Skip to main content

Ant Algorithms Solve Difficult Optimization Problems

  • Conference paper
  • First Online:
Advances in Artificial Life (ECAL 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2159))

Included in the following conference series:

Abstract

The ant algorithms research field builds on the idea that the study of the behavior of ant colonies or other social insects is interesting for computer scientists, because it provides models of distributed organization that can be used as a source of inspiration for the design of optimization and distributed control algorithms. In this paper we overview this growing research field, giving particular attention to ant colony optimization, the currently most successful example of ant algorithms, as well as to some other promising directions such as ant algorithms inspired by labor division and brood sorting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bauer, B. Bullnheimer, R. F. Hartl, and C. Strauss. An ant colony optimization approach for the single machine total tardiness problem. In Proceedings of the 1999 Congress on Evolutionary Computation (CEC’99), pages 1445–1450. IEEE Press, Piscataway, NJ, 1999.

    Chapter  Google Scholar 

  2. E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York, NJ, 1999.

    MATH  Google Scholar 

  3. E. Bonabeau, M. Dorigo, and G. Theraulaz. Inspiration for optimization from social insect behavior. Nature, 406:39–42, 2000.

    Article  Google Scholar 

  4. E. Bonabeau and G. Theraulaz. Swarm smarts. Scientific American, 282(3):54–61, 2000.

    Article  Google Scholar 

  5. E. Bonabeau, G. Theraulaz, J.-L. Deneubourg, S. Aron, and S. Camazine. Self-organization in social insects. Tree, 12(5):188–193, 1997.

    Google Scholar 

  6. B. Bullnheimer, R. F. Hartl, and C. Strauss. Applying the Ant System to the vehicle routing problem. In S. Voß, S. Martello, I. H. Osman, and C. Roucairol, editors, M eta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pages 285–296. Kluwer Academic Publishers, Dordrecht, 1999.

    Google Scholar 

  7. B. Bullnheimer, R. F. Hartl, and C. Strauss. An improved ant system algorithm for the vehicle routing problem. Annals of Operations Research, 89:319–328, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  8. B. Bullnheimer, R. F. Hartl, and C. Strauss. A new rank-based version of the Ant System: A computational study. Central European Journal for Operations Research and Economics, 7(1):25–38, 1999.

    MATH  MathSciNet  Google Scholar 

  9. M. Campos, E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg. Dynamic scheduling and division of labor in social insects. Adaptive Behavior, 8(3):83–96, 2000.

    Article  Google Scholar 

  10. A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian. Ant System for job-shop scheduling. JORBEL-Belgian Journal of Operations Research, Statistics and Computer Science, 34(1):39–53, 1994.

    MATH  Google Scholar 

  11. D. Costa and A. Hertz. Ants can colour graphs. Journal of the Operational Research Society, 48:295–305, 1997.

    Article  MATH  Google Scholar 

  12. M. L. den Besten, T. Stützle, and M. Dorigo. Ant colony optimization for the total weighted tardiness problem. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H.-S. Schwefel, editors, Proceedings of PPSN-VI, Sixth International Conference on Parallel Problem Solving from Nature, volume 1917 of Lecture Notes in Computer Science, pages 611–620. Springer Verlag, Berlin, Germany, 2000.

    Chapter  Google Scholar 

  13. M. L. den Besten, T. Stützle, and M. Dorigo. Design of iterated local search algorithms: An example application to the single machine total weighted tardiness problem. In E. J. W. Boers, J. Gottlieb, P. L. Lanzi, R. E. Smith, S. Cagnoni, E. Hart, G. R. Raidl, and H. Tijink, editors, Proceedings of EvoStim’01, Lecture Notes in Computer Science, pages 441–452. Springer Verlag, Berlin, Germany, 2001.

    Google Scholar 

  14. J.-L. Deneubourg, S. Aron, S. Goss, and J.-M. Pasteels. The self-organizing exploratory pattern of the Argentine ant. Journal of Insect Behavior, 3:159–168, 1990.

    Article  Google Scholar 

  15. J.-L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, and L. Chrétien. The dynamics of collective sorting: Robot-like ants and ant-like robots. In J.-A. Meyer and S. W. Wilson, editors, Proceedings of the First International Conference on Simulation of Adaptive Behavior: From Animals to Animats, pages 356–363. MIT Press, Cambridge, MA, 1991.

