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Abstract
Short cut fusion is a particular program transformation technique which uses a single, local 
transformation — called the foldrbuild rule — to remove certain intermediate lists from 
modularly constructed functional programs. Arguments that short cut fusion is correct 
typically appeal either to intuition or to “free theorems” — even though the latter have not 
been known to hold for the languages supporting higher-order polymorphic functions and 
fixed point recursion in which short cut fusion is usually applied. In this paper we use Pitts’ 
recent demonstration that contextual equivalence in such languages is relationally parametric 
to prove that programs in them which have undergone short cut fusion are contextually 
equivalent to their unfused counterparts. The same techniques in fact yield a much more 
general result. For each algebraic data type we define a generalization augment of build which 
constructs substitution instances of its associated data structures. Together with the well-
known generalization cata of folder to arbitrary algebraic data types, this allows us to 
formulate and prove correct for each a contextual equivalence-preserving cata-augment fusion 
rule. These rules optimize compositions of functions that uniformly consume algebraic data 
structures with functions that uniformly produce substitution instances of them.

Short Cut Fusion: Proved and Improved

By: Patricia Johann

Patricia Johann (2001) "Short Cut Fusion: Proved and Improved".  Proceedings, Workshop on the 
Semantics, Application, and Implementation of Program Generation (SAIG'01), Springer-Verlag LNCS 
2196 (2001), pp. 47-71. Version Of Record Available At www.springer.com



1 Introduction

Fusion [4,5,6,17,15] is the process of removing certain intermediate data struc-
tures from modularly constructed functional programs. Short cut fusion [4,5]
is a particular fusion technique which uses a single, local transformation rule
— called the foldr-build rule — to fuse compositions of list-processing func-
tions. The foldr-build rule is so named because it requires list-consuming and
-producing functions to be written in terms of the program constructs foldr
and build, respectively.

Short cut fusion successfully fuses a wide variety of list-processing programs,
but its applicability is limited because list-producing functions cannot always be
usefully expressed in terms of build. This observation led Gill [4] to introduce
another construct, called augment, which generalizes build to efficiently handle
more general list production. Gill also formulated a foldr-augment rule, similar
to the foldr-build rule, for lists.



Like other fusion techniques, short cut fusion was first investigated for lists.
This quickly gave rise to generalizations of short cut fusion for non-list algebraic
data types, as well as to their incorporation into a number of automatic fusion
tools (e.g., [3,4,7,8,9,10]. Generalizations of augment and the foldr-augment
rule for lists to non-list algebraic data types, on the other hand, have remained
virtually unstudied.

In this paper we generalize Gill’s augment for lists to non-list algebraic data
types. Together with the well-known generalization cata of foldr to arbitrary
algebraic data types, this allows us to formulate and prove correct for each a
corresponding cata-augment fusion rule which generalizes the foldr-augment
rule for lists. We interpret augment as constructing substitution instances of al-
gebraic data structures, and view generalized cata-augment fusion as optimizing
compositions of functions that uniformly consume algebraic data structures with
functions that uniformly produce substitution instances of them.

1.1 The Problem of Correctness

Short cut fusion and its generalizations have successfully been used to im-
prove programs in modern functional languages. They have even been used to
transform modular programs into monolithic counterparts exhibiting order-of-
magnitude efficiency increases over those from which they are derived. Nev-
ertheless, there remain difficulties associated with their use. One of the most
substantial is that these fusion techniques have not been proved correct for the
languages in which they are typically applied.

Short cut fusion and its generalizations have traditionally been treated purely
syntactically, with little consideration given to the underlying semantics of the
languages in which they are applied. In particular, the fact that these fusion
techniques are valid only for languages admitting parametric models has been
downplayed in the literature. Instead, their application to functional programs
has been justified by appealing either to intuition about the operational behav-
ior of cata, build, and augment, or else to Wadler’s “free theorems” [18].1 But
intuition is unsuitable as a basis for proofs, and the correctness of the “free the-
orems” itself relies on the existence of relationally parametric models. Since no
relationally parametric models for modern functional languages are known to
exist, these justifications of short cut fusion and its generalizations are unsatis-
factory.

Simply put, parametricity is the requirement that all polymorphic functions
definable in a language operate uniformly over all types. This requirement gives
rise to corresponding uniformity conditions on models, and these uniformity con-
ditions are satisfied by models supporting a relationally parametric structure.
Relationally parametric models are known to exist for some higher-order poly-
morphic languages [2], but because these fail to model fixed point recursion they
1 In fact, the only proof of correctness of short cut fusion for a modern functional
language on record [4] appeals to Wadler’s “free theorems”. Correctness proofs for
generalizations of short cut fusion do not appear in the literature at present.



do not adequately accommodate short cut fusion and its generalizations. While
it may be possible to extend these models to encompass fixed point recursion,
this has not been reported in the literature. In fact, until recently the existence
of relationally parametric models for languages supporting both higher-order
polymorphic functions and fixed point recursion had not been demonstrated.
Like their counterparts for the modern functional languages which extend them,
short cut fusion and its generalizations for even the most streamlined of higher-
order polymorphic languages with fixed point recursion have therefore enjoyed
no proof of correctness.

1.2 Proving Correctness

In Section 5 of this paper we prove the correctness of generalized cata-augment
fusion for algebraic data types in calculi supporting both higher-order polymor-
phic functions and fixed point recursion. Correctness for these calculi of short
cut fusion for lists, the foldr-augment rule for lists, and generalizations of short
cut fusion for lists to cata-build fusion for arbitrary algebraic data types, all
are immediate consequences of this result. But because functional languages typ-
ically support features that cannot be modeled in the calculi considered here,
our results do not apply to them directly. Nevertheless, our results do make some
progress toward bridging the gap between the theory of parametricity and the
practice of program fusion.

Our proof of the correctness of short cut fusion relies on Pitts’ recent demon-
stration of the existence of relationally parametric models for a class of polymor-
phic lambda calculi supporting fixed point recursion at the level of terms and
recursion via data types with non-strict constructors at the level of types [13,14].
Pitts uses logical relations to characterize contextual equivalence in these cal-
culi, and this characterization enables him to show that identifying contextually
equivalent terms gives rise to relationally parametric models for them. Our main
result (Theorem 1) employs Pitts’ characterization of contextual equivalence to
demonstrate that programs in these calculi which have undergone generalized
cata-augment fusion are contextually equivalent to their unfused counterparts.
The semantic correctness of cata-augment fusion for them follows immediately.

