, compatible with restriction and the
serial and parallel sums of orders,

ii) entropy between orders corresponds to inclusion of order varieties: let o and
B be order varieties on X, and z € X, we have

aC Biff a, < Be.

This is independent from the choice of z,
iii) entropy is performed on seaweeds by changing some e-nodes into o-nodes.

2.3 Wedge and Identification

Definitions 9 (wedge). Let (w;);cr be a non empty family of partial orders on
a same set. The wedge A\, ;w; is the largest partial order (w.r.t. ) such that

(/\wz) Qw; for alli€ .
iel
Let (a;)icr be a non empty family of order varieties on a set X. The wedge
Nier @i is
(A (@i)s) xz
iel
for an arbritrary x € X.

Facts 4. i) Partial orders on a given set form a complete inf-semi-lattice for
entropy and wedge,

ii) the wedge is not intersection in general,

iii) the wedge is not series-parallel in general, even if all w; are series-parallel,

iv) the wedge (partially) commutes with restriction:

if Y C |w;| then (/\wi) 'Y € (/\w, 1Y),
i€l icl
v) the two notions of wedge are related by:
(/\oz,-)m:/\(oz,-)m and (/\wi)*x:/\(wi*x)
i€l icl icl icl

Definition 10 (identification). Let « be an order variety on o set X W {z} ¥
{y}, and let = ¢ X U {z,y}. The identification a[z/z,y] of z and y into z in «
is the order variety defined by:

alz/z,y] = a [xuay [2/2] A alxugy [2/Y]

Lemma 1. i) a[z/z,y]. *(z || v) C «,

ii) Let o be an order variety on X W {z} & {y} and w be a partial order on
X such that w * (z || y) C a. Then wx* (z || y) C ofz/z,y], x (z || y), or
equivalently w K afz/z,y],.



Proof. See the proof of lemma 3.35 in [Rue00]. |

Definition 11. Let  be a series-parallel order variety represented by a seaweed
S. We define the seaweed S{(z/xz,y) by the following sequence on the alternate
path between x and y in S:

1. fisgy: transform every o-node belong the path between x andy. This is called
“fission”:

2. entyy: apply entropy belong the path between x and y:

3. assyy: apply associativity belong the path between = and y:
Y VA T

4. substitute z for x || y.

Lemma 2. i) Identification in order varieties is monotonic (for the inclusion),
i1) If v denotes a map such that v(S) is the order variety corresponding to the
seaweed S then, for S and T seaweeds,

v(8) Co(T) = v(S(z/z,y)) Cv(T(z/z,y))

Proof. Let o and 8 be order varieties on a set X such that a C 8. We have
afz/z,y] C Blz/z,y] i-e. identification is monotonic because the wedge is clearly
monotonic. On the seaweeds, the only nodes which are different in the represen-
tation of a and 3 are the o-nodes in the representation of a which correspond
to e-nodes in the representation of . If so,

- by definition, for all z,y € X, fis,,(a) and fis,,(3) represent always the
same included order varieties,

- all differents nodes on the path between x and y in ent,,(fiszy(c)) become
o-nodes and stay o-nodes in ent,y(fiszy(5)),

- all others are unchanged.



Hence the order variety represented by entgy(fisgy(a)) is included in the one
which is represented by entgy(fisgy(8)) O

Proposition 3. Let a be a series-parallel order variety on a set X W{z} W {y},
and let z ¢ X U{z,y}. If the seaweed S represents a then the seaweed S{z/x,y)
represents the identification afz/x,y].

Proof. Using the notations of lemma 2,
D) With the hypothesis, we have that a[z/z,y], * (z || ¥) C a. Then by the
previous lemma,

v((alz/z,yl: * (2 || y))(z/z,y)) € v(alz/z,y))
So by definition of S{z/z,y), we obtain that

alz/z,yl. * z C v(afz/z,y))
For all u € |a| ay *u = a, thus
alz/z,y] Cv(alz/z,y))

C) By definition, fiszy () represents the same order variety as a and for all
order variety 8, v(entzy(8)) C B. Thus v(entsy(fiszy(a))) C a. Then we again
have that v(S(z/z,y)). * (z || y) C @. Then by definition and as identification is
monotonic we have

v(S(z/z,y))zx 2 Cafz/zy]  de 0(S(z/z,y)) C alz/z,y]

3 MNL Proof Nets

We restrict us to the multiplicative fragment of NL i.e. to the formulae built
from atoms a,a’,... , the commutative conjonction and disjonction (resp. ®
and %) and the non commutative conjonction and disjonction (resp. ® and V).

