
Interactive Constraint-Based Sequential Pattern
Mining ?

Marek Wojciechowski

Poznan University of Technology
Institute of Computing Science

ul. Piotrowo 3a, 60-965 Poznan, Poland
Marek.Wojciechowski@cs.put.poznan.pl

Abstract. Data mining is an interactive and iterative process. It is very
likely that a user will execute a series of similar queries differing in pat-
tern constraints and mining parameters, before he or she gets satisfying
results. Unfortunately, data mining algorithms currently available suffer
from long processing times, which is unacceptable in case of interactive
mining. In this paper we discuss efficient processing of sequential pat-
tern queries utilizing cached results of other sequential pattern queries.
We analyze differences between sequential pattern queries and propose
algorithms that in many cases can be used instead of time-consuming
mining algorithms.

1 Introduction

Data mining aims at discovery of useful patterns from large databases or ware-
houses. One of the most popular data mining methods is sequential pattern dis-
covery introduced in [2]. Informally, sequential patterns are the most frequently
occurring subsequences in sequences of sets of items. The initial formulation of
the problem was significantly extended in [10], where a taxonomy on items was
added to support discovery of so called generalized sequential patterns, and three
time constraints (min-gap, max-gap, and time window) were introduced to be
used when checking if a given source sequence contains a given pattern. For that
extended problem formulation, an efficient algorithm called GSP was proposed.
Applications of sequential patterns include analysis of telecommunication sys-
tems, discovering frequent buying patterns, analysis of patients’ medical records,
etc.

From a user’s point of view, data mining can be seen as an interactive and
iterative process of advanced querying: a user specifies the source dataset and
the requested class of patterns, the system chooses the appropriate data mining
algorithm and returns discovered patterns to the user [4][6]. A user interacting
with a data mining system has to specify several constraints on patterns to be
discovered. However, usually it is not trivial to find a set of constraints leading
? This work was partially supported by the grant no. KBN 43-1309 from the State

Committee for Scientific Research (KBN), Poland.



to the satisfying set of patterns. Thus, users are very likely to execute a series of
similar data mining queries before they find what they need. Unfortunately, data
mining algorithms require long processing times, which makes such interaction
difficult.

In this paper, we discuss efficient sequential pattern discovery in the presence
of materialized results of previous sequential pattern queries. We claim that a
data mining system should exploit the fact that a user is very likely to execute
a number of similar sequential pattern queries during a single session. We pro-
pose caching results of mining queries by materializing their results on disk (we
assume that a data mining system is going to be assigned a certain amount of
disk space for that purpose). It is obvious that materialized results of a query
can be used to answer an identical query, therefore we concentrate on processing
queries different from those whose results are available. The possibility of an-
swering a query using known results of another query depends on the differences
between the two queries. Our goal is to provide criteria for determining if cached
results of a given query can be used to answer the current query without running
a complete mining algorithm, and introduce efficient sequential pattern query
processing algorithms exploiting materialized patterns.

Exploiting cached results of previous mining queries has been studied in
the context of association rules [3][7]. However, direct application of methods
and techniques introduced for association rules to sequential pattern discovery
problem is not possible since different types of constraints are available in the two
problems. Nevertheless, it seems that the general ideas should stay unchanged.

In has been observed [3] that the three particularly interesting relationships
between two mining queries DMQ1 and DMQ2 extracting patterns from the
same data are equivalence, inclusion, and dominance. The three relationships
are interesting since they represent situations, where one data mining query can
be efficiently answered using the results of another query. Differences between
mining queries leading to these relationships were analyzed only in the context
of association rules. In this paper we present analogous analysis concerning se-
quential patterns. Thus, most of our work can be regarded as the extension of
the approach from [3] into sequential pattern discovery.

1.1 Sequential Patterns

Let L = l1, l2, ..., lm be a set of literals called items. An itemset is a non-empty
set of items. A sequence is an ordered list of itemsets and is denoted as <
X1X2...Xn >, where Xi is an itemset (Xi ⊆ L). Xi is called an element of the
sequence. The size of a sequence is the number of items in the sequence. The
length of a sequence is the number of elements in the sequence. Let D be a
set of variable length sequences (called data-sequences), where for each sequence
S =< X1X2...Xn > , a timestamp is associated with each Xi.