Our proof techniques, like those of Pitts on which they are based, are opera-
tional in nature. Denotational approaches to proving the correctness of short cut
fusion — e.g., fixed point induction — have thus far been unsuccessful. While it
may be possible to construct a proof directly using the denotational notions that
Pitts captures syntactically, to our knowledge this has not yet been accomplished.
Similar remarks apply to directly constructing relationally parametric models of
rank-2 fragments of suitable polymorphic calculi. It is worth noting that Pitts’
relationally parametric characterization of contextual equivalence holds even in
the presence of fully impredicative polymorphism. Characterization of contextual
equivalence for predicative calculi — i.e., for calculi in which types are quantified
only at the outermost level — can be achieved by appropriately restricting the
characterizations for the corresponding impredicative ones.



foldr :: forall a. forall b.
(a -> b -> b) -> b -> List a -> b

foldr = /\a b. \c n xs. case xs of
Nil -> n
Cons z zs -> c z (foldr a b c n zs)

map :: forall a. forall b. (a -> b) -> List a -> List b
map = /\a b. \f l. case l of

Nil -> Nil
Cons z zs -> Cons (f z) (map a b f zs)

append :: forall a. List a -> List a -> List a
append = /\a. \xs ys. case xs of

Nil -> ys
Cons z zs -> Cons z (append a zs ys)

Fig. 1. Recursive functions on lists

The remainder of this paper is organized as follows. Section 2 informally in-
troduces short cut fusion and foldr-augment fusion for lists. In Section 3 the
polymorphic lambda calculus PolyFix for which we will formulate and prove the
correctness of generalized cata-augment fusion is introduced; the notion of Poly-
Fix contextual equivalence on which this relies is also formulated in Section 3. In
Section 4, cata-augment fusion for arbitrary algebraic data types is formalized,
and its correctness is proved in Section 5. Section 6 concludes.

2 Fusion

In functional programming, large programs are often constructed as compo-
sitions of small, generally applicable components. Each component in such a
composition produces a data structure as its output, and this data structure is
immediately consumed by the next component in the composition. Intermedi-
ate data structures thus serve as a kind of “glue” allowing components to be
combined in a mix-and-match fashion.

The components comprising modular programs are typically defined as re-
cursive functions. The definitions in Figure 1 are common examples of such func-
tions: foldr consumes lists, while map and append both consume and produce
lists. Using these functions we can define, for example, the function mappend
which maps a function over the result of appending two lists:

mappend :: forall a. forall b.
(a -> b) -> List a -> List a -> List b

mappend = /\a b. \f xs ys. map a b f (append a xs ys)

In the informal discussion in this section we will express program fragments in a
Haskell-like notation with explicit type quantification, abstraction, and applica-
tion. Quantification of the type t over the type variable a is denoted forall a.t,
abstraction of the term M over the type variable a is denoted /\a.M, and appli-
cation of the term M to the type t is denoted M[t].



Unfortunately, modularly constructed programs like mappend tend to be less
efficient than their non-modular counterparts. The main difficulty is that the
direct implementation of compositional programs literally constructs, traverses,
and discards intermediate data structures — even when they play no essential
role in a computation. The above implementation of mappend, for instance, un-
necessarily constructs and then traverses the intermediate list resulting from
appending xs and ys. This requires processing the list xs twice. Even in lazy
languages this is expensive, both slowing execution time and increasing heap
space requirements.

It is often possible to avoid manipulating intermediate data structures by us-
ing a more elaborate style of programming in which the computations performed
by component functions in a composition are intermingled. In this monolithic
style of programming the function mappend is defined as

mappend’ :: forall a. forall b.
(a -> b) -> List a -> List a -> List b

mappend’ = /\a b. \f xs ys.
case xs of
Nil -> map a b f ys
Cons z zs -> Cons (f z) (mappend’ a b f zs ys)

The list xs is only processed once by mappend’.
Experienced programmers writing a function to map over the result of ap-

pending two lists would instinctively produce mappend’ rather than mappend;
small functions like mappend are easily optimized at the keyboard. But because
they are used very often, it is essential that small functions are optimized when-
ever possible. Automatic fusion tools ensure that they are.

On the other hand, when programs are either very large or very complex, even
experienced programmers may find that eliminating intermediate data structures
by hand is not a very attractive alternative to the modular style of programming.
Methods for automatically eliminating intermediate data structures are needed
in this situation as well.

2.1 Short Cut Fusion

Automatic elimination of intermediate data structures combines the clarity and
maintainability of the modular style of programming with the efficiency of the
monolithic style. Use of short cut fusion to eliminate intermediate lists is based on
the observation that many list-manipulating functions can be written in terms
of the list-consuming function foldr and the list-producing function build,
and then fused via the foldr-build rule. Since foldr is another name for the
standard catamorphism for lists, we denote it by cata-list in the rest of this
paper. And since the build function of Gill et al. is the instantiation to lists of
a build function applying to more general algebraic data types, we denote it by
build-list below.

Operationally, cata-list takes as input types t and t’, a replacement term
c :: t -> t’ -> t’ for Cons, a replacement term n::t’ for Nil, and a list xs



map :: forall a. forall b. (a -> b) -> List a -> List b
map = /\a b. \f l. build-list b

(/\t. \(c :: b -> t -> t) (n::t).
cata-list a t
(\(y::a) (l’::t). c (f y) l’) n l)

append :: forall a. List a -> List a -> List a
append = /\a. \xs ys. build-list a

(/\t. \(c::a -> t -> t) (n::t).
cata-list a t c
(cata-list a t c n ys) xs)

Fig. 2. Functions in build-cata form

of type List t. It replaces all (fully-applied) occurrences of Cons in xs by c,
and the single occurrence of Nil in xs by n. The result is a value of type t’.
The definition of cata-list — i.e., of foldr — appears in Figure 1.

The function build-list, on the other hand, takes as input a type t and a
term M providing a type-independent template for constructing “abstract” lists
with “elements” of type t. It instantiates all occurrences of the “abstract” list
constructors which appear in the result list specified by M with the “concrete” list
constructors Cons and Nil. The result is a list of elements of type t. That is, if
t is a type and M is any term with type forall a. (t -> a -> a) -> a -> a,
then

build-list t M = M (List t) Cons Nil

Compositions of list-consuming and -producing functions defined in terms of
cata-list and build-list can be fused via short cut fusion for lists:

Let M be a term of type forall a. (t -> a -> a) -> a -> a. Then
any occurrence of cata-list t t’ c n (build-list t M) in a
program can be replaced by M t’ c n.

Short cut fusion makes sense intuitively: the result of a computation is the same
regardless of whether the function M is first applied to List t, Cons, and Nil
and then these are replaced in the resulting list by c and n, respectively, or the
abstract constructors in (an appropriate instance of) M are replaced by c and n,
respectively, directly.

Figure 2 shows the build-cata forms of the functions in Figure 1. The fused
function mappend’ can be derived from mappend by inlining these definitions and
applying short cut fusion in conjunction with standard program simplifications.

2.2 The Cata-Augment Rule for Lists

Although short cut fusion successfully fuses many compositions of list-processing
functions, some compositions involving common functions remain problematic.
This is because the argument M to build-list must abstract all of the Cons and



Nil cells which appear in the list it produces — not just the “top-level” ones
contributed by M itself.

To see why, suppose that we want to express the function append for lists of
elements of an arbitrary type t in terms of build-list and cata-list. This
would make it possible to fuse append with list-producers on the right and list-
consumers on the left. It is tempting to write

append = /\a. \xs ys. build-list a
(/\t. \c n. cata-list a t c ys xs)

but the expression on the right hand side is ill-typed: ys is of type List a, but
cata-list’s replacement for Nil needs to be of the more general type t. The
problem here is that, although the constructors in ys are part of the result of
append, they are not properly abstracted by build-list.

