Public-Key Crypto-Systems using
Symmetric-Key Crypto-Algorithms

Bruce Christianson
Bruno Crispo
James A. Malcolm

The prospect of quantum computing makes it timely to consider the future of
public-key crypto-systems. Both factorization and discrete logarithm correspond
to a single quantum measurement upon a superposition of candidate keys trans-
formed into the fourier domain. Accordingly, both these problems can be solved
by a quantum computer in a time essentially proportional to the bit-length of
the modulus, a speed-up of exponential order.

At first sight, the resulting collapse of asymmetric-key crypto-algorithms
seems to herald the doom of public-key crypto-systems. However, for most se-
curity services, asymmetric-key crypto-algorithms actually offer relatively little
practical advantage over symmetric-key algorithms. Most of the differences pop-
ularly attributed to the choice of crypto-algorithm actually result from subtle
changes in assumptions about hardware or domain management.

In fact it is straightforward to see that symmetric-key algorithms can be
embodied into tamper-proof hardware in such a way as to provide equivalent
function to a public-key crypto-system, but the assumption that physical tam-
pering never occurs is too strong for practical purposes. Our aim here is to build
a system which relies merely upon tamper-evident hardware, but which main-
tains the property that users who abuse their cryptographic modules through
malice or stupidity harm only themselves, and those others who have explicitly
trusted them.

We mention in passing that quantum computing holds out the prospect of
devices which can provide unequivocal evidence of tampering even at a distance.

This talk addresses three issues. First, we review the differences between sym-
metric and asymmetric key crypto-algorithms. Advantages traditionally ascribed
to asymmetric-key algorithms are that they:

— scale better than symmetric-key, and solve the key-management problem

— allow local generation and verification of credentials, avoiding the need for
servers to be on-line

— prevent servers from masquerading as their clients

- provide locality of trust and allow the consequences of key or hardware com-
promise to be confined

— provide attributability, preventing clients from masquerading as one another
or from repudiating commitment.

We explain in detail why these advantages actually result from system-level
assumptions about the hardware or application architecture, rather than from
the choice of crypto-algorithm.

Next, we consider the problem of constructing security protocols based upon
symmetric-key algorithms embodied in tamper-evident hardware, under corre-
sponding system-level assumptions. The protocol building-blocks which we use
are all well known:

|

private key certificates for on-line introductions

hash chaining for forward secrecy

key-mapping for unforgeable attribution

capability conversion across domain boundaries to prevent theft
explicit delegation certificates to avoid key-movement

secrets hashed with identities to provide public keys

|

|

|

and so on. However by combining these elements together with tamper-evident
hardware, we obtain a novel system infrastructure which allows the properties
desired of a public-key crypto-system to be achieved when the underlying crypto-
algorithm is symmetric. In particular, our proposals allow explicit lack of trust
to be exploited systematically as a lever so as to make the system more secure.

Finally, we turn our previous arguments inside out, and observe that existing
public-key crypto-systems — where the underying crypto-algorithm is asymmetric
— can also be made more robust by deploying the new infrastructure and the
associated tamper-evident hardware.

D- 2

Public-Key Crypto-Systems using
Symmetric-Key Crypto-Algorithms

Bruce Christianson

University of Hertfordshire: Hatfield

Mike has told me that I must finish on time, so I'll try not to say anything
uncontroversial®.

Many of you will have seen the recent announcement that the number 15
has been factorized at Bletchley Park by a quantum computer. The timing of
the announcement? is significant, but given all the public money that’s being
pumped into quantum computers, it’s worth considering the implications for us
if this effort succeeds.

Discrete logarithm and factorization both succumb to an attack by a quantum
computer in a time that’s essentially linear in the length of the modulus. The
reason for this is that, in the Fourier domain, you’re looking for the period
of a particular sub-group, and you can do that by a single measurement on a
superposition of states. You transform the states into the Fourier domain, which
takes N log N multiply operations, and by superposing you can do N of those
in parallel. So it’s log N time, and then you do a single measurement.

You don’t get exponential speedup on every problem, only on those where
you are essentially making a single measurement in the Fourier domain. On
general sorting or matching or searching problems you get quadratic speedup,
but that’s enough to destroy Merkle-puzzle type key algorithms.

On the other hand, symmetric ciphers are alive and well. You need to double
the block length and double the key length, but apart from that you can carry
on as before. And it’s actually easier to produce tamper-evident devices, in fact
now you can even tell remotely whether they’ve been tampered with, which you
couldn’t before.