With no time constraints we say that a sequence X =< X1X2...Xn > is
contained in a data-sequence Y =< Y1Y2...Ym > if there exist integers i1 < i2 <
... < in such that X1 ⊆ Yi1 , X2 ⊆ Yi2 , ..., Xn ⊆ Yin . We call < Yi1Yi2 ...Yin > an
occurrence of X in Y . We consider the following user-specified time constraints



while looking for occurrences of a given sequence: minimal and maximal gap
allowed between consecutive elements of an occurrence of the sequence (called
min-gap and max-gap), and time window that allows a group of consecutive
elements of a data-sequence to be merged and treated as a single element as
long as their timestamps are within the user-specified window-size.

The support of a sequence < X1X2...Xn > in D is the fraction of data-
sequences in D that contain the sequence. A sequential pattern is a sequence
whose support in D is above the user-specified threshold.

1.2 Relationships between Results of Data Mining Queries

Two data mining queries are equivalent if for all datasets they both return the
same set of patterns and the values of statistical significance measures (e.g.
support) for each pattern are the same in both cases. A data mining query
DMQ1 includes a data mining query DMQ2 if for all datasets each pattern in
the results of DMQ2 is also returned by DMQ1 with the same values of the
statistical significance measures. A data mining query DMQ1 dominates a data
mining query DMQ2 if for all datasets each pattern in the results of DMQ2 is
also returned by DMQ1, and for each pattern returned by both queries its values
of the statistical significance measures evaluated by DMQ1 are not less than is
case of DMQ2. Equivalence is a particular case of inclusion, and inclusion is a
particular case of dominance. Equivalence, inclusion, and dominance meet the
transitivity property.

If for a given query, results of a query equivalent to it, including it, or dom-
inating it are available, the query can be answered without running a costly
mining algorithm. In case of equivalence no processing is necessary, since the
queries have the same results. In case of inclusion, one scan of the materialized
query results is necessary to filter out patterns that do not satisfy constraints
of the included query. In case of dominance, one verifying scan of the source
dataset is necessary to evaluate the statistical significance of materialized pat-
terns (filtering out the patterns that do not satisfy constraints of the dominated
query is also required).

1.3 Related Work

To facilitate interactive and iterative pattern discovery, [8] proposed to materi-
alize patterns discovered with the least restrictive selection criteria, and answer
incoming queries by filtering the materialized pattern collection. This approach
is not a perfect solution of the problem since pattern mining with very low
minimum support thresholds might lead to collections of frequent patterns even
larger than the original database. Moreover, restricting certain constraints (e.g.
time constraints in the context of sequential pattern mining) not only makes
some patterns infrequent but also changes the support of patterns that remain
frequent.

Much more reasonable and flexible solutions supporting interactive and it-
erative mining were presented in [7], in the context of association rules. The



solutions presented there consisted in caching results of mining queries. In the
approach, materialization of frequent itemsets instead of rules was proposed.
However, in some cases it was required to materialize also some of the infre-
quent itemsets.

Most of the research on sequential patterns focused on introducing new al-
gorithms, more efficient than GSP (e.g. [5][9]). However, the novel methods do
not handle time constraints and taxonomies. Thus, GSP still remains the most
general sequential pattern discovery algorithm and the reference point for new
methods and techniques.

1.4 Organization of the Paper

The paper is organized as follows. Section 2 presents constraints that can be
specified in sequential pattern mining. In Sect.3, relationships between sequen-
tial pattern queries are discussed. Section 4 contains efficient sequential pattern
query processing algorithms. Experimental results concerning the proposed al-
gorithms are presented in Sect.5. We conclude with a summary in Sect.6.

2 Constraint-Based Sequential Pattern Mining

In constraint-based sequential pattern mining, we identify the following classes
of constraints: database constraints, pattern constraints, and time constraints.
Database constraints are used to specify the source dataset. Pattern constraints
specify which patterns are interesting and should be returned by the query.
Finally, time constraints influence the process of checking whether a given data-
sequence contains a given pattern.

