
ar
X

iv
:c

s/
01

09
02

0v
1 

 [
cs

.C
L

] 
 1

5 
Se

p 
20

01

Modelling Semantic Association and Conceptual

Inheritance for Semantic Analysis⋆

Pascal Vaillant

Humboldt University of Berlin, Chair for Computational Linguistics,
Jägerstraße 10/11, 10117 Berlin, Germany

E-mail: vaillant@compling.hu-berlin.de

Abstract. Allowing users to interact through language borders is an
interesting challenge for information technology. For the purpose of a
computer assisted language learning system, we have chosen icons for
representing meaning on the input interface, since icons do not depend
on a particular language. However, a key limitation of this type of com-
munication is the expression of articulated ideas instead of isolated con-
cepts. We propose a method to interpret sequences of icons as complex
messages by reconstructing the relations between concepts, so as to build
conceptual graphs able to represent meaning and to be used for natu-
ral language sentence generation. This method is based on an electronic
dictionary containing semantic information.

1 Introduction

There are some contexts in the field of information technology where the avail-
able data is limited to a set of conceptual symbols with no relations among
them. In applications we have developed, icons are used on the input interface
to represent linguistic concepts for people with speech disabilities, or for foreign
learners of a second language; in information extraction or indexing applications,
sets of keywords may be given with no higher-level structure whatsoever; the
same situation may occur in a context of cross-linguistic communication where
participants in an online discussion forum are able to exchange bare concepts
through automatic search in electronic dictionaries, but are not able to master
the syntactical structure of each other’s language.

The problem in such contexts is that there is no deterministic way to com-
pute the semantic relations between concepts; while the meaning of a structured
message precisely resides in the network built from these relations. Isolated con-
cepts thus lack the expressive power to convey ideas: until now, the expression
of abstract relations between concepts still cannot be reached without the use
of linguistic communication.

We have proposed an approach to tackle this limitation [8]: a method to in-
terpret sequences of isolated concepts by modelling the use of “natural” semantic
⋆ This research has been funded by a Marie Curie Fellowship Grant from the DG of
Research, European Commission

http://arxiv.org/abs/cs/0109020v1


knowledge is implemented. This allows to build knowledge networks from icons
as is usually done from text. A first application, developed for a major elec-
tronics firm, had aimed at proposing speech-impaired people an iconic aided
communication software. We are now working at improving the theory in or-
der to implement it in the field of computer assisted language learning. Here
we present new formalisms to model lexical meaning and associative semantic
processes, including representation of conceptual inheritance, which have been
developed for the latter application.

2 Description of the problem

Assigning a signification to a sequence of information items implies building
conceptual relations between them. Human linguistic competence consists in
manipulating these dependency relations: when we say that “the cat drinks the
milk”, for example, we perceive that there are well-defined conceptual connec-
tions between ‘cat’, ‘drink’, and ‘milk’—that ‘cat’ and ‘milk’ play given roles
in a given process. Linguistic theories have been developed specifically to give
account of these phenomena [7,4], and several symbolic formalisms in AI [5,6]
reflect the same approach. Computationally speaking, ‘cat’, ‘drink’ and ‘milk’
are: without relations, a set of keywords; with relations, a structured information
pattern. This has important consequences e.g. in text filtering and information
retrieval.

Human natural language reflects these conceptual relations in its messages
through a series of linguistic clues. These clues, depending on the particular
languages, can consist mainly in word ordering in sentence patterns (“syntacti-
cal” clues, e.g. in English, Chinese, or Creole), in word inflection or suffixation
(“morphological” clues, e.g. in Russian, Turkish, or Latin), or in a given blend of
both (e.g. in German). Parsers are systems designed to analyze natural language
input, on the base of such clues, and to yield a representation of its informational
contents.

In the context of language learning, where icons have to be used to convey
complex meanings, the problem is that morphological clues are of course not
available, when at the same time we cannot rely on a precise sentence pattern
(there is no “universal icon grammar”, and if we were addressing perfectly func-
tional speakers of a given language, with its precise set of grammar rules, we
wouldn’t be using icons).