One solution to this problem is to use cata-list to prepare the constructors
in ys for abstraction via build-list. This entails replacing the occurrence of
ys in the body of the definition of append by cata a t c ys. The result is the
build-cata form

append = /\a. \xs ys. build-list a (/\t. \c n.
cata-list a t c (cata-list a t c ys) xs)

for append. Although this solution does indeed provide a replacement of type t
for Nil, it does so by introducing an extra list consumption into the computation.
Unfortunately, subsequent removal of this consumption via fusion cannot be
guaranteed.

An alternative solution is to generalize build-list to abstract the “base
list” ys of append. Gill et al. [5] adopt this approach, defining a new construct
augment-list to perform this task. Its definition is

augment-list t M ys = M (List t) Cons ys

Appending one list onto another is now easily expressed by passing ys as the
second argument to augment-list:

append = /\a. \xs ys. augment-list t
(/\t. \c n. cata-list a t c n xs) ys

This definition of augment-list also gives

build-list t M = augment-list t M Nil

and is the basis for the cata-augment rule for lists from Gill [4] for fusing
compositions of functions written in terms of cata-list and augment-list:

Let t be a type, let M :: forall a. (t -> a -> a) -> a -> a be a
closed term, and let ys :: List t. Then any occurrence of

cata-list t t’ c n (augment-list t M ys)

in a program can be replaced by



M t’ c (cata-list t t’ c n ys).

The short cut for lists is just the special case of the cata-augment rule for
lists in which ys has been specialized to Nil, augment-list has been replaced by
build-list, and cata-list t t’ c n has been applied to Nil to yield n. Al-
though the cata-augment rule for lists does not eliminate the entire intermediate
list produced by the left-hand side of the equation, it does avoid production and
subsequent consumption of the base list ys. Passing ys to augment-list has the
effect of specifying a particular list to be substituted for the occurrence of Nil
in the list produced by M. This interpretation of augment as constructing substi-
tution instances of data structures will lead to generalizations of augment-list
and the cata-augment rule for lists to algebraic data types in Section 4.

3 PolyFix and Contextual Equivalence

Extrapolating from the situation for lists, we formulate in Section 4 a suitable
generalization of the cata-augment rule for lists to one for non-list algebraic data
types. In Section 5 we demonstrate that these generalizations describe optimiza-
tions for the uniform consumption of uniformly produced substitution instances
of non-list algebraic data structures. In doing so, we work in the same setting as
Pitts [13], and our presentation is heavily influenced by that paper. In this sec-
tion we introduce Pitts’ PolyFix, the polymorphic lambda calculus for which we
state, and prove the correctness of, the generalized cata-augment rule. We also
outline the elements of Pitts’ development of contextual equivalence for terms
of PolyFix which are needed in this endeavor.

3.1 PolyFix: The Fixed Point Calculus

The Polymorphic Fixed Point Calculus PolyFix combines the Girard-Reynolds
polymorphic lambda calculus with fixed point recursion at the level of expres-
sions and (positive) recursion via non-strict constructors at the level of types.
Since the treatment of ground types (e.g., natural numbers and booleans) in
the theory developed here is precisely the same as the treatment of algebraic
data types, for notational convenience we assume that PolyFix supports only
the latter.

The syntax of PolyFix types and terms is given in Figure 3, in which the
Haskell-like syntax

data(α = cδ
1τ11...τ1k1 | ... | cδ

mτm1...τmkm
) (1)

is used for recursive data types. The syntax in (1) provides an anonymous no-
tation for a data type δ satisfying the fixed point equation

δ = (τ11[δ/α] × ...× τ1k1 [δ/α]) + ...+ (τm1[δ/α] × ...× τmkm [δ/α])

The injections into the m-fold sum are named explicitly by δ’s constructors
cδ
1,...,c

δ
m. Terms of type δ are introduced using these constructors and eliminated



Types τ := α type variable
| τ → τ function type
| ∀α.τ ∀-type
| δ algebraic data type

Data types δ := data(α = cδ
1τk1 | ... | cδ

mτkm)

Terms M := x variable
| λx : τ. M function abstraction
| MM function application
| Λα. M type abstraction
| Mτ type application
| fix(M) fixpoint recursion
| cδ

i Mki data value
| case M of

{cδ
1xk1 ⇒ M |
...

| cδ
mxkm ⇒ M} case expression

Fig. 3. Syntax of PolyFix

using case expressions. The types τij , for i = 1, ...,m and j = 1, ..., ki, appearing
in (1) can be built up from type variables using function types, ∀-types, and
data types, provided the defined type α occurs only positively in the τij (see
Definition 1 below).

Example 1. The following are PolyFix data types:

Bool = data(α = True | False)
Nat = data(α = Succ α | Zero)

List τ = data(α = Cons τ α | Nil)

A number of remarks concerning the definitions of Figure 3 are in order. Type
variables, variables, and constructors range over disjoint countably infinite sets.
If s ranges over a set S, then for each n, sn ranges over n-element sequences of
elements of S. If M is a term and sn is a sequence of n types or terms, we write
Msn to indicate the n-fold applicationMs1...sn. Similarly, we write λxn : τn.M
to indicate the n-fold abstraction λx1 : τ1. ...λxn : τn.M . Finally, to be well-
formed, we require a data type as in (1) to have distinct data constructors cδ

i ,
i = 1, ...,m, and to be algebraic in the sense of Definition 1.

Definition 1. The sets ftv+(τ) and ftv−(τ) of free type variables occurring pos-
itively and occurring negatively in the type τ partition ftv(τ) into two disjoint
subsets. These are defined by



ftv+(α) = {α}
ftv−(α) = ∅
ftv±(τ → τ ′) = ftv∓(τ) ∪ ftv±(τ ′)
ftv±(∀α. τ) = ftv±(τ) \ {α}
ftv±(δ) =

⋃m
i=1
⋃km

j=1 ftv
±(τij) \ {α} if δ is as in (1).

A data type (1) is algebraic if there are only positive free occurrences of its
bound variable α in the types τij, i.e., if α 
∈ ftv−(τij) for all i = 1, ...,m and
j = 1, ..., ki.

The constructions ∀α(−), data(α = −), case M of {... | cδ
ixki ⇒ Mi | ...},

λx : τ.−, and Λα.− are binders, and free occurrences of the variables x1, ..., xki

become bound in the case expression case D of {... | cδ
ixki ⇒ Mi | ...}. As is

customary, we identify types and terms which differ only by renamings of their
bound variables. We write ftv(e) for the (finite) set of free type variables of a
type or term e, and fv(M) for the (finite) set of free variables of a term M . The
result of substituting the type τ for all free occurrences of the type variable α in
a type or term e is denoted e[τ/α]. The result of substituting the term M ′ for
all free occurrences of the variable x in the term M is denoted M [M ′/x].

We will be concerned only with PolyFix terms which are typeable. The type
assignment relation for PolyFix is completely standard; it is given in Figure 4.
In the last two clauses of Figure 4, δ is assumed to be data(α = c1τ1k1 | ... |
cmτmkm

). A typing environment Γ is a pair A,∆ with A a finite set of type
variables and∆ a function defined on a finite set dom(∆) of variables which maps
each x ∈ dom(∆) to a type with free type variables in A. We write Γ � M : τ
to indicate that term M has type τ in the type environment Γ . Implicit in this
notation are four assumptions, namely that Γ = A, ∆, that ftv(M) ⊆ A, that
ftv(τ) ⊆ A, and that fv(M) ⊆ dom(∆). The notation Γ, x : τ indicates the
typing environment obtained from Γ = A, ∆ by extending the function ∆ to
map x 
∈ dom(∆) to τ . Similarly, the notation Γ, α denotes the extension of A
with a type variable α 
∈ A.