The basic formulation of the sequential pattern discovery problem introduces
three time constraints: max-gap, min-gap, and time window, and assumes only
one pattern constraint (expressed by means of the minimum support threshold).
We model pattern constraints as complex Boolean predicates having the form of
a conjunction of basic Boolean predicates on patterns presented below:

– π(SPG, α, pattern) - true if pattern support is greater than α, false other-
wise;

– π(SL, α, pattern) - true if pattern size is less than α, false otherwise;
– π(SG, α, pattern) - true if pattern size is greater than α, false otherwise;
– π(LL, α, pattern) - true if pattern length is less than α, false otherwise;
– π(LG, α, pattern) - true if pattern length is greater than α, false otherwise;
– π(C, β, pattern) - true if β is a subsequence of the pattern, false otherwise;
– π(NC, β, pattern) - true if β is not a subsequence of the pattern, false

otherwise.

We believe that the above list of predicates is sufficient to allow users to express
their pattern selection criteria. For simplicity’s sake, in length and size predicates
we consider only sharp inequalities.



3 Relationships between Sequential Pattern Queries

Inclusion and dominance relationships between two data mining queries are de-
fined for queries operating on the same dataset. Therefore, analyzing differences
between sequential pattern queries, we consider only differences in time and
pattern constraints.

Definition 1. Given two basic Boolean pattern predicates b1 and b2, we say that
b2 is stronger than b1 if one of the following conditions holds:

1. b1 = π(SPG, α1, pattern) and b2 = π(SPG, α2, pattern), where α2 > α1,
2. b1 = π(SG, α1, pattern) and b2 = π(SG, α2, pattern), where α2 > α1,
3. b1 = π(SL, α1, pattern) and b2 = π(SL, α2, pattern), where α2 < α1,
4. b1 = π(LG, α1, pattern) and b2 = π(LG, α2, pattern), where α2 > α1,
5. b1 = π(LL, α1, pattern) and b2 = π(LL, α2, pattern), where α2 < α1,
6. b1 = π(C, β1, pattern) and b2 = π(C, β2, pattern), where a pattern β1 is a

subsequence of the pattern β2 and the size of β1 is less than the size of β2,
7. b1 = π(NC, β1, pattern) and b2 = π(NC, β2, pattern), where pattern β2 is

a subsequence of the pattern β1 and the size of β2 is less than the size of β1.

Definition 2. We say that a data mining query DMQ2 extends pattern con-
straints of a data mining query DMQ1 if any of the following conditions holds:

1. Pattern constraints of DMQ1 have a form of a conjunction of n basic
Boolean pattern predicates, pattern constraints of DMQ2 have a form of
a conjunction of n + 1 basic Boolean pattern predicates (n ≥ 0), and each
basic Boolean pattern predicates in DMQ1 also appears in DMQ2;

2. DMQ1 and DMQ2 have pattern constraints p1 and p2 respectively, where
p1 and p2 are conjunctions of n basic Boolean pattern predicates (n ≥ 1),
p1 = p ∧ b1, p2 = p ∧ b2 (p is a conjunction of n − 1 basic Boolean pattern
predicates), and b2 is stronger than b1;

3. It is possible to formulate a data mining query DMQ3 such that DMQ2 ex-
tends pattern constraints of DMQ3 and DMQ3 extends pattern constraints
of DMQ1. (The relationship of extending pattern constraints is transitive.)

In other words, a data mining query DMQ2 extends pattern constraints of a
data mining query DMQ1 if pattern constraints of DMQ1 can be transformed
into pattern constraints of DMQ2 by appending new basic Boolean pattern
predicates or replacing basic Boolean pattern predicates with stronger ones.

Given two sequential pattern queries, there are four cases possible regard-
ing pattern constrains: DMQ1 and DMQ2 have the same pattern constraints,
DMQ1 extends pattern constraints of DMQ2, DMQ2 extends pattern con-
straints of DMQ1, or pattern constraints of DMQ1 and DMQ2 are not compa-
rable.