Practically, this means that, if we want to use icons as an input for computer
communication, we cannot rely on a parser based on phrase structure grammar
(“CFG”-style) to build the conceptual relations of the intended message. We
should have to use a parser based on dependency computing, such as some which
have been written to cope with variable-word-order languages [1]. However, since
no morphological clue is available either to tell that an icon is accusative or
dative, we have to rely on semantic knowledge to guide role assignment. In other
words, an icon parser has to know that drinking is something generally done by
living beings and involving liquid objects.



3 Modelling Meaning

The first step is then to encode the semantic information representing this type
of natural world knowledge. For this purpose, we develop an icon lexicon where
the possible semantic relations are specified by feature structures among which
unification can take place. However, the feature structures do not have a syntac-
tic meaning here, like e.g. in HPSG, but a natural language semantics meaning:
Instead of formal grammatical features, it is specified which “natural properties”
the different icons should have, and how they can combine with the others.

3.1 Intrinsic vs. extrinsic features

Every icon in the lexicon has a certain number of intrinsic attributes, defining
its fundamental meaning elements. Going back to our example, ‘cat’ has the
features animal , living , while ‘milk’ has the features liquid , food .

In natural language semantics, some pair of concepts are defined in opposition
to each other; for the sake of modelling simplicity, we define these pairs as couples
of features sharing the same attribute but with an opposite value. This modelling
choice leads to define the basic feature, or intrinsic feature, as a pair 〈a, v〉, where
the attribute a is a symbol, and the value v is +1 or −1.

Yet intrinsic features are not enough to build up relations: we need at least
some first-order semantics to allow predication. Hence a restricted set of icons,
the predicative icons (roughly corresponding to natural language verbs and ad-
jectives), also have sets of extrinsic (or selectional) features, that determine which
other concepts they may incorporate as actants. These extrinsic features spec-
ify for example which properties are “expected” from the agent or the object
of an action, or to which categories of concepts a particular adjective may be
attributed: in our example, ‘drink’ would have the features agent(animal) and
object(beverage).

This could lead to define the extrinsic feature as a pair 〈c,ef 〉, where the case
c is a symbol, and the expected feature ef is an intrinsic feature as defined above,
i.e. as being of the form 〈c, 〈a, v〉〉, where case c and attribute a are symbols, and
value v is +1 or −1.

However, with such a definition, the selectional effect of an extrinsic feature
can only be compelling (the attribute is present with a value of +1), blocking
(the attribute is present with a value of −1), or null (the attribute is absent). Yet
natural semantics involves the ability to represent gradation: in natural language
for instance, a given association between words may be expected, but it does not
completely block the possibility that another one be realized.

So, we decide to define the extrinsic feature as 〈c, 〈a, v〉〉, where c (the case)
is a symbol, a (the attribute) is a symbol, and v ∈ IR. This way of modelling
allows to tune the value v in order to make a semantic association more or less
compelling.

The extrinsic features contain all the information about the potential case
relations that may occur in the icon language. Considering a given predicative
icon, its valency frame, or case frame, is strictly equivalent to the set of its



extrinsic features factorized by case. Considering the whole lexicon, the case
system is defined by the set of all cases appearing in any extrinsic feature of any
icon.

3.2 Feature inheritance

There are obvious advantages of including a representation of inheritance in
the lexicon, such as: saving representation space (‘dog’, ‘cat’, and ‘hamster’ only
have a few specific features represented separately, the rest is stored under ‘pet’);
providing a measure of semantic distance between concepts (how many “common
ancestors” do they have, and at which level?)

However, since natural concepts may be grouped in overlapping categories,
there can be no unique tree-like hierarchy covering the whole lexicon. For this
reason, a mechanism of multiple inheritance has been developed.