The explicit type annotations on lambda-bound term variables and construc-
tors cδ

i in data values cδ
iMki

ensure that well-formed PolyFix terms have unique
types. More specifically, given Γ and M , there is at most one type τ for which
Γ � M : τ holds. For convenience we may suppress type information below.

A type τ is closed if ftv(τ) = ∅. A term M is closed if fv(M) = ∅, regardless
of whether or not M contains free type variables. The set of closed PolyFix
types is denoted Typ. For τ ∈ Typ the set of closed PolyFix terms M for which
∅, ∅ � M : τ is denoted Term(τ).

Given δ as in (1), letRecδ comprise the elements i of {1, ...,m} for which αij ∈
fv(τij) for some j ∈ {1, ..., ki}, and let NonRecδ be the set {1, ...,m} − Recδ.
We say that the data constructors ci, i ∈ Recδ, are recursive constructors of
δ and that ci, i ∈ NonRecδ, are nonrecursive constructors of δ. In addition,
given a constructor ci, let RecPosci comprise those elements j ∈ {1, ..., ki}
for which α ∈ fv(τij), and let NonRecPosci be the set {1, ..., ki} − RecPosci .
We say that the indices in RecPosci indicate the recursive positions of ci and



Γ, x : τ � x : τ
Γ � F : τ → τ

Γ � fix(F ) : τ

Γ, x : τ1 � M : τ2

Γ � λx : τ1. M : τ1 → τ2

Γ � F : τ1 → τ2 Γ � A : τ1

Γ � F A : τ2

Γ, α � M : τ

Γ � Λα. M : ∀α.τ

Γ � G : ∀α.τ1

Γ � G τ2 : τ1[τ2/α]

Γ � Mj : τj [δ/α] j = 1, .., ki

Γ � ciM1...Mki : δ

Γ � D : δ Γ, xki : τki [δ/α] � Mi : τ i = 1, .., m

Γ � case D of {c1xk1 ⇒ M1 | ... | cmxkm ⇒ Mm} : τ

Fig. 4. PolyFix type assignment

that the indices in NonRecPosci indicate the nonrecursive positions of ci. The
distinction between recursive and nonrecursive constructors and positions will
be useful to us in stating our main result in Section 4.

The notation of the next definition allows us to order, and to project onto
the resulting sequence of, arguments to function abstractions. We will use it to
express cata, build, and augment in PolyFix.

Definition 2. Let δ be as in (1), τ be a closed type, Recδ = {u1, ..., up}, and
NonRecδ = {v1, ..., vq}. For all ρi : τi1[τ/α] → ... → τiki [τ/α] → τ , for all
i = 1, ...,m, define

φi(ρu1 , ..., ρup , ρv1 , ..., ρvq ) = ρi.

Further, if RecPosci
= {z1, ..., zp} and NonRecPosci

= {y1, ..., yq} for all i =
1, ...,m, define

φij(ρz1 , ..., ρzp , ρy1 , ..., ρyq ) = ρj .

For each data type δ as in (1) we can also define a corresponding pure poly-
morphic type τδ by

τδ = ∀α.(τ11 → ... → τ1k1 → α) → ... → (τm1 → ... → τmkm
→ α) → α.

Using these types, we have



V ⇓ V (V is a value)
F ⇓ λx : τ. M M [A/x] ⇓ V

F A ⇓ V

G ⇓ Λα. M M [τ/α] ⇓ V

G τ ⇓ V

F (fixF ) ⇓ V

fixF ⇓ V

D ⇓ ciMki M [Mki/xki ] ⇓ V

case D of {... | cixki ⇒ M | ...} ⇓ V

Fig. 5. PolyFix evaluation relation

Definition 3. For each data type δ define

buildδ = λM : τδ.M δ cm
where for each ci, we define ci = λpki : τki [δ/α]. cipki

unbuildδ = fix(λh : δ → τδ. λd : δ. Λα. λfm : τm1 → ... → τmkm
→ α.

case d of

{... | cixki ⇒ fiφiki(hxz1αfm, ...hxzpαfm, xy1 , ..., xyq ) | ...})
where RecPosci

= {z1, ..., zp} and NonRecPosci
= {y1, ..., yq}

cataδ = Λα. λfm. λd. unbuildδ d α fm

If δ is closed then each of buildδ, unbuildδ, and cataδ is a closed PolyFix term.
In the notation of Definition 3, we have that cata-list τ = cataList τ and
build-list τ = buildList τ . Note that data type constructors must be fully
applied in well-formed PolyFix terms.

3.2 Operational Semantics

The operational semantics of PolyFix is given by the evaluation relation in Fig-
ure 5. There, δ is assumed to be data(α = ... | ciτiki

| ...)) It relates a closed
term M to a value V of the same closed type; this is denoted M ⇓ V . The set
of PolyFix values is given by

V ::= λx : τ.M | Λα.M | ciMki

Note that function application is given a call-by-name semantics, constructors
are non-strict, and type applications are not evaluated “under the Λ.” In addi-
tion, PolyFix evaluation is deterministic, although the rule for fix entails the
existence of terms whose evaluation does not terminate.

3.3 Contextual Equivalence

With the operational semantics of PolyFix in place, we can now make precise
the notion of contextual equivalence for its terms. Informally, two terms in a



programming language are contextually equivalent if they are interchangeable in
any program with no change in observable behavior when the resulting programs
are executed. In order to formalize this notion for PolyFix we must specify what
a PolyFix program is, as well as the PolyFix program behavior we are interested
in observing.

We define a PolyFix program to be a closed term of some data type, and the
observable behavior of a PolyFix program to be the outermost constructor in the
data value, if any, to which the program evaluates. (Recall that ground types
have been replaced by algebraic data types in PolyFix.) Since merely observing
termination of PolyFix evaluation (or lack thereof) at data types gives rise to
the same notion of contextual equivalence, we define two PolyFix terms M1 and
M2 such that Γ � M1 : τ and Γ � M2 : τ to be contextually equivalent with
respect to Γ if for any context M[−] for which M[M1],M[M2] ∈ Term(δ) for
some closed data type δ, we have

M[M1] ⇓ ⇔ M[M2] ⇓ .

As usual, a context M[−] is a PolyFix term with a subterm replaced by the
placeholder ‘−’, and M[M ] denotes the term which results from replacing the
placeholder by the termM . Note that replacement may involve variable capture.
We write Γ � M1 =ctx M2 : τ to indicate that M1 and M2 are contextually
equivalent with respect to Γ . If M1 and M2 are closed terms of closed type, we
write M1 =ctx M2 : τ instead of ∅, ∅ � M1 =ctx M2 : τ , and we say simply that
M1 and M2 are contextually equivalent.