Definition 3. We say that a data mining query DMQ2 extends time con-
straints of a data mining query DMQ1 if any of the following conditions holds:



1. The value of the max-gap parameter in DMQ2 is less than in DMQ1 and
both queries have the same value of the min-gap parameter, and the same
value of the window-size parameter;

2. The value of the min-gap parameter in DMQ2 is greater than in DMQ1 and
both queries have the same value of the max-gap parameter, and the same
value of the window-size parameter;

3. The value of the window-size parameter in DMQ2 is less than in DMQ1

and both queries have the same value of the max-gap parameter, and the
same value of the min-gap parameter;

4. It is possible to formulate a data mining query DMQ3 such that DMQ2

extends time constraints of DMQ3 and DMQ3 extends time constraints of
DMQ1. (The relationship of extending time constraints is transitive.)

In other words, a data mining query DMQ2 extends time constraints of a data
mining query DMQ1 if it restricts at least one of the time parameters (max-gap,
min-gap, window-size) and does not relax any time parameters.

Given two sequential pattern queries, there are four cases possible regarding
time constrains: DMQ1 and DMQ2 have the same time constraints, DMQ1

extends time constraints of DMQ2, DMQ2 extends time constraints of DMQ1,
or time constraints of DMQ1 and DMQ2 are not comparable.

Example 1. Let us consider the following three sequential pattern queries, oper-
ating on the same dataset:

DMQ1 = {max-gap: 100, min-gap: 0, window-size: 1, π(SPG, 0.2, pattern)}
DMQ2 = {max-gap: 100, min-gap: 0, window-size: 1, π(SPG, 0.1, pattern) ∧
π(SG, 3, pattern)}
DMQ3 = {max-gap: 100, min-gap: 7, window-size: 1, π(SPG, 0.2, pattern) ∧
π(SG, 3, pattern)}

DMQ3 extends pattern constraints of DMQ1 and DMQ2, while pattern con-
straints of DMQ1 and DMQ2 are not comparable. DMQ3 extends time con-
straints of DMQ1 and DMQ2, while time constraints DMQ1 and DMQ2 are
the same.

The two relationships defined above concern the syntax of queries, while the
general inclusion and dominance relationships refer to results of queries. Below
we introduce three theorems regarding dependence of relationships between re-
sults of two queries on syntactic differences between the two queries. We also
introduce several lemmas on which the proofs of theorems are based. For brevity,
we do not include proofs of the lemmas since they come straight from the above
definitions and inherent properties of pattern and time constraints.

Lemma 1. Let b1 and b2 be basic Boolean pattern predicates such that b2 is
stronger than b1. For each pattern p, if p satisfies b2 then p satisfies b1.

Lemma 2. Let DMQ1 and DMQ2 be two sequential pattern queries, operating
on the same dataset and having the same time constraints. Let p1 and p2 denote
pattern constraints of DMQ1 and DMQ2 respectively. If p2 = p1 ∧ b, where b is
a basic Boolean pattern predicate, then DMQ1 includes DMQ2.



Lemma 3. Let DMQ1 and DMQ2 be two sequential pattern queries, operating
on the same dataset and having the same time constraints. Let p1 and p2 denote
pattern constraints of DMQ1 and DMQ2 respectively. If p1 = p ∧ b1 and p2 =
p ∧ b2, where p is a conjunction of n basic Boolean pattern predicates (n ≥ 0)
and b2 is stronger than b1, then DMQ1 includes DMQ2.

Theorem 1. Let DMQ1 and DMQ2 be two sequential pattern queries, operat-
ing on the same dataset and having the same time constraints. If DMQ2 extends
pattern constraints of DMQ1, then DMQ1 includes DMQ2.