So what are the implications of this for crypto-systems or crypto-protocals,
rather than just for the algorithms people? It’s been known for a long time that
you can do public key cryptography using symmetric key algorithms and tamper-
proof boxes. For example, Desmedt and Quisquater have a system® where es-
sentially you get the public key K+ from the private key K~ by applying a
symmetric algorithm to K~ using a master key M that is known only to the
hardware, so that K+ = {K~}s. The problem with this is that drilling into
one verification box blows the whole crypto-system, because the master key is
a global secret. And it doesn’t just blow the entire system, it does it retrospec-

I Because that would waste time.

2 10:59 GMT, Saturday 1 April 2000AD.

8 Y Desmedt and J-J Quisquater, 1987, Public Key Systems Based on the Difficulty
of Tampering: Is there a Difference between DES and RSA? Advances in Cryptology
- Crypto86.

tively: it’s always been the same secret so you can go back and tamper with
event logs and things like that.

So the first thing we want to see is how far we can get with merely tamper-
evident hardware. This is hardware which has the property that you can tell
whether or not somebody has drilled into it: you can’t get the secret out without
leaving some physical evidence. Of course, the physical matrix within which
tamper-evident hardware is deployed must be irreproducibly unique: someone
who gets the secret out of one box mustn’t be able to blow the secret into
another box and pass the second box off as the first. And so it also has to be
possible to verify that the physical matrix matches the secret inside, as well
as being physically intact?. But all of this is still a weaker requirement than
tamper-proof, which says you can’t get the secret out at all.

We want to retain all the good things that we associate with public key
crypto-systems, like confinement of trust, localization of operation, containment
of partial compromise, retrospective repair; this general instinct that we have
about public key, which says that malice or stupidity harms only the person
who misuses their crypto-module, or people who explicitly trust the misuser’s
honesty or competence.

Let’s start by reviewing the well-known advantages that asymmetric algo-
rithms allegedly have over symmetric key. I want to convince you that these
advantages are to a large extent mythical. The first claim is that asymmetric
key supposedly scales better than symmetric key and solves the key management
problem. Well no, not really. Asymmetric key does use N keys rather than N?
keys in total for N people, but each individual user still needs to manage N
different keys. They need one key for everybody they’re actually ever going to
talk to.

The only way to reduce the total number of keys to IV is by forcing everyone
to use a single public key. Each public key is used by IV other people. This is
exactly what makes the revocation problem hard in the asymmetric case.

Revocation with symmetric key is relatively straightforward: you tell the
person with whom you share the secret that the secret is blown. There are
protocol implications where Bob doesn’t want to hear what Alice is telling him,
for example, because Bob in the middle of trying to rip Alice off, or where Alice
wants to pretend to have told Bob because she’s in the process of ripping Bob
off, but it’s an end-to-end, one-to-one problem, it’s not one of these dreadful
things requiring revocation authorities to do fanout.

The initial key distribution requires the same effort to bootstrap whichever
algorithm you use, because you’ve got N people who have to register with some
central authority. To make the cost scale linearly with the system size, you need
some kind of third party. Everybody has got to register with the third party,
and registration requires some sort of real world artifact, no matter how you do
it. You can’t register by electronic means to do the initial bootstrap, the initial
bootstrap requires some sort of tamper-evident token. This token might be a
letter on company letterhead signed in blood by various people, or it might be

4 See LNCS 1550, ppl57, 166-167.

a tamper-evident device. Asymmetric key doesn’t require confidentiality of the
real world artifact, just integrity, but if you’ve got a tamper-evident token then
that’s not an issue anyway. So there’s not a lot of difference there.

But we do need some sort of third party, a trusted third party, or better,
several mutually mistrusting parties, which T’ll call either a CA or an AS de-
pending on whether the algorithm is asymmetric key or a symmetric key. Of
course what these actually are, whether they’re really certification authorities
or authentication servers or not, depends on the application. When I say CA I
just mean a third party in an asymmetric key world, I don’t necessarily mean
an actual certification authority.

The second myth is that asymmetric key allows local generation and ver-
ification of credentials. This is a big advantage, it means you don’t have to
support on-line checking of credentials. So that means the CA can be off-line,
which means it’s more secure, and it also means the protocol is more efficient
and more convenient. But the way we use asymmetric key cryptography at the
moment, the revocation authority has to be on-line, and misbehaviour of the re-
vocation authority is a show-stopper. So the advantage claimed for asymmetric
key becomes illusory as soon as you have revocation.