For all terms M and M ′ of type τ1, A of type τ2, and F of type τ , the
following contextual equivalences are shown to hold in Pitts [13]:

(λx : τ2.M)A =ctx M [A/x] : τ1 (2)
(Λα.M)τ2 =ctx M [τ2/α] : τ1[τ2/α] (3)

case cδ
iMki of {... | cδ

ixki ⇒ M ′ | ...} =ctx M
′[Mki/xki ] : τ1 (4)

fix(F ) =ctx Ffix(F ) : τ (5)

4 A Generalized Cata-Augment Rule

In this section we state our main result, the Substitution Theorem. This theorem
allows us to generalize Gill’s cata-augment rule for lists to arbitrary algebraic
data types. It also allows us to make precise the sense in which the generalized
cata-augment rule and its specializations preserve the meanings of fused PolyFix
programs. Proof of the Substitution Theorem appears in Section 5.3.

We will consider only closed types and terms in the remainder of this paper.
This restriction is reasonable because contextual equivalence for open terms is
reducible to contextual equivalence for closed terms, as shown in Pitts [13].



Theorem 1. (Substitution Theorem) Let δ be a closed data type as in (1),
and let u1, ..., up, v1, ..., vq, and φ1, ..., φm be as in Definition 2. In addition, let

M : ∀α.(τ11 → ... → τ1k1 → α) → ... → (τm1 → ... → τmkm → α) → α

be a closed term, let τ , τ ′
ij = τij [τ/α], and τ ′′

ij = τij [δ/α] for i = 1, ...,m and
j = 1, ..., ki be closed types, and, for i = 1, ...,m and v ∈ NonRecδ, let

ci = λpki : τ ′′
ki
. ci pki ,

ni : τ ′
i1 → ... → τ ′

iki
→ τ,

and
µv : τ ′′

v1 → ... → τ ′′
vkv

→ δ

be closed terms. Then

cataδ τ φm(nu1 , ..., nup
, nv1 , ..., nvq

) (M δ φm(cu1 , ...cuq
, µv1 , ..., µvq

))

=ctx M τ φm(nu1 , ..., nup , µ
′
v1
, ..., µ′

vq
) : τ

where, for each v ∈ NonRecδ, the closed term µ′
v : τ ′

v1 → ... → τ ′
vkv

→ τ is given
by

µ′
vx1...xkv

= cataδ τ φm(nu1 , ..., nup
, nv1 , ..., nvq

) (µvx1...xkv
).

The functions µv for v ∈ NonRecδ can be thought of as substitutions map-
ping appropriate combinations of arguments of types τ ′′

vj , j = 1, ..., kv, to terms
of type δ; they determine the portion of the intermediate data structure not pro-
duced byM itself, i.e., the non-initial segment of the intermediate data structure.
The Substitution Theorem describes one way to optimize uniform consumption
of substitution instances of algebraic data structures: it says that the result of
using µv to substitute terms of data type δ for applications of the nonrecursive
data constructors in a uniformly produced element of type δ, and then consuming
the data structure resulting from that substitution with a catamorphism, is the
same as simply producing the “abstract” data structure in which applications of
recursive data constructors are replaced by their corresponding arguments to the
catamorphism, and nonrecursive data constructors are replaced by the results of
applying the catamorphism to their substitution values.

Just as the cata-augment rule for lists avoids production and then consump-
tion of the portion of the intermediate list constructed by augment’s polymor-
phic function argument, so the Substitution Theorem indicates how to avoid
production and subsequent consumption of the initial segments of more general
algebraic data structures. Additional efficiency gains may be achieved in situa-
tions in which the representations of the substitutions µv allow us to carry out
each application cataδ φm(nu1 , ..., nup

, nv1 , ..., nvq
) (µvx1...xkv

) exactly once.
If we generalize the definition of augment-list to a non-list data type δ by

augmentδ = λM. λµvq
.M δ φm(cu1 , ..., cup

, µv1 , ..., µvq
)

then we can use this notation to rephrase the conclusion of Theorem 1 in a
manner reminiscent of the cata-augment rule for lists:



Definition 4. Suppose the conditions of Theorem 1 hold. The generalized cata-
augment rule is given by

cataδ τ φm(nu1 , ..., nup , nv1 , ..., nvq ) (augmentδM µvq )

=ctx M τ φm(nu1 , ..., nup
, µ′

v1
, ..., µ′

vq
) : τ

Note that the generalized cata-augment rule allows the replacement terms
for the nonrecursive data constructors to be specified by any appropriately typed
substitutions µv1 , ..., µvq

. In this notation, the cata-augment rule for lists re-
quires exactly one such term, corresponding to the nonrecursive constructor
Nil. Since Nil takes no term arguments we see that, for each type τ , each term
M : τδ, and each µ : List τ , augment-list τ M µ from Section 2.2 is precisely
augmentList τ M µ.

For any data type δ, specializing µv to cv for v ∈ NonRecδ in augmentδM µvq

gives buildδM , just as for lists. With this specialization, the Substitution Theo-
rem yields the usual cata-build rule for algebraic data types. The Substitution
Theorem thus makes precise the sense in which short cut fusion for these data
types preserves the meanings of programs.

Note that the term arguments to build and augment need not be closed
in function definitions; in fact, none of the term arguments to build-list in
the definitions of Figure 2 are closed terms. While this observation may at first
glance suggest that the generalized cata-augment rule and its specializations
cannot be applied to them, in all situations in which these rules are used to fuse
programs the free variables in the term arguments to build and augment will
already have been instantiated with closed terms.

The following example illustrates the use of the generalized cata-augment
rule to remove a non-list intermediate data structure from a program.

Example 2. Let Expr τ , a data type of expressions, be given by

Expr τ = data(α = Var τ | LitNat | OpOpsαα),
where

Ops = data(α = Add | Sub | Mul | Div).
Also let env : τ → Expr τ be an expression environment, let muVar = env,
µLit = λi : Nat. Lit i, and cOp = λo : Ops. λv1 : Expr τ.λv2 : Expr τ. Op o v1 v2.
Finally, for each e : Expr τ , let

Me : ∀α.(τ → α) → (Nat → α) → (Ops → α → α → α) → α

be the polymorphic function associated with e; for example,

MVarn = ∀α. λv. λl. λo. v n,
MLit 9 = ∀α. λv. λl. λo. l 9,

and
MOpAdd (Lit 7)(OpSub (Lit 4) (Varm))

= ∀α. λv. λl. λo. o(Add, l 7, o(Sub, l 4, v m)).



Then
subst env e = augmentExpr τ Me µVar µLit

defines a substitution function over Expr τ , and

eval = cataExpr τ Nat error (λi : Nat. i) (λ o.λv1. λv2. o v1 v2)

defines an evaluation function eval : Expr τ → Nat. Here, error indicates a
failed computation.

We can use the generalized cata-augment rule to optimize the evaluation of
a substitution instance of an expression:

eval (subst env e) =Me Nat µ
′
Var µ

′
Lit (λ o.λv1. λv2. o v1 v2)

Here, µ′
Var = λn. eval (env n) and µLit = λi : Nat. eval (Lit i). The fusion

performed gives a more efficient, yet functionally equivalent, implementation
of evaluation of substitution instances of expressions in which substitution and
evaluation are interleaved.