Proof. From the Definition 2, we know that if DMQ2 extends pattern constraints
of DMQ1, then it is possible to formulate a sequence of sequential pattern queries
DMQi1 , DMQi2 , ..., DMQin

operating on the same dataset and having the
same time constraints as DMQ1 and DMQ2, such that DMQi1 = DMQ1 and
DMQin = DMQ2, and for j = 2..n one of the following conditions holds:

1. pattern constraints of DMQij−1 have a form of a conjunction of n basic
Boolean pattern predicates, pattern constraints of DMQij

have a form of
a conjunction of n + 1 basic Boolean pattern predicates (n ≥ 0), and each
basic Boolean pattern predicates in DMQij−1 also appears in DMQij ;

2. DMQij−1 and DMQij
have pattern constraints p1 and p2 respectively, where

p1 and p2 are conjunction of n basic Boolean pattern predicates (n ≥ 1),
p1 = p ∧ b1, p2 = p ∧ b2 (p is a conjunction of n − 1 basic Boolean pattern
predicates), and b2 is stronger than b1.

From the Lemmas 2 and 3 and the transitivity property of the inclusion rela-
tionship, we have DMQ1 includes DMQ2.

Lemma 4. Let DMQ1 and DMQ2 be two sequential pattern queries, operating
on the same dataset and having the same pattern constraints. Let max1, min1,
and win1 denote values of max-gap, min-gap, and window-size parameters of
DMQ1, and max2, min2, and win2 values of max-gap, min-gap, and window-
size parameters of DMQ2. If one of the following conditions holds:

1. max2 < max1 and min2 = min1 and win2 = win1,
2. min2 > min1 and max2 = max1 and win2 = win1,
3. win2 < win1 and max2 = max1 and min2 = min1

then DMQ1 dominates DMQ2.

Theorem 2. Let DMQ1 and DMQ2 be two sequential pattern queries, oper-
ating on the same dataset and having the same pattern constraints. If DMQ2

extends time constraints of DMQ1, then DMQ1 dominates DMQ2.

Proof. Let max1, min1, and win1 denote values of max-gap, min-gap, and
window-size parameters of DMQ1, and max2, min2, and win2 values of max-
gap, min-gap, and window-size parameters of DMQ2. Since DMQ2 extends time
constraints of DMQ1, we have: win2 ≤ win1, max2 ≤ max1 and min2 ≥ min1.
Let DMQ3 and DMQ4 be sequential pattern queries operating on the same



dataset and having the same pattern constraints as DMQ1 and DMQ2, Let the
values of max-gap, min-gap, and window-size parameters be max2, min1, and
win1 in case of DMQ3, and max2, min2, and win1 in case of DMQ4. Thus,
from the Lemma 4, DMQ1 dominates DMQ3, DMQ3 dominates DMQ4, and
DMQ4 dominates DMQ2 (in fact, in each of the three cases equivalence is pos-
sible but equivalence is a particular case of dominance). Since the dominance
relationship is transitive, DMQ1 dominates DMQ2.

Theorem 3. Let DMQ1 and DMQ2 be two sequential pattern queries, operat-
ing on the same dataset. If DMQ2 extends pattern constraints of DMQ1 and
DMQ2 extends time constraints of DMQ1, then DMQ1 dominates DMQ2.

Proof. Let DMQ3 be a sequential pattern query operating on the same dataset
as DMQ1 and DMQ2, having pattern constraints of DMQ1 and time con-
straints of DMQ2. Thus, DMQ2 extends pattern constraints of DMQ3 and
DMQ3 extends time constraints of DMQ1. From the Theorems 1 and 2 we
have: DMQ1 dominates DMQ3 and DMQ3 includes DMQ2. Since inclusion
is a particular case of dominance and the dominance relationship is transitive,
DMQ1 dominates DMQ2.