After you've introduced yourself to somebody for the first time, once you've
established a relationship with somebody and you’re doing business with them,
there’s very little difference between asymmetric and symmetric. Because if you
make your server stateless, which you probably want to do anyway, then you
can just push out the credentials that the client needs in order to reintroduce
themselves. The client is told, this is part of your state, you’ve got to present
these credentials in the next message that you send.

You almost certainly need to log transaction order whichever world you’re in,
because there are disputes about whether a transaction occurred before or after
a particular key had been revoked, or a particular certificate had been revoked.
And there’s the old push versus pull debate, the transmitter needs to log that
they've revoked a key, the receiver needs to log that they have done a check to
see whether a key has been revoked or not. There’s a slight tendency to use push
technology with asymmetric key and pull technology with symmetric key. But if
you say, look I want to design a push protocol, and you sit down and you do it,
it’s really spooky that the difference between an asymmetric key version and a
symmetric key version is so very slight. You are not only writing down the same
messages but you’re actually putting the same fields in them, it’s quite macabre.

At introduction time — now I’ve never met you before but I want you to store
my files for me — there still isn’t a vast amount of difference at the system level.
In the asymmetric case, if we were being sensible, the first time I did business
with Mike I would get the fact that my public key certificate was being issued
to him registered somewhere. Because that way the revocation problem becomes
straightforward. Either there’s a single authority that Mike knows he has to go
to to check whether the certificate has been revoked, or the revocation authority
knows that when that certificate is repealed it should tell Mike about it. In fact,
you can make a good argument that there should be a separate instance of the

DTS

certificate for each user to whom it’s issued, and that the capability should be
bound to those instances, harping back to Virgil Gligor’s talk earlier®.

Alternatively, we can use introduction certificates with symmetric key, tokens
like {4, B, S, Kab}kas; {A, B, S, Kab} ks etc. You don’t have to do the intro-
duction while the AS is on-line, you just at some previous point have to have
indicated that you will wish to engage in transactions with the other person.
This is a requirement which you usually have to satisfy anyway at some point
well in advance, regardless of which algorithm you’re using, it’s a systems issue.

So we get onto the third reason that asymmetric key is alleged to be better: it
prevents authorities from masquerading as their clients. This is where asymmet-
ric key appears to have a genuine advantage over symmetric key. Well of course a
CA can masquerade as a client, but the point is that it will get caught. You can
break into a CA and issue false key certificates, but when you're challenged you
can’t produce the real world artifact that goes with the electronic certificate,
and then people can go back and they can work out which transactions were
committed with those false credentials, and then they can undo those trans-
actions. Or you can have some other protocol that says what to do when you
discover this. Provided it didn’t involve confidentiality because then the undo
involves shooting people. And provided the provenance of the real world artifact
is secured.

Under all these conditions it’s clear that a CA with asymmetric key doesn’t
allow retrospective breaks. You can’t go back and alter the history of which
certificates things were signed with, provided people kept careful logs — which is
a point I'll come back to later — and didn’t just verify the credentials and then
throw them away. You can go back and you can work out which transactions are
suspect. You say, oh look, there’s some sawdust and a little drill-hole in the CA,
let’s find out which transactions we need to roll back.

But you can also do forward secrecy using symmetric crypto-algorithms. Alice
has a secret so that she shares with the AS authority S, and at each step she
uses the key k; = h(0|s;) which she gets by hashing that secret with a zero, and
then she replaces the shared secret by s;11 = h(1|s;) which she gets by hashing
the shared secret with a one, and then she carries on. Now if someone drills
into the authority, then the authority is compromised from that point on, but
it doesn’t get the attacker access back into the past. Everything up to the last
point at which the authority was physically secure, is still secure.

And if we always put protocols in these outer wrappers, just as was being
suggested in the previous talk by Tuomas Aura®, then we have gradually increas-
ing authentication, gradually increasing certification. If you receive credentials
and the outer wrapper is broken, that’s the point at which you say, I want an
integrity check now please. This box is using the secret one ahead from me,
somebody has done an extra transaction, let’s have a look and see whether this
is just a failure of the outer protocol or whether there’s sawdust on the floor.

5 xref.
6 xref.