Definitions 12 (links and proof structures). A link is an object for which
the premises (input edges) and the conclusions (output edges) are two disjoint
sets of vertices:

() ® ©
L A;B A?B AEB AVB

A proof structure G over the vertices V(G) is a set of links such that:

- every vertex in V(G) is a conclusion of (only) one link,

- every vertex in V(G) either is a conclusion of G (i.e. is not a premise of
any link of G) or is a premise of (only) one link,

- the set v of the conclusions of G (writen G+ «v) is not empty.



3.1 Maieli Correctness Criterion

Definitions 13 (Switchings). Let G a proof structure. A switching s for G
is given by mutilating one premise-edge for each V-link and %-link. Any V-link
(resp. ®-link) admits a left/right mutilation wich is called the left/right switch
of V (resp. % ). Any switching s for a proof structure G induces a graph on V(Q)
which is called the switched proof structure s(G).

Fact 5. If a switched proof structure S induced by a proof structure G F ~
is acyclic and connected then (viewing ®-nodes as o-nodes and ®-nodes as e-
nodes, and effacing binary nodes implie that) S is a seaweed which represents a
series-parallel order variety on ~.

Definition 14 (Suitable conclusion). Let G & v be a proof structure and s
be a switching for G. Let a vertex of s(G) labelled AVB. A conclusion suited
to AVB is a vertex C € 7y such that there is no paths from AVB to C in s(G)
which is oriented in G.

Definition 15 (M-correctness). A proof structure G is M-correct iff for any
switching s:

1. the switched proof structure s(G) is acyclic and connected,

2. for any V-link labelled AV B, for any suitable conclusion C, the intersection
of the paths AB, AC and BC' in the seaweed s(G) is a ®-node in G with the
following anti-clockwise order:

:.._c

/
B

Theorem 1 ([Mai00]). A proof structure G is M-correct iff G is sequentialis-

able.

In the commutative fragment (multiplicative linear logic) the Maieli cor-
rectness criterion is exactly the Danos-Regnier’s (the first step in the previous
definition). The latter is well known to be in exponential time: if n is the number
of %-links in a proof structure G then the Danos-Regnier correctness criterion
checks 2™ graphs and cannot be inferred by the inspection of a fixed subset of
the switches of G. So the Maieli correctness criterion is at least in exponential
time.



3.2 The Size of a Proof Structure

If we call size of a proof structure G the number of registers size(G) required
for the memorisation of G on some ramdom access machine (RAM) then in
any non redundant coding, size(G) is linear in the number of vertices of G i.e.
size(G) = O(|V(G)|). Moreover, since the number of links in G is linear in
the number of vertices of G, size(G) = O(|G]) also. In the following, one shall
analyse the worst case asymptotic complexity of correctness in terms of size(G).

Remark 2. It is usual to describe a proof net with only one conclusion: built a
tree of %¥-links of the conclusions. This description does not improved the worst
case asymptotic complexity.

4 Sequent Calculus

Definition 16. A sequent b « consists of a series-parallel order variety o of
formula occurences.

FwxA Fo' xAL-

(identity) T

Identity group (cut)

P AL
HB
Structural group T (entropy), a C 8

FwxA Fuw =B Fw= (A< B)

Looi
ogue group FW<w) +A®B Fw*AVB

FwxA FwxB Fwx(A| B)
Fllo)xAeB Fwx A% B

We can have a sequent calculus without an explicit rule for entropy: only the
Z¥-rule need this rule. So we can substitute the entropy rule and the Z-rule by
the following one given in [AR0OQ]:

F a[A, B]

Ta[ANB/A D] L Tue)

where a[A % B/A, B] is the identification of definition 10. Indeed in the multi-
plicative fragment the two versions are equivalent: by lemma 1, we have

- a[A%® B/A,Blasp * (A || B) C a, so entropy and %-rule can mimic the
% *-rule,

- wx(A || B) C aimplies wx(A || B) C a[A® B/A, Bl asg+(A || B), so B *-rule
is an optimized version of %¥-rule where entropy has been minimized.

See [Rue00] for a detailled explaination and consequences of removing the en-
tropy rule in the full NL.



5 Contractibility Criterion

Definition 17 (Contracting proof structure). A contracting proof struc-
ture G over the vertices V(G) is a set of links and seaweeds such that:

- every vertex in V(G) either is a conclusion of (only) one link or is an ez-
tremity of (only) one seaweed,

- every verter in V(G) either is a conclusion of G (i.e. is not a premise of
any link of G) or is a premise of (only) one link or is an extremity of (only)
one seaweed,

- the set 7y of the conclusions of G (writen G+ «v) is not empty.