The multiple inheritance model allows a single concept to inherit thematic
features from a thematic group, as well as structural features from an abstract
superconcept spanning different subgroups of the thematic hierarchy (like for in-
stance the superconcept ‘action’, which passes the extrinsic feature agent(animal)
on to all specific concepts which inherit from it). Intrinsic features as well as ex-
trinsic features may be inherited, and passed on to more specific subconcepts.

The well-known theoretical problem of multiple inheritance, namely the pos-
sibility that a concept inherit contradictory features from two separate branches
of the inheritance graph, is not an actual problem in the context of a model for
natural meaning. In fact, natural categories are not logical categories, and it is
actually normal that contradictions may arise. If they do, they are meaningful
and should not be “solved”. Specifically, in the analysis application described
below, feature values are added, so if an attribute appears once with a positive
value, and once with a negative one, it counts as if its value were zero.

It is important to note that concept labels may be used as attributes in
semantic features, like when we want to specify that the object of ‘drink’ has to
be a ‘beverage’. This means that we do not postulate any ontological difference
between a feature and a concept. As a matter of fact, studies in natural language
semantics, for instance, always represent features by using words: features simply
are more primitive concepts than the concepts studied. So, when we say that
concept a inherits from concept b (is a subconcept of concept b), we mean exactly
the same thing as when we say that concept a has the feature b, and there is a
unique formal representation for all this, like in the example below:

thematic category higher level concept

concept(boy,[[identification,1],[human,1],[grown_up,-1],[male,1]],[]).

concept(woman,[[identification,1],[human,1],[grown_up,1],[female,1]],[]).

specific features

intrinsic features extrinsic features (none in this example) 

An important practical consequence of this is that we can talk of feature
inheritance: this will be used in the analysis process.



4 The semantic analysis method

The icon parser we propose performs semantic analysis of input sequences of
icons by the use of an algorithm based on best-unification: when an icon in
the input sequence has a “predicative” structure (it may become the head of
at least one dependency relation to another node, labeled “actant”), the other
icons around it are checked for compatibility.

Semantic compatibility is then measured as a unification score between two
sets of feature structures: the intrinsic semantic features of the candidate actant:

IF = {〈a11, v11〉, 〈a12, v12〉, . . . , 〈a1m, v1m〉} ,

and the extrinsic semantic features of the predicative icon attached to the
semantic role considered, the case c :

SF = {〈a21, v21〉, 〈a22, v22〉, . . . , 〈a2n, v2n〉} ,

(where 〈c, 〈a21, v21〉〉, 〈c, 〈a22, v22〉〉, . . . , 〈c, 〈a2n, v2n〉〉 are extrinsic features of
the predicate).

The basic idea is to define compatibility as the sum of matchings in the two
sets of attribute-value pairs, in ratio to the number of features being compared
to. Note that semantic compatibility is not a symmetric norm: it has to measure
how good the candidate actant (i.e. the set IF) fits to the expectations of a
given predicative concept in respect to its case c (i.e. to the set SF). Hence
there is a filtering set (SF) and a filtered set (IF). The asymmetry shows itself
in the following definition of the compatibility function, in that the denominator
is the cardinal of SF , not of IF :

C(IF ,SF) = C({〈a11, v11〉, . . . , 〈a1m, v1m〉}, {〈a21, v21〉, . . . , 〈a2n, v2n〉})

=

∑
j∈[1,n]

∑
i∈[1,m] f(〈a1i, v1i〉, 〈a2j , v2j〉)

n
,

where f is a matching function defined on pairs of individual features, not
on pairs of sets of features.