4 Algorithms for Efficient Sequential Pattern Query
Processing in the Presence of Materialized Results of
Previous Queries

Given a sequential pattern query DMQ and materialized results of a sequential
pattern query DMQV , in the general case, even if DMQV and DMQ operate on
the same dataset but differ in pattern and time constraints, it is not possible to
answer DMQ without running a sequential pattern mining algorithm. However,
there are four particular cases where DMQ can be answered efficiently using the
materialized results of DMQV since they correspond to equivalence, inclusion,
and dominance relationships between DMQV and DMQ. These cases are listed
below:

1. If DMQV and DMQ have the same pattern and time constraints, then the
results of DMQ are equal to the results of DMQV (the two queries are
equivalent since they are identical);

2. If DMQV and DMQ have the same time constraints and DMQ extends
pattern constraints of DMQV , then DMQ can be answered by filtering out
the patterns returned by DMQV not satisfying pattern constraints of DMQ
(DMQV includes DMQ according to the Theorem 1);

3. If DMQV and DMQ have the same pattern constraints and DMQ extends
time constraints of DMQV , then DMQ can be answered by evaluating the
support of the patterns returned by DMQV using the time constraints of
DMQ, and filtering out patterns not satisfying the minimum support thresh-
old of DMQ. (DMQV dominates DMQ according to the Theorem 2);



4. If DMQ extends pattern constraints of DMQV and DMQ extends time con-
straints of DMQV , then DMQ can be answered by evaluating the support
of the patterns returned by DMQV using the time constraints of DMQ,
and filtering out patterns not satisfying the pattern constraints of DMQ.
(DMQV dominates DMQ according to the Theorem 3).

Answering the query in the first case (the case of equivalence) is trivial, therefore
we concentrate on details concerning inclusion and dominance relationships.

For the second case we propose an algorithm that performs one sequential
scan of the materialized patterns, processing one pattern at a time (main mem-
ory requirements are minimal). Each pattern is tested if it satisfies these basic
Boolean pattern predicates from the pattern constraints of DMQ that were
not in DMQV . All the basic Boolean pattern predicates of DMQ that were
in DMQV must be satisfied by all the materialized patterns since pattern con-
straints in our model have the form of a conjunction of basic predicates. The
algorithm for the second case is presented below.

Algorithm 1 Answering a sequential pattern query in case of inclusion due to
extending pattern constraints (Result Filtering)
Input: A sequential pattern query issued by a user (DMQ) and results of a
sequential pattern query DMQV including DMQ.
Output: The results of DMQ.
Method:

begin
Answer = results of DMQV ;
for each p ∈ results of DMQV do
begin

for each basic Boolean pattern predicate b such that
b is in pattern constraints of DMQ and
b is not in pattern constraints of DMQV do
begin

if not (p satisfies b) then
Answer = Answer \ {p};
break;

end if;
end;

end;
output Answer;

end.

For the third and fourth cases we propose one uniform algorithm (both cases re-
sult in the dominance relationship). Conceptually, the algorithm has to scan the
source dataset once in order to re-evaluate the support of materialized patterns
and then prune the patterns that do not satisfy pattern constraints of DMQ.
However, for the fourth case, we apply one optimization to reduce the cost of
the support re-evaluation phase that is proportional to the number of patterns



to be verified. Before scanning the source dataset, we filter out patterns that do
not satisfy pattern constraints of DMQ using Algorithm 1. After the scan of the
dataset, we only test the predicate representing the minimum support thresh-
old (the only one that for a given pattern could by true before the support
re-evaluation, and false after that operation). The effects of this optimization
will be discussed in the next section.

During the support re-evaluation phase, when testing whether a currently
processed data-sequence contains a given pattern, all time constraints of DMQ
have to be taken into account, even if only one of them has been restricted
compared to DMQV . This is motivated by the observation that a given pattern
may occur several times in a given data-sequence. As a result, if we checked
only one of the time constraints, we might find a different occurrence satisfying
the constraint than the occurrence previously found as valid with respect to the
other two time constraints.

The algorithm in the form presented below assumes that the set of materi-
alized patterns supporting pattern constraints of DMQ fits into main memory.
If this is not the case, the set of materialized patterns has to be partitioned into
portions that fit into main memory and the algorithm has to be run on each of
the partitions.