5 Correctness of Cata-Augment Fusion

To prove the Substitution Theorem we would like to define a logical relation
which coincides with PolyFix contextual equivalence, while at the same time
incorporating a notion of relational parametricity analogous to that introduced
by Reynolds for the pure polymorphic lambda calculus [16]. Unfortunately, a
naive approach to defining such a logical relation — i.e., one which quantifies
over all appropriately typed relations in the defining clause for ∀-types — is
not sufficiently restrictive to give good parametricity behavior. What is needed
is some criterion for identifying precisely those relations which are “admissible
for fixpoint induction,” in the sense that they syntactically capture to domain-
theoretic notion of admissibility. (In domain theory, a subset of a domain is said
to be admissible if it contains the least element of the domain and is closed under
taking least upper bounds of chains in the domain.) The notion of ��-closure
defined below, taken from Pitts [13], provides a criterion sufficient to guarantee
this kind of admissibility [1].

The notion of ��-closure is induced by a Galois connection between term
relations and evaluation contexts, i.e., contexts M[−] which have a single occur-
rence of the placeholder ‘−’ in the position at which the next subexpression will
be evaluated. In Pitts [13], analysis of evaluation contexts is aided by recasting
them in terms of the notion of frame stack given in Definition 5 below; indeed,
this frame stack realization of evaluation contexts gives rise to Pitts’ syntactic
characterization of the PolyFix termination properties entailed by contextual
equivalence. The resulting PolyFix structural termination relation provides the
key to appropriately specifying the clause for ∀-types in the logical relation which
coincides with contextual equivalence.

After sketching Pitts’ characterization of contextual equivalence in terms of
logical relations in Sections 4.1 and 4.2, we use it in Section 5 to prove the
Substitution Theorem.



Γ � Id : τ ↪→ τ

Γ � S : τ ′ ↪→ τ ′′ Γ � A : τ

Γ � S ◦ (− M) : (τ ↪→ τ ′) ↪→ τ ′′

Γ � S : τ ′[τ/α] ↪→ τ ′′ α not free in Γ

Γ � S ◦ (− τ) : (∀α.τ) ↪→ τ ′′

Γ � S : τ ↪→ τ ′ Γ, xki : τiki � Mi : τ i = 1, .., m

Γ � S ◦ (case − of {c1x1k1 ⇒ M1 | ... | ...cmxmkm ⇒ Mm}) : δ ↪→ τ ′

Fig. 6. Frame stack type judgements

5.1 ��-closed Relations

Definition 5. The grammar for PolyFix frame stacks is

S ::= Id | S ◦ F
where F ranges over frames:

F ::= (−M) | (−τ) | case − of {...}.
Frame stacks have types and typing derivations, although explicit type in-

formation is not included in their syntax. The type judgement Γ � S : τ ↪→ τ ′

for a frame stack S indicates the argument type τ and the result type τ ′ of S.
As usual, Γ is a typing environment and certain well-formedness conditions of
judgements hold; in particular, Γ is assumed to contain all free variables and
free type variables of all expressions occurring in the judgement. The axioms and
rules inductively defining this judgement are given in Figure 6. We will only be
concerned with stacks which are typeable. Although well-formed frame stacks
do not have unique types, they do satisfy the following property: Given Γ , S,
and τ , there is at most one τ ′ such that Γ � S : τ ↪→ τ ′ holds. In this paper, the
argument types of frame stacks will always be known at the time of use.

Given closed types τ and τ ′, we write Stack(τ, τ ′) for the set of frame stacks
for which ∅, ∅ � S : τ ↪→ τ ′. We are particularly interested in the case when τ ′ is
a data type, and so write

Stack(τ) =
⋃

{Stack(τ, δ) | δ is a data type}

The operation S,M �→ SM of applying a stack to a term is the analogue for
frame stacks of the operation of filling the hole in an evaluation context with a
term. It is defined by induction on the number of frames in the stack as follows:

Id M =M
(S ◦ F )M = S(F [M ])



S = S′ ◦ (−A) S′ � M [A/x]

S � λx : τ. M

S ◦ (−A) � F

S � F A

S = S′ ◦ (−τ) S′ � M [τ/α]

S � Λα.M

S ◦ (−τ) � G

S � Gτ

S ◦ (−fixF ) � F

S′ � fixF

S = Id

S � ciMki

S = S′ ◦ case − of {... | ciMki ⇒ M ′ | ...} S′ � M ′[Mki/xki ]

S � ciMki

S ◦ case − of {...} � M

S � case M of {...}

Fig. 7. PolyFix structural termination relation

Here, F [M ] is the term that results from replacing ‘−’ by M in the frame F .
If S ∈ Stack(τ, τ ′) and M ∈ Term(τ), then SM ∈ Term(τ ′). Unlike PolyFix
evaluation, stack application is strict in its second argument. This follows from
the fact that

SM ⇓ V iff there exists a value V ′ such that M ⇓ V ′ and S V ′ ⇓ V,

which can be proved by induction on the number of frames in the frame stack
S. The corresponding property

F [M ] ⇓ V iff there exists a value V ′ such that M ⇓ V ′ and F [V ′] ⇓ V

for frames, needed for the base case of the induction, follows directly from the
inductive definition of the PolyFix evaluation relation in Figure 5.

PolyFix termination is captured by the termination relation (−)�(−) defined
in Figure 7. More precisely, for all closed types τ , all closed data types δ, all frame
stacks S ∈ Stack(τ, δ), and all M ∈ Term(τ),

SM ⇓ iff S�M.

Pitts uses this characterization of PolyFix termination to prove that, in any
context, evaluation of a fixed point terminates iff some finite unwinding of it
does. This, in turn, allows him to make precise the sense in which ��-closed
relations — defined below — are admissible for fixed point induction.



Definition 6. A PolyFix term relation is a binary relation between (typeable)
closed terms. Given closed types τ and τ ′ we write Rel(τ, τ ′) for the set of term
relations which are subsets of Term(τ)×Term(τ ′). A PolyFix stack relation is a
binary relation between (typeable) frame stacks whose result types are data types.
We write Rel�(τ, τ ′) for the set of relations which are subsets of Stack(τ) ×
Stack(τ ′).

The relation (−)� transforms stack relations into term relations and vice
versa:

Definition 7. Given any closed types τ and τ ′, and any r ∈ Rel(τ, τ ′), define
r� ∈ Rel�(τ, τ ′) by

(S, S′) ∈ r� ⇔ ∀(M,M ′) ∈ r. S�M ⇔ S′�M ′

Similarly, given any s ∈ Rel�(τ, τ ′), define s� ∈ Rel(τ, τ ′) by

(M,M ′) ∈ s� ⇔ ∀(S, S′) ∈ s. S�M ⇔ S′�M ′

The relation (−)� gives rise to the notion of ��-closure which characterizes
those relations which are suitable for consideration in the clause for ∀-types in
the definition of the logical relation which coincides with contextual equivalence.

Definition 8. A term relation r is said to be ��-closed if r = r��.

Since r ⊆ r�� always holds, this is equivalent to requiring that r�� ⊆ r. Ex-
panding the definitions of r� and s� above gives (M,M ′) ∈ r�� iff

for each pair (S, S′) of (appropriately typed) stacks,

if ∀(N,N ′) ∈ r. S�N ⇔ S′ �N ′,

then S�M ⇔ S′ �M ′. (6)

This characterization of ��-closedness will be used in Section 5.3.