We consider the following system of rewriting rules called contraction rules
which is applied from contracting proof sub-structures to seaweeds:

- no rules for axiom-link, ®-link, ®-link: an axiom-link is already a seaweed,
a ®-link is viewed as a o-node and a ®-link as e-node,
- associativity rules, sequential rules and par rule:

A\é&? —c Y A/\AL —e

AR B

The par contraction rule corresponds to the transformation of a seaweed S
and a #-link in S(A % B/A, B). We have | n—m |< 1 due to the alternate path
between A and B.

Note that proof structures are particular contracting proof structures.



Definition 18 (Contractibility criterion). A contracting proof structure G
is c-correct if =7 reduces G to a seaqweed.

Theorem 2 (Confluence). The system of contraction rules is confluent.

Proof. There is no problems to do interactions with local rules like V-rule and
associativity rules. The cases #-rule vs %-rule and %-rule vs V-rule are treated
in the appendix. The Z-rule vs associativity rules are exactly the same as vs
V-rule. O

Theorem 3 (Sequentialisation). A proof structure G is c-correct iff G is
sequentialisable.

The proof can be deduced from the sequentialisation theorem from next
section by using proposition 3.

Corollary 1 (Correctness). A proof structure G is c-correct iff G is M-correct.

This correctness criterion acts on an initial contracting proof structure G
with size(G) links and nodes of seaweeds (recall that axiom-links are seaweeds).
Let n = O(size(G)) be the sum of weighted number of links and the number
of nodes. The analysis of each step of reduction shows that the number of links
always decreases and that:

- the associativity decreases the number of nodes of the seaweed,

- the V-rule decreases the number of links without changing the number of
nodes. In the degenerated case, to assign a weight of 2 to V-links allows to
decrease n.

- the %¥-rule acts on an alternate path. Let r and s be respectively the number
of e-nodes and o-nodes on this path. The contraction rule reduces the r + s
nodes to 2r + 1 nodes with | »r — s |< 1 due to the alternate. Then in the
worst case, the difference is of 2. So to assign a weight of 3 to #-links allows
to decrease n.

So in the worst case (when G is c-correct), the number of steps of reduction in
this criterion is linear in size(G). Each step of reduction is a choice of a rule and
the application of this rule. This decreases n down to 0.

Expect in the case of %¥-rule, the complexity of choosing a rule is linear in
size(@). In order to enable the choice of #-rule to have the same complexity
mark each seaweed with an integer.

Applying a reduction rule is linear in size(G) in the worst case: the asso-
ciativity rules and the V-rules are in constant time, the %-rule is linear in the
length of the path. Indeed this latter rule consists of an S(z/xz,y) operation of
some A and B into A% B: this requires a linear time for fisap as well as for
entap and for assag.

Therefore this correctness criterion is in quadratic time.



6 Parsing

In the previous section, we are dealing with contracting proof structure i.e. with
seaweeds. Here is the same quadratic time parsing algorithm that checks the cor-
rectness of a proof structure but the objects are directly order varieties. From
the sequent calculus one can find a non determinist algorithm for the sequential-
isation of proof structures. We present here a determinist reformulation. In order
to show this, we introduce the parsing box which contains an order variety: let

a be an order variety on a set X,

is called the parsing box «. This a kind of link without premises which has one
conclusion for each element of X. We use the following set of parsing rules —:

o

—p ‘(w||w’)*A®B‘
T 1 I

—» [cxa8 D

where wx A% B =a[A ® B/A, B]

—p ‘(w’ <w)*A®B‘
I I

—» [eavs

By the properties of =, and proposition 3, we obtain the confluence of —,.



Lemma 3. If IT is a proof in cut-free MNL of - o then we can naturally asso-
ciate with II o proof net II~ which reduces to the parsing box 8 D «.

Proof. The proof net IT~ is defined by induction on IT as follow:

Case 1: IT is an axiom F A x AL; one must define IT~ as the axiom link: it is
reduced to the parsing box A * A+,

Case 2: II is obtained by a ®-rule from A; and A\s which are respectively the
proofs of F wx A et F B x w'; By induction hypothesis, \] and \; are
respectively reduced to the parsing boxes f* A D wx A and Bxf' D Bx*w'.
Then we define IT~ as the tensor on A and B of \; and \»: it is reduced to
the parsing box (8 || ') * A® B D (w || w') * A® B.

Case 3: IT is obtained by a Z%-rule from A\ which is a proof of - a[A, B]; By
induction hypothesis, A is reduced to the parsing box B[4, B] 2O oA, B].
Then we define IT~ as the par on A and B of A: it is reduced to the parsing
box B[A®B/A, B] D a[A® B/A, B] by lemma 2.

Case 4: II is obtain by an entropy rule from A which is a proof of - g with
B 2 a. Then we define IT~ as A.

Case 5: II is obtained by a ®-rule or a V-rule; one can build I~ like respec-
tively in cases 2 and 3 if we recall that f C ofw < w'] implies Slw < '].
O

Lemma 4. If a proof net X\ is reduced to the parsing boxr o then we can find a
proof II in sequent calculus of b a such that I~ = A.