Algorithm 2 Answering a sequential pattern query in case of dominance due
to extending time constraints (Result Verification)
Input: A sequential pattern query issued by a user (DMQ), a collection of
data-sequences D, and results of a sequential pattern query DMQV dominating
DMQ.
Output: The results of DMQ.
Method:

begin
if DMQ extends pattern constraints of DMQV then

Answer = patterns in results of DMQV satisfying
pattern constraints of DMQ; /* Algorithm 1 */

else Answer = results of DMQV ;
end if;
scan D once evaluating the support of patterns
in Answer using time constraints of DMQ;
for each p ∈ Answer do
begin

if p exceeds the minimum support threshold of DMQ
then output p; end if;

end;
end.

Having provided sequential pattern query processing algorithms for the cases
leading to equivalence, inclusion and dominance relationships, we have to ad-
dress situations where for a given query issued by a user (DMQ), there are



many materialized query results that could be used to answer the query without
running a complete data mining algorithm. In general, the set of applicable mate-
rialized query results consists of results of queries equivalent to DMQ, including
DMQ, and dominating DMQ. It is clear that in the first place the data mining
system should look for a query identical to DMQ (the case of equivalence) since
in that case the results of DMQ are directly available. Then, the system should
look for query results that could be used by Algorithm 1 (returned by a query
DMQV having the same time constraints as DMQ, such that DMQ extends
pattern constraints of DMQV ). If no query satisfying the above criteria could
be found, the system should try to find query results that could be used by Algo-
rithm 2 (returned by a query DMQV , such that DMQ extends time constraints
of DMQV and either DMQV and DMQ have the same pattern constraints or
DMQ extends pattern constraints of DMQV ). Finally, if again no appropriate
query criteria could be found, a complete data mining algorithm has to be run.

We believe that in majority of cases Algorithm 1 will be more efficient than
Algorithm 2 since the former requires one scan of the pattern set and no scan
of the source dataset, while the latter scans the source dataset once and during
this scan for each data-sequence processes all the patterns. However, it has to
be noted that in certain cases application of Algorithm 2 may be more efficient
than application of Algorithm 1 (for example, if the source dataset and the
materialized set of patterns to be used by Algorithm 2 are extremely small,
whereas the materialized pattern set to be used by Algorithm 1 is huge).

The final issue that has to be addressed is the selection of the materialized
query results to be used by Algorithms 1 and 2 if there is more than one query
including or dominating the query to be answered. We observe that it is not
possible to provide selection criteria always leading to the minimal processing
time, because the processing time depends not only on the syntax of the queries
but also on the contents of the source dataset. Therefore, we decide to optimize
the space requirements by choosing the materialized pattern set of the smallest
size. We believe that this solution will also lead to minimal processing time in
many situations, since smaller size of the pattern set leads to the smaller number
or size of patterns that have to be filtered or verified against the database. It
is not guaranteed, however, since the processing time is affected also by the
number of predicates that have to be tested for each pattern, which depends
on the pattern structure (subsequent predicates are tested until one of them is
found to be false).

Example 2. Let us consider the following three queries discovering sequential
patterns from the same dataset:

DMQ1 = {max-gap: 100, min-gap: 0, window-size: 1, π(SPG, 0.2, pattern)}
DMQ2 = {max-gap: 100, min-gap: 7, window-size: 1, π(SPG, 0.1, pattern) ∧
π(SG, 3, pattern)}
DMQ = {max-gap: 100, min-gap: 7, window-size: 1, π(SPG, 0.2, pattern) ∧
π(SG, 3, pattern)}

Let us assume that results of DMQ1 and DMQ2 are stored in cache, and DMQ
is the query to be answered. Since neither DMQ1 nor DMQ2 is identical to



DMQ, the data mining system would choose to answer DMQ using Algorithm
1 exploiting cached results of DMQ2 (returning those patterns from the results of
DMQ2 that exceed the minimum support threshold of 0.2). If results of DMQ2

were not available, the system would answer DMQ using Algorithm 2 exploiting
the results of DMQ1 (selecting patterns from the results of DMQ1 whose size is
greater than 3, re-evaluating their support in one scan of the source dataset using
max-gap of 100, min-gap of 7, and window-size of 1, and returning those patterns
that exceed the minimum support threshold of 0.2 after support re-evaluation).