5.2 Characterizing Contextual Equivalence

We are now in a position to describe PolyFix contextual equivalence in terms of
parametric logical relations. The following constructions on term relations de-
scribe the ways in which the various PolyFix constructors act on term relations.

Definition 9. Action of → on term relations: Given r1 ∈ Rel(τ1, τ ′
1) and

r2 ∈ Rel(τ2, τ ′
2), define r1 → r2 ∈ Rel(τ1 → τ2, τ

′
1 → τ ′

2) by

(F, F ′) ∈ r1 → r2 ⇔ ∀(A,A′) ∈ r1. (FA,F ′A′) ∈ r2
Action of ∀ on term relations: Let τ1 and τ ′

1 be types with at most one free
type variable α and let R be a function mapping term relations r ∈ Rel(τ2, τ ′

2)



for any closed types τ2 and τ ′
2 to term relations R(r) ∈ Rel(τ1[τ2/α], τ ′

1[τ
′
2/α]).

Define the term relation ∀r.R(r) ∈ Rel(∀α.τ1,∀α.τ ′
1) by

(G,G′) ∈ ∀r.R(r) ⇔ ∀τ2, τ ′
2 ∈ Typ. ∀r ∈ Rel(τ2, τ ′

2). (Gτ2, G
′τ ′
2) ∈ R(r)

Action of data constructors on term relations: Let δ and δ′ be the closed
data types

δ = data(α = c1τ11...τ1k1 | ... | cmτm1...τmkm
)

and
δ′ = data(α = c1τ

′
11...τ

′
1k1

| ... | cmτ
′
m1...τ

′
mkm

).

For each i = 1, ...,m, given term relations rij ∈ Rel(τij [δ/α], τ ′
ij [δ

′/α]) for j =
1, ..., ki, we can form a term relation

ciri1...rik1 = {(ciMki , ciM ′
ki
) | ∀j = 1, ..., ki. (Mj ,M

′
j) ∈ rij}.

Using these notions of actions we can define the logical relations in which we
are interested.

Definition 10. A relational action ∆ comprises a family of mappings

r1 ∈ Rel(τ1, τ ′
1), ..., rn ∈ Rel(τn, τ ′

n)∆τ (rn/αn) ∈ Rel(τ [τn/αn], τ [τ ′
n/αn])

from tuples of term relations to term relations, one for each type τ and each list
αn of distinct variables containing the free variables of τ . These mappings must
satisfy the five conditions given below.

1. ∆α(r/α, rn/αn) = r
2. ∆τ1→τ2(rn/αn) = ∆τ1(rn/αn) → ∆τ2(rn/αn)
3. ∆∀α.τ (rn/αn) = ∀r.∆τ (r��/α, rn/αn)
4. If δ is as in (1), then ∆δ(rn/αn) is a fixed point of the mapping

r �→
(

n⋃
i=1

ci (∆τi1(r/α, rn/αn)) ... (∆τiki
(r/α, rn/αn))

)��

5. Assuming ftv(τ) ⊆ {αn, α′
m} and ftv(τ ′

m) ⊆ {αn},
∆τ [τ ′

m/α′
m](rn/αn) = ∆τ (rn/αn, (∆τ ′

m
(rn/αn))/α′

m)

To see that the third clause above is sensible, note that τ [τn/αn] and τ [τ ′
n/αn]

are types containing at most one free variable, namely α, and that ∆τ maps
any term relation r ∈ Rel(σ, σ′) for closed types σ, σ′ to the term relation
∆τ (r��/α, rn/αn) ∈ Rel(τ [τn/αn][σ/α], τ [τ ′

n/αn][σ′/α]). According to Defini-
tion 9, we thus have ∀r.∆τ (r��/α, rn/αn) ∈ Rel(∀α.τ [τn/αn],∀α.τ [τ ′

n/αn]), as
required by Definition 10.

We now define the relational actions µ and ν. Our focus on contextual equiva-
lence — which identifies programs as much as possible unless there are observable
reasons for not doing so — will mean that we are concerned primarily with ν in
this paper. But since the results below hold equally well for µ and ν, we follow
Pitts’ lead and state results in the neutral notation of an arbitrary relational
action ∆.



Definition 11. The relational action µ is given as in Definition 10, where the
least fixed point is taken when defining the relational action at a data type δ in
the fourth clause above. The relational action ν is defined similarly, except that
the greatest, rather than the least, fixed point is taken in the fourth clause. The
action µ gives an inductive character to the action at data types, while ν gives
a coinductive character at data types.

Taking n = 0 in Definition 10, we see that for each closed type τ we can
apply ∆τ to the empty tuple of term relations to obtain the term relation
∆τ () ∈ Rel(τ, τ). Pitts has shown that this relation coincides with the rela-
tion of contextual equivalence of closed PolyFix terms at the closed type τ . In
fact, Pitts shows a stronger correspondence between ∆ and contextual equiva-
lence: using an appropriate notion of closing substitution to extend∆ to a logical
relation Γ � M ∆M ′ : τ between open terms, he shows that

Γ � M =ctx M
′ : τ ⇔ Γ � M ∆M ′ : τ. (7)

The observation (7) guarantees that the logical relation ∆ corresponds to
the operational semantics of PolyFix. In particular, the definition of ∆τ1→τ2 in
the second clause of Definition 10 reflects the fact that termination at function
types is not observable in PolyFix. This is as expected: for types τ1 and τ2,
the relation ∆τ1(rn/αn)→∆τ2(rn/αn) may not be ��-closed, and so may not
capture PolyFix contextual equivalence.

As suggested by Pitts, it is possible to define call-by-value and call-by-name
[11] versions of PolyFix. In each case, the definition of the relation (−)�(−)
and the action of arrow types on term relations must be modified to reflect the
appropriate operational semantics and notion of observability. Defining a call-
by-name PolyFix also requires a slightly different notion of frame stack. The full
development of these ideas for a call-by-value version of a subset of PolyFix is
given in Pitts [12]; the details for a full call-by-value PolyFix and a call-by-name
PolyFix remain unpublished. Laziness is necessary, for example, to capture the
semantics of languages such as Haskell, whose termination at function types
is observable. (Existence of the function seq guarantees that termination at
function types is observable in Haskell. This function takes two arguments and
reduces the first to weak head normal form before returning the second.)

For our purposes we need only the following two corollaries of (7). Proposi-
tion 1 guarantees that ∆ is reflexive.

Proposition 1. If ∆ is a relational action, then for each closed type τ and each
closed term M , (M,M) ∈ ∆τ ().