Now the compatibility function f has to be defined at the level of the features
themselves so as to take into account the inheritance phenomena. So we define
f(〈a1, v1〉, 〈a2, v2〉) (where 〈a1, v1〉 is the intrinsic [filtered] feature, and 〈a2, v2〉
the extrinsic [filtering] feature), as following:

1 – If the two attributes are the same (a1 = a2 = a ):

f(〈a, v1〉, 〈a, v2〉) = v1.v2 ;

2 – if a1 ⇒ a2 (a1 includes a2 in its signification, i.e. a1 is a subtype of a2 ):

- if v1 < 0 , f(〈a1, v1〉, 〈a2, v2〉) = 0 ,
- if v1 ≥ 0 , f(〈a1, v1〉, 〈a2, v2〉) = v1.v2 ;

3 – if a1 ⇒ a2 (a1 includes a feature a′2 in its signification, such that a′2 is
contradictory with a2 ):

- if v1 < 0 , f(〈a1, v1〉, 〈a2, v2〉) = 0 ,
- if v1 ≥ 0 , f(〈a1, v1〉, 〈a2, v2〉) = −v1.v2 ;



4 – if a1 6= a2 , and a1 ; a2 , and a1 ; a2 , then:
- either a2 is a primitive feature (∄x | a2 ⇒ x ), in which case:

f(〈a1, v1〉, 〈a2, v2〉) = 0 ,
- or a2 is decomposable in more primitive features; and then:

let {a21, a22, . . . , a2k} the set of features implied by a2
(a2 ⇒ a2j for j ∈ [1, k] )
then
f(〈a1, v1〉, 〈a2, v2〉) =
C({〈a1, v1〉}, {〈a21, v2〉, 〈a22, v2〉, . . . , 〈a2k, v2〉, 〈dummy symbol, v2〉}) .

Let us explain and illustrate this definition by simple examples. Suppose
we want to test whether some icon possessing the feature dog (〈dog, 1〉) is a
good candidate for being the agent of the verb ‘bark’; ‘bark’ having an ex-
trinsic feature agent(dog) (〈agent, 〈dog, 1〉〉 ). We will then be trying to eval-
uate f(〈dog, 1〉, 〈dog, 1〉) . This is the case 1, and the result will be 1. If we
had tried to match this same icon to a verb whose agent should not be a dog
(〈agent, 〈dog,−1〉〉 ), the result would of course have been −1.

Now suppose we want to match dog to a verb which only expects its agent
to be an animal. We will have to evaluate f(〈dog, 1〉, 〈animal, 1〉) . dog being a
subtype of animal , we have dog ⇒ animal , so we are in the case 2, and the
result is 1 (a dog fulfills entirely the expectation of being an animal).

If on the other hand we wanted to match some concept of which we know it
is not a dog, because it has the feature 〈dog,−1〉 , to the semantic role where an
animal is expected, we could obviously draw no conclusion from the only fact
that it is not a dog. Not being a dog does not imply not being an animal. This
is why in this particular subcase of case 2, the result is 0.

Now if we want to match dog to some semantic role where an object is ex-
pected, we find that dog ⇒ living being , and object and living being being
mutually exclusive, we are in the case 3 and find the value −1.

Like in case 2, there is a subcase of case 3 where the result is 0 because no
conclusion can be drawn (e.g. we can not deduce from something not being a
dog that it is a non living object).

Finally let us suppose that we want to match some animal which is not a dog
to the agent role of ‘bark’, which expects dog . The candidate concept does not
possess the feature 〈dog, 1〉 but it possesses the feature 〈animal, 1〉 . It would be
inappropriate, in this case, that this concept should have no better score than
any other: being an animal, it is semantically “closer” to dog than an inanimate
object, for example, would be (this is what allows, in natural language semantics,
sentences like “the police superintendent barks” [2]).

This is why, in this case, we break up dog into more primitive components
and recursively call the function C (compatibility on sets of features), so that
〈animal, 1〉 will eventually meet 〈animal, 1〉 , and will yield a positive, though
fractional, result.

A dummy feature is added so that the compatibility value loose a small
proportion of itself in this operation of breaking up, by incrementing the de-
nominator.



Note that the recursivity (C is based on f and f is—partially—based on C )
is not infinite, since the decomposition always falls back on primitive features:
there is no infinite loop. This is guaranteed, not by the definition of the functions
themselves, but by the fact that the inheritance graph is a direct graph.