If you've issued false key certificates, you've got to prevent the person whose
real key certificate you've replaced from seeing the false one. And that means
that following a CA compromise, you need an active wiretap in the asymmetric
case. In the symmetric case you can force the situation to be that you still
need an active wiretap following AS compromise, and you've got the same time
window in which to do it”.

The fourth myth about asymmetric key is that it gives locality of trust. Ex-
cept that if you’re crossing multiple security domains, which is the only case in
which locality of trust is any big deal, you’ve got to have a separate authentica-
tion channel to begin with, because the global hierarchy of trust is never going
to happen, see previous talks. And when you think about it, the integrity of your
verification key requires tamper-evident hardware local to the verifier anyway.
Otherwise how do you know what your hardware is doing, how do you know it’s
got the right verification key in it, and how do you know it’s actually applying
that key to the credentials and not just saying “OK”. You've got to have some
guarantee that what’s in the hardware is what you thought it was when you put
it in there, and since you’ve got to have that mechanism anyway, you might as
well use it.

So all this third party stuff is really a red herring. The advantage claimed for
asymmetric key reduces ultimately to the assertion that asymmetric key makes
signatures unforgeable. The people who share a key can’t masquerade as each
other, because they don’t have the same secret. But you need to log transactions
to establish time order relative to events like revocation of a key, or of a certificate
or a capability or a role or something like that. You need to keep a log at each
end, and anything that keeps a log can do key mapping.

Matt Blaze: Are there any events like revocation other than revocation?
If you design systems that don’t have revocation, then is it important to allow
revocation?

Reply: A lot of people say, I don’t have revocation in my system. When I
probe a little deeper, it usually turns into a push vs pull debate, a debate about
whose responsibility it is to get a freshness certificate. I can say, you have to send
me a freshness certificate or I don’t believe your key, or I can say, I have to get a
freshness certificate from someone or I don’t believe your key, or I can say, I will
conditionally commit your transaction, and then I will go and get a freshness
certificate that was issued after the commit point and then I'll believe it was
your key. Now if you want to say that those systems don’t have revocation then
I claim there are things like revocation that aren’t revocation, but for which my
argument applies.

John Toannidis: It’s a fine point between needing a freshness certificate or
having a short term certificate.

Reply: Sure, and I'm not trying to say that revocation is an issue in every
system. There are shades of grey, and eventually you get to the point where you

7 For details see Bruno Crispo, 1999, Delegation of Responsibility, PhD thesis, Com-
puter Laboratory, University of Cambridge.

can say, I don’t have revocation, or at least I'm happy for it to take a month to
revoke things.

Sometimes the thing you’re trotting off to isn’t a revocation authority or a
freshness certificate server, sometimes it’s a time authority, or sometimes it’s
actually a logging authority: part of the credentials you have to present to com-
mit this transaction is evidence that your intentions have been logged for the
purpose of recovery or whatever. The point is that you're going off somewhere,
and something is happening in an environment which facilitates key mapping.
But I agree that while you can stretch this argument out in various directions,
it doesn’t apply to everything.

So the point about key mapping is, that Alice sends her token, encrypted
with the key that she shares with Bob, but also with the key that she shares
with the port S that the token is going through.

A= S {X}kar; {X }Kas

The port does the key-mapping and appends the token encrypted under the key
that Bob shares with the port.

S — B : {X }kab; {X }icas; {X } ks

Bob can’t forge all the tokens that are logged, because he doesn’t know the key
that Alice shares with the port. But Alice can’t forge the credentials that are
presented to Bob either. Neither can the port.

More generally, if you're communicating between domains, security policy
is typically enforced by firewalls, which may be internal to the domain. It’s
not the case that every message has to go through the firewall, but typically
setting up an association requires some sort of policy approval, and firewalls
do protocol mapping anyway, firewalls keep logs anyway, and firewalls apply
security policies anyway, and the two firewalls at either end of a pipe tend to be
mutually mistrusting, and therefore they’re good pieces from which to build a
system like this.

There are considerable merits in forcing tokens to have different bit represen-
tations in different security domains. So the idea is to have border controls. You
have to change your money as you go through the firewall, and if you present
money that you’ve received from another domain by a covert channel, it won’t
work. If someone’s rung you up and dictated the bit pattern of a capability down
the phone, it won’t work, because it didn’t go through the appropriate security
policy.