Proposition 2. For all closed types τ and closed terms M and M ′ of type τ ,

M =ctx M
′ : τ ⇔ ∀S ∈ Stack(τ). S�M ⇔ S�M ′



5.3 Proof of the Substitution Theorem

Proof of Theorem 1: Let ∆ be a relational action and suppose the hypotheses
of the Substitution Theorem hold. SinceM and its type are closed, Proposition 1
ensures that

(M,M) ∈ ∆∀α.(τ11→...→τ1k1→α)→...→(τm1→...→τmkm →α)→α() (8)

Applying the definition of ∆ for ∀-types shows that (8) holds iff for all closed
types τ ′ and τ and for all r ∈ Rel(τ ′, τ),

(Mτ ′,Mτ) ∈ ∆(τ11→...→τ1k1→α)→...→(τm1→...→τmkm →α)→α(r��/α)

An m-fold application of the definition of ∆ for arrow types ensures that for
all closed types τ ′ and τ , for all r ∈ Rel(τ ′, τ), for all i ∈ {1, ...,m}, and
for all pairs of closed terms (⊕′

i,⊕i) ∈ ∆τi1→...→τiki
→α(r��/α), (8) holds iff

(Mτ ′⊕′
m,Mτ⊕m) ∈ ∆α(r��/α), i.e., iff (Mτ ′⊕′

m,Mτ⊕m) ∈ r��. Expanding
the condition on (⊕′

i,⊕i) for each i = 1, ...,m shows it equivalent to the assertion
that if (a′

ij , aij) ∈ ∆τij
(r��/α) for each j = 1, ..., ki, then (⊕′

ia
′
iki
,⊕iaiki

) ∈ r��.
Since (8) holds, we conclude that for all closed types τ ′ and τ and for all
r ∈ Rel(τ ′, τ),

if, for all i = 1, ...,m,
(a′

ij , aij) ∈ ∆τij (r
��/α) for all j = 1, ..., ki implies (⊕′

ia
′
iki
,⊕iaiki) ∈ r��,

then (Mτ ′⊕′
m,Mτ⊕m) ∈ r�� (9)

Note that all of the terms appearing in (9) are closed.
Now consider the instantiation

τ ′ = δ
r = {(M,M ′) | cataδ τ φm(nu1 , ..., nup , nv1 , ..., nvq )M =ctx M ′ : τ}
⊕′

i = φi(cu1 , ..., cup
, µv1 , ..., µvq

)
⊕i = φi(nu1 , ..., nup

, µ′
v1
, ..., µ′

vq
)

If we can verify that the hypotheses of (9) hold, then we may conclude that

cataδ τ φm(nu1 , ..., nup , nv1 , ..., nvq ) (M δ φm(cu1 , ..., cup , µv1 , ..., µvq ))
=ctx M τ φm(nu1 , ..., nup , µ

′
v1
, ..., µ′

vq
) : τ

Then since augmentδM µvq =ctx M δ φm(cu1 , ..., cup , µv1 , ..., µvq ) : δ, we will
have proved Theorem 1.

To verify that (9) holds, we first prove that r is ��-closed, and thus that
r coincides with the PolyFix contextual equivalence relation. To see this let
(M,M ′) ∈ r��. We show that cataδ τ φm(nu1 , ..., nup , nv1 , ..., nvq ) M =ctx

M ′ : τ . Let S be the “stack equivalent”

Id ◦ case − of {...}



of the evaluation context cataδ τ φm(nu1 , ..., nup , nv1 , ..., nvq
). Then S is such

that for all N : δ,

S N =ctx cataδ τ φm(nu1 , ..., nup , nv1 , ..., nvq ) N : τ (10)

since

cataδ τ φm(nu1 , ..., nup , nv1 , ..., nvq ) N
=ctx (λd. Λα. λfm.case d of

{... | cixki
⇒

fiφiki(cataδ... xz1αfm, ..., cataδ... xzpαfm, xy1 , ..., xyq ) | ...})
N τ φm(nu1 , ..., nup

, nv1 , ..., nvq
)

=ctx case N of {...}
=ctx (Id ◦ case − of {...}) N
=ctx S N

The first equivalence is by (5) and the definition of cata, the second is by
repeated application of (2) and (3), the third is by the definition of frame stack
application, and the fourth is by the definition of S.

Observe that if we define the append operation of frame stacks by

S@ Id = S

and
S′ @(S ◦ F ) = (S′ @S) ◦ F

then

(S′ @S)�M ⇔ S′ � (SM) (11)

Moreover, for any S′ ∈ Stack(τ), (S′ @S, S′) has the property that for all
(N,N ′) with cataδ τ φm(nu1 , ..., nup , nv1 , ..., nvq ) N =ctx N

′ : τ ,

(S′ @S)�N ⇔ S′ �S N ⇔ S′ �N ′

The first equivalence by (11), and the second is by Proposition 2 and (10) and
the fact that =ctx is transitive. Together with (9), the fact that (M,M ′) ∈ r��

implies that

(S′ @S)�M ⇔ S′ �M ′ (12)

But then

S′ �M ′ ⇔ (S′ @S)�M
⇔ S′ �SM
⇔ S� cataδ τ φm(nu1 , ..., nup , nv1 , ..., nvq )M

Here, the first equivalence is by (12), the second is by (11), and the third is by
the definition of S. Since S′ was arbitrary we have shown that

∀S′ ∈ Stack(τ). S′ �M ⇔ S′ � cataδ τ φm(nu1 , ..., nup , nv1 , ..., nvq )M



By Proposition 2, we therefore have

M ′ =ctx cataδ τ φm(nu1 , ..., nup , nv1 , ..., nvq )M : τ

as desired.
To verify the hypotheses of (9), observe that since the type of M is closed,

each τij is either a closed type or is precisely α. In the first case, ∆τij
(r��/α)

is precisely ∆τij (). Thus, if (a′
ij , aij) ∈ ∆τij

(r��/α), then by Proposition 1
then a′

ij =ctx aij : τij . In the second case, we have ∆τij (r
��/α) = r�� = r, i.e.,

cataδ τ φm(nu1 , ..., nup
, nv1 , ..., nvq

) a′
ij =ctx aij : τ . Since =ctx is a congruence,

equivalences (2) through (5) guarantee that

cataδ τ φm(nu1 , ..., nup , nv1 , ..., nvq )(⊕′
ia

′
iki

) =ctx ⊕iaiki : τ

i.e., that (⊕′
ia

′
iki
,⊕iaiki

) ∈ r. By (9) we conclude that (Mτ ′⊕′
m,Mτ⊕m) ∈ r,

i.e., that

cataδ τ φm(nu1 , ..., nup
, nv1 , ..., nvq

) (augmentδM µvq
)

=ctx M τ φm(nu1 , ..., nup
, µ′

v1
, ..., µ′

vq
) : τ

It is also possible to derive ��-closedness of r as a consequence of (the
analogue for non-list algebraic data types of) Lemma 6.1 of Pitts [14], but in the
interest of keeping this paper as self-contained as possible, we choose to prove it
directly.

6 Conclusion

In this paper we have defined a generalization of augment for lists for every
algebraic data type, and used Pitts’ characterization of contextual equivalence
for PolyFix to prove the correctness of the corresponding cata-augment fusion
rules for polymorphic lambda calculi supporting fixed point recursion at the level
of terms and recursion via data types with non-strict constructors at the level
of types. More specifically, we have shown that programs in such calculi which
have undergone generalized cata-augment fusion are contextually equivalent to
their unfused counterparts. The correctness of short cut fusion for algebraic data
types, as well as of cata-augment fusion for lists, are special cases of this result.

The construct augment can be interpreted as constructing substitution in-
stances of algebraic data structures. The generalized cata-augment rule can be
seen as a means of optimizing compositions of functions that uniformly consume
algebraic data structures with functions that uniformly produce substitution
instances of them.
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