5 Experimental Results

In order to evaluate performance gains offered by our sequential pattern query
processing algorithms, we performed several experiments on a synthetic dataset
generated by means of the GEN generator from the Quest project [1]. We treated
transaction identifiers generated by GEN as transaction times. Thus, the time
gap between two adjacent elements of each data-sequence was always equal to
one time unit. The dataset used in the experiments consisted of 1000 data-
sequences. GEN parameter values were chosen so that for the minimum support
thresholds used in queries there were a reasonable number of sequential patterns
varying in size and length to be discovered.

In the first step we materialized the results of the query discovering all se-
quential patterns whose support was above 0.5% using max-gap of 1000, min-
gap of 0, and window-size of 1. The materialized set of patterns consisted of
about 3500 sequential patterns. Next, we tested several queries adding addi-
tional pattern constraints (concerning pattern support, size, length, or contents)
and restricting time constraints. For each query, we compared execution times of
our algorithms exploiting materialized patterns and the GSP algorithm with the
post-processing pattern filtering phase. For the queries included by the materi-
alized query, Algorithm 1 was on average more than 400 times faster than GSP.
For the queries dominated by the materialized query, Algorithm 2 was used, and
its processing time was on average more than 100 times shorter than in case
of GSP. We also tested the effects of our optimization used in case of queries
extending both pattern and time constraints of the materialized query (filtering
out patterns that do not satisfy pattern constraints before re-evaluating the sup-
port of materialized patterns). Experiments show that the optimization reduces
processing time by about 33%.

6 Concluding Remarks

We proved experimentally that our sequential pattern query processing schemes
can reduce processing time by several orders of magnitude when materialized
results of previous queries are available. However, theoretically it is possible to
imagine situations, where a complete mining algorithm could be more efficient
than our techniques. While we believe that in typical situations our methods



should outperform mining algorithms, in the future we plan to focus on cost-
based optimization of sequential pattern queries (and data mining queries in
general) using certain statistics of the source dataset in order to choose an op-
timal query execution plan.

In the paper, we did not discuss cache management schemes, which could
certainly influence the overall performance of the system. We believe that gen-
eral purpose cache management algorithms could be used, possibly with simple
optimizations such as removing included or dominated queries first, and not ma-
terializing results of queries equivalent to queries whose results are already in
cache.

References

1. Agrawal R., Mehta M., Shafer J., Srikant R., Arning A., Bollinger T.: The Quest
Data Mining System. Proc. of the 2nd KDD Conference (1996)

2. Agrawal R., Srikant R.: Mining Sequential Patterns. Proc. of the 11th ICDE Conf.
(1995)

3. Baralis E., Psaila G.: Incremental Refinement of Mining Queries. Proc. of the 1st
DaWaK Conference (1999)

4. Han J., Lakshmanan L., Ng R.: Constraint-Based Multidimensional Data Mining.
IEEE Computer, Vol. 32, No. 8 (1999)

5. Han J., Pei J., Mortazavi-Asl B., Chen Q., Dayal U., Hsu M-C.: FreeSpan: Frequent
Pattern-Projected Sequential Pattern Mining. Proc. of the 6th KDD Conference
(2000)

6. Imielinski T., Mannila H.: A Database Perspective on Knowledge Discovery. Com-
munications of the ACM, Vol. 39, No. 11 (1996)

7. Nag B., Deshpande P.M., DeWitt D.J.: Using a Knowledge Cache for Interactive
Discovery of Association Rules. Proc. of the 5th KDD Conference (1999)

8. Parthasarathy S., Zaki M.J., Ogihara M., Dwarkadas S.: Incremental and Interac-
tive Sequence Mining. Proc. of the 8th CIKM Conference (1999)

9. Pei J., Han J., Mortazavi-Asl B., Pinto H., Chen Q., Dayal U., Hsu M-C.: PrefixS-
pan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth.
Proc. of the 17th ICDE Conference (2001)

10. Srikant R., Agrawal R.: Mining Sequential Patterns: Generalizations and Perfor-
mance Improvements. Proc. of the 5th EDBT Conference (1996)