Proof. By induction on the length of the reduction:

i) one step of reduction: A is an axiom link which is reduced in the parsing box
A x A+. The claim is proved by taking as IT the axiom F A x A+,
ii) several steps of reduction: the system of parsing rules is confluent, so the last

rule applied to A is one of the followings:
- Tensor parsing rule: we have a proof net A reduced in a parsing box

8= (w| w)*A® B. So by the last step, there are the proof nets \;
and Ay reduced respectively in the parsing boxes w * A and B * w'. By
induction hypothesis, there is the proofs II; and IT; in sequent calculus
resp. of F w* A and F B xw' such that II;7 = Ay and II; = As.

So by taking as IT the tensor of - w * A and F B x w' we obtain a proof
of F 8 such that IT— = .

- Par parsing rule: we have a proof net A reduced in a parsing box 8 =
a[AZ® B/A, B]. So by the last step, there is a proof net A; reduced in
a parsing box a[A4, B]. By induction hypothesis, there is a proof II; in
sequent calculus of - a[A, B] such that IIT = A;. One can take as IT
the % x-rule of a[A, B] then I~ = A.

- The others parsing rules can be treated as in previous cases. O

Theorem 4 (Sequentialisation). Let us say that the proof structure G is p-
correct when —, reduces G to a parsing box. Then, G is p-correct iff G is se-
quentialisable.

Proof. Deduce from lemma 3 and 4. O

Corollary 2. A proof structure G is p-correct iff G is M-correct.



7 Conclusion

These criteria are like the others one from the cut management point of view.
Given a sequent calculus proof of NL with cuts P, there is an associate proof
net with cuts. The standard cut elimination gives a cut-free proof net which
can be sequentialised in a cut-free sequent calculus proof. Then this proof can
be obtained from P by cut elimination. The question is to know what happens
during the intermediate steps of cut elimination: is there a correctness criterion?
i.e. is there a sequentialisation theorem extended to proof nets with cuts? In the
commutative part of NL, the sequentialisation of proof nets with cuts can be
solved by seeing a cut like a tensor for correctness. Detailed explanations can
be found in [Laf95]. But these cannot be done here!. So how to deal with a
contractibility correctness criterion for proof nets with cuts?

The obtained correctness criterion is quadratic but there is a linear alterna-
tive in the case of linear logic [Gue99]. This result comes from a reformulation
of Danos contractibility criterion which is essentially based on unification. This
gives a quasi-linear time algorithm. Guerrini’s approach does not trivially gener-
alize to this case. One can derive a trivial unification algorithm for NL from the
parsing one but without improving the complexity. In fact, the needed informa-
tion to make the unification is exactly that which is contained in the structure
of order varieties. This new Danos contractibility style criterion for NL is a first
step to obtain a linear correctness criterion.

Acknowledgements. I would like to thank R. Maieli and P. Ruet for theirs
fruitful discussions. Thanks also to the anonymous referees for theirs comments
and criticism.
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A Appendix: Confluence Proof

A.1 7%-parsing rule v.s. %¥-parsing rule

Let a be a order variety on a set X. We want to prove that for all distincts
A,B,C,D € X we have a(A® B/A,BY}{C % D/C,D) = o(C ®D/C,D){A%®
B/A,B). In fact the a(z % y/z,y) operation can be decomposed in steps on
sub-seaweeds: fis;y, enty, and assg, are well defined for all nodes z,y in a.
Note that the nodes x and y are not transformed in this processes: they are not
in the open path between x and y (denoted path(z,y)).

We are only interrested in fis;y and entgy. So for all z,y, z,t nodes in o we
have the followings equations:

entyy(fisey(Sey)) = Tuy
entwy(fiswy(th)) =Ty
entyy(fisgy(Sze)) = Sz if path(z,y) N path(z,t) = 0

where we denote respectively by S,, and Tj, the following forms of sub-
seaweed of a which belong the path between z and y:

Let A,B,C,D be in X and U,V be two nodes in a such that path(A, B) N
path(C, D) = path(U,V). Then « is represented by:




where U and V are undefined node. We have the following confluents diagrams:

cD cD
Sav —— Sav Suv —— Tuyv
oo |an [ |an
cD cD
Tav —— Tav Tyv —— Tuv
where __ ¥ , standsfor _ntey(fis=y()) . And we have the same from Sy 5

(resp. Scu and SVD) to Ty p (resp. Teou and TVD)-

So what happens to U and V7?7 They can be treated in the same way: it
depends only on the nature of the node.

- It is a parallel node:




- It is a serial node:




A.2 Z-parsing rule v.s. V-parsing rule