Globally, for every predicate in the actual input sequence, the analysis process
seeks to assign the best actant for every possible role of the predicate’s immanent
conceptual structure. The absolute compatibility between the predicate and the
actant, defined in the sense of the function C described above, is weighted by a
function valued between 0 and 1 and decreasing with the actual distance between
the two icons in the sequence.

The result yielded by the semantic parser is the graph that maximizes the
sum of the compatibilities of all its dependency relations. It constitutes, with no
particular contextual expectations, and given the state of world knowledge stored
in the iconic database in the form of semantic features, the “best” interpretation
of the users’ input.

5 Application and Evaluation

A primitive version of the semantic analysis algorithm has been implemented
in 1996 for rehabilitation purposes, within a French electronics firm (Thomson-
CSF), in the frame of a software communication tool for speech-impaired people
[8]. The evaluation led to acceptable performance in analysis accuracy (80.5 %
of the sequences correctly analyzed on a benchmark of 200 samples). However
the acceptance level by the user remained low, due to a strongly time consuming
recursive algorithm (the complexity and time grew in a O(n.en) relation to the
size of the input).

An application to the field of CALL (Computer Assisted Language Learn-
ing) is currently being developed at the Humboldt University of Berlin. The
application prototype aims at allowing learners of German as a second language
to practice communication in that language at home or in tutorial classes. The
users first tell the computer what they intend to express by pointing to icons.
The system interprets these icons semantically, and proposes a choice of rated
formulations (1) in the form of conceptual graphs, and (2) as full German sen-
tences. The users are then allowed to “play” with the graph to discover how to
express variations or refinements, in particular concerning nuances in verbs like
expressed in Kunze’s theory of verb fields [3]. This application is made possible
by mapping the results of the semantic analysis into a lexical database of the
German language developed by the Chair for Computational Linguistics at the
Humboldt University (Fig. 1).

The implementation principles have been renewed in this application, so as
to develop a form of parser storing its intermediate results (inspired by “chart
parsers” for CFG grammars). This allows considerably less backtracking, and
hence a big gain in computational complexity (now measured in O(n2)), and
removes one of the major impediments of the method.



VP

VP

NP

icon sequence graph sentence tree

semantic analysis lexical choice generation

Icons semantic DB DB of the German lexemes Grammatical/morphological DB

Fig. 1. Structure of the CALL system

References

1. Covington, Michael. 1990. A dependency parser for variable-word-order lan-

guages. Research Report AI-1990-01. Athens, Georgia (U.S.A.): University of
Georgia, Artificial Intelligence Programs. Retrieved [October 1999] from the URL:
http://www.ai.uga.edu/~mc/ai199001.ps

2. Greimas, Algirdas Julien. 1986. Sémantique structurale. Formes Sémiotiques.
Paris: PUF (1st ed. Larousse, 1966).

3. Kunze, J. 1993. Verbfeldstrukturen. Antrittsvorlesung des 24. November 1993.
Öffentliche Vorlesungen, Heft 21. Berlin (Germany): Humboldt Universität zu Berlin.
Available [February 2000] at the URL:
http://www.compling.hu-berlin.de/~vaillant/Verbfeldstrukturen.pdf

4. Mel’čuk, Igor’ Aleksandrovič. 1988. Dependency syntax: theory and practice. SUNY
series in linguistics. Albany (NY): State University of New York Press.

5. Schank, Roger. 1975. Conceptual information processing. Amsterdam: North-
Holland.

6. Sowa, John. 1984. Conceptual structures: information processing in mind and

machine. New York: Addison Wesley.
7. Tesnière, Lucien. 1988. Éléments de syntaxe structurale. Paris: Klincksieck (1st
ed. 1959).

8. Vaillant, Pascal. 1997. “A Semantics-based Communication System for Dysphasic
Subjects”. Proceedings of the 6 th conference on Artifical Intelligence in Medicine
Europe, Grenoble (France). Elpida Keravnou, Catherine Garbay, Robert Baud and
Jeremy Wyatt (eds.). Lecture Notes in Computer Science, 1211: 381–392. Berlin:
Springer.