Li Gong’s ICAP mechanism® can readily be made to be like this. ICAP
actually had a central server and application of authentication to individual users
using shared keys and hash functions. But if you put this server in the firewall, in
the gateways instead of in the middle of the domain, and you put domain-based
secrets into the authentication code, then you can build capabilities which have

8 Li Gong, 1990, Cryptographic Protocols for Distributed Systems, PhD thesis, Com-
puter Laboratory, University of Cambridge.

a different form in the different domains, but which can be checked by the policy
servers in the host domain. The authenticator is

h(Object | Subject | Rights | Domain Secret).

So modifying Li Gong’s ICAP gives you another valuable building block.

The next building block is the use of hash chaining, which you can use to take
the mutually mistrusting parties off-line. The MMPs have to be involved when
you first set up the association, but the firewall typically has to be involved then
in any case. After that the MMPs can go off-line until there’s a dispute. The
general hash-chaining technique here is a very standard one. We authenticate a
shared secret Xy at the beginning, verify that this really is the shared secret,
then I choose a successor secret X3, hash it, hash that together with X, and the
signature Sy of the thing I'm about to commit to.

I then get a commitment from you, confirmation that this intention has been
logged at the far end. Then I reveal the signature, the current secret and the
hash of the next secret, and on we go.

A— B: Xo,h(Xl), Sl, h(Xﬂh(Xg)lSz)

This is one brick, it’s not the wall. What we do is to take this and put it into
a Desmedt and Quisquater type box, but one where there isn’t a global secret.
Instead, the secret depends on the different certificates are that are involved
in the transaction. These are symmetric-key certificates, not asymmetric-key
certificates, so parts of the certificates are secret. But the key you end up with
can be made public. In the event of a dispute you say to everybody, OK produce
your tamper-evident token, together with a log book that includes the hash
chains and the signatures and so forth®.

Although you have control of the token, it may actually be the property of
the other domain. The other domain has given you this token and said, keep this
token safe because otherwise disputes are likely to be resolved against you.

The log book you can keep on a piece of paper or on a write-only optical
disk, but it’s your responsibility to keep it. If you can’t produce it, or if the
transaction done by the verifier doesn’t tie the current value of the hash in the
token with the end value of the log, the last entry on the log, then the dispute
is likely to be resolved against you. So you have the same incentive to keep this
stuff secure that you have to not blurt out your private key in the asymmetric
case.

Now we come to the first set of conclusions. Users shouldn’t know the bit-
values of the secrets that they control. And it’s a very bad idea to share all of the
secret information that you need to commit a transaction with any one other
party, it’s a particularly bad idea to share it all with an arbiter. You should

® For details see chapter 8 of Bruno’s thesis, cited earlier.

DI~ .

divide pieces between enough mutually mistrusting parties to ensure compliance
with the protocol.

In other words, lack of trust makes the system more secure. Isolate the mu-
tually mistrusting parties, or isolate the parts of them that do this bit of the
protocol. Putting them in the middle of a firewall is a very good way to isolate
them from things you don’t want them to see. Isolate them in such a way that
it is very hard for them to agree upon anything other than what the protocol
says should be the agreed story.

We're not talking about what actually happened here, we’re talking about
institutional truth, what we’re all going to claim happened given the state of
the logs. You impose a heavy penalty on being the odd one out and you make
it very difficult to agree on anything else, the prisoners’ dilemma type of thing.

The tokens which a user “controls” may be part of another domain, because
the controller doesn’t have access to their internals. The idea is that you bind
things that look like capabilities — I don’t want to get into the theological dispute
about what they're called, I can’t keep up with recent fashion - you bind things
that look like capabilities to things that look like certificates, and then you revoke
the certificates or the capabilities forward to the point of use, rather than back
to the issuer.

In fact if you think about what a key certificate should really look like in the
asymmetric key world, it should say, “I, the certification authority for domain
A, assert that this key for Alice can be used by Bob in domain B, provided that
Alice wants me to certify this, and provided that the domain B is willing to
receive this certificate, and provided Bob said he actually wants to use it to bind
something to.”

T= KCL+, I{CLS+, X) Kb+) Kb5+; S = {T}Ka_; {T}Kas“7 {T}I(bs“a {T}Kb—

In fact this looks just like a delegation token, a point that Mike Roe made a
couple of years ago'®.

So we come to the final conclusions. I started in a somewhat fanciful way by
saying, let’s see what happens if asymmetric key doesn’t work anymore. What
would we do if we had to rely on tamper-evident hardware and symmetric key
algorithms? Thinking about this suggests a number of things which it would be
sensible to do differently, and these changes to how we currently do things still
appear remarkably sensible even when the underlying algorithm remains asym-
metric. There are differences between symmetric and asymmetric algorithms
from the point of view of the resulting crypto-system, but they are very subtle,
and they are not at all the differences you find described in books suitable for
children.

Any questions or heckling?

John Ioannidis: I suppose if an AS is compromised then whether a signature
is subsequent to the compromise cannot be resolved.

Reply: You can’t use signatures ad infinitum even now, unless they’ve been
logged or archived or put into something that gives you assurance that they

10 NCS 1550, ppl168-176.

existed prior to the key being revoked or compromised or the certificate expiring,
or some other thing that would have violated your policy if you had checked it.

Otherwise you can’t know which happened first, even in the asymmetric case.

Ross Anderson: You assume that publication of a secret key compromises
part of the system, but the existence of an append-only file makes it trivial to
use one-time signatures.

Reply: That’s true. The question that needs to be addressed there is the
issue that Matt Blaze raised last year'!, which is the need to layer confidentiality
servers on top of the event logger, so that people can’t see bits of the log that
they mustn’t see, whilst still having an assurance that the chain is intact for the
bits that they are allowed to see. But again, that’s a problem now, it’s not a
problem that comes about from the fact that asymmetric key stops working.

Mark Lomas: How can I make backups of my private key?

Reply: You make backups of your actual private key? Shame on you.

Mark Lomas: The reason I make backups of my private key is because my
machine might be unreliable.

Matt Blaze: But if you had a good public key infrastructure you’d simply
create new keys.

Reply: Exactly. What you actually have is a requirement to be able to trans-
fer your rights to a different key in a controlled way under certain circumstances,
or equivalently here to a different physical token, without having a period of a
month while you can’t access your system.

There are two arguments for never moving private keys around. The first is
that if it’s physically possible to move a private key from one place to another,
then someone is going to do it when you don’t want them to, or make a copy
while it’s in transit. It’s usually when keys are moving around that they get
filched.

I agree that you can make the process of moving them safer, but what I'm
saying is that it’s possible to give an excellent solution to the wrong problem
and very often moving a private key is the wrong problem, it doesn’t need to be
solved.

The second reason is that very often when we run a protocol, one of the
things we want to authenticate is that a particular specific piece of hardware,
say a particular hand-held device, was involved in the protocol. Then it's very
important that we satisfy ourselves that it wasn’t some other piece of hardware
that had the same noughts and ones in it. The easy way to do this is if there is
no other piece of hardware with the same noughts and ones in it. And in those
cases you have to be able to guarantee not simply that you didn’t move the keys
around, but that it wasn’t possible for you to move the key, you could not have
done it.

How can we meet this requirement? We tend to think that binding and un-
binding capabilities from certificates is really hard, and revoking certificates is
a real pain, and certifying things is really difficult, and it’s a rare event anyway,
so let’s try and avoid doing this as much as possible. What I'm suggesting is

11 1NCS 1796, p46.

a world view where these things actually happen all the time. Whenever you
want someone to use a public key that they haven’t used before, that’s a certi-
fication transaction. When they say “I've finished using it”, that’s a revocation
transaction. What we need is an infrastructure that deals efficiently with these
events, and then you can just put keys in one physical place and bind them there
for life. Then all your bindings between bit patterns and real world entities are
happening at the edge of cyberspace instead of in the middle. The last thing
you want to do is to bind two bit patterns to each other via a real world entity
because then you can’t verify the binding remotely!?.

Matt Blaze: I guess the major reason for not revoking secret keys is that
it’s psychologically a bit embarrassing to have to revoke one. Revoking a key is
a very public event.

Reply: You’re absolutely right, we have to take the social stigma out of
revoking your key. We need a sort of revocation pride march or something.
Reclaim the night, revoke the right.

John Toannidis: It’s not too wise to say why you revoked your key, because
then everyone knows it’s lost and that you don’t want other people to send you
anything.

Reply: I don’t have to say why I revoked a key. Maybe the session ended,
or maybe I'm just bored with it. All ’'m going to say is, my name is Bruce and
I just revoked this key.

12 For more on this theme see LNCS 1361, pp105-113.