    Google Scholar 

  16. G. Di Caro and M. Dorigo. AntNet: A mobile agents approach to adaptive routing. Technical Report IRIDIA/97-12, IRIDIA, Université Libre de Bruxelles, Belgium, 1997.

    Google Scholar 

  17. G. Di Caro and M. Dorigo. AntNet: Distributed stigmergetic control for communications networks. Journal of Artificial Intelligence Research, 9:317–365, 1998.

    MATH  Google Scholar 

  18. G. Di Caro and M. Dorigo. Extending AntNet for best-effort Quality-of-Service routing. Unpublished presentation at ANTS’98-From Ant Colonies to Artificial Ants: First International Workshop on Ant Colony Optimization http://iridia.ulb.ac.be/ants98/ants98.html, October 15–16 1998.

  19. G. Di Caro and M. Dorigo. Two ant colony algorithms for best-effort routing in datagram networks. In Y. Pan, S. G. Akl, and K. Li, editors, Proceedings of the Tenth IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS’98), pages 541–546. IASTED/ACTA Press, Anheim, 1998.

    Google Scholar 

  20. M. Dorigo. Optimization, Learning and Natural Algorithms (in Italian). PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy, 1992. 140 pages.

    Google Scholar 

  21. M. Dorigo, E. Bonabeau, and G. Theraulaz. Ant algorithms and stigmergy. Future Generation Computer Systems, 16(8):851–871, 2000.

    Article  Google Scholar 

  22. M. Dorigo and G. Di Caro. The Ant Colony Optimization meta-heuristic. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 11–32. McGraw Hill, London, UK, 1999.

    Google Scholar 

  23. M. Dorigo, G. Di Caro, and T. Stützle (Editors). Special issue on “Ant Algorithms”. Future Generation Computer Systems, 16(8), 2000. 104 pages.

    Google Scholar 

  24. M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete optimization. Artificial Life, 5(2):137–172, 1999.

    Article  Google Scholar 

  25. M. Dorigo and L. M. Gambardella. Ant colonies for the traveling salesman problem. BioSystems, 43:73–81, 1997.

    Article  Google Scholar 

  26. M. Dorigo and L. M. Gambardella. Ant Colony System: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1):53–66, 1997.

    Article  Google Scholar 

  27. M. Dorigo, L. M. Gambardella, M. Middendorf, and T. Stützle (Editors). Special issue on “Ant Algorithms and Swarm Intelligence”. IEEE Transactions on Evolutionary Computation, 2002.

    Google Scholar 

  28. M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search strategy. Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano, Italy, 1991.

    Google Scholar 

  29. M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 26(1):29–41, 1996.

    Article  Google Scholar 

  30. L. M. Gambardella and M. Dorigo. Ant-Q: A reinforcement learning approach to the traveling salesman problem. In A. Prieditis and S. Russell, editors, Proceedings of the Twelfth International Conference on Machine Learning (ML-95), pages 252–260. Morgan Kaufmann Publishers, Palo Alto, CA, 1995.

    Google Scholar 

  31. L. M. Gambardella and M. Dorigo. Solving symmetric and asymmetric TSPs by ant colonies. In Proceedings of the 1996 IEEE International Conference on Evolutionary Computation (ICEC’96), pages 622–627. IEEE Press, Piscataway, NJ, 1996.

    Chapter  Google Scholar 

  32. L. M. Gambardella and M. Dorigo. HAS-SOP: An hybrid Ant System for the sequential ordering problem. Technical Report IDSIA-11-97, IDSIA, Lugano, Switzerland, 1997.

    Google Scholar 

  33. L. M. Gambardella and M. Dorigo. Ant Colony System hybridized with a new local search for the sequential ordering problem. INFORMS Journal on Computing, 12(3):237–255, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  34. L. M. Gambardella, È. D. Taillard, and G. Agazzi. MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 63–76. McGraw Hill, London, UK, 1999.

    Google Scholar 

  35. L. M. Gambardella, È. D. Taillard, and M. Dorigo. Ant colonies for the quadratic assignment problem. Journal of the Operational Research Society, 50(2):167–176, 1999.

    Article  MATH  Google Scholar 

  36. S. Goss, S. Aron, J. L. Deneubourg, and J. M. Pasteels. Self-organized shortcuts in the Argentine ant. Naturwissenschaften, 76:579–581, 1989.

    Article  Google Scholar 

  37. W. J. Gutjahr. A graph-based Ant System and its convergence. Future Generation Computer Systems, 16(8):873–888, 2000.

    Article  Google Scholar 

  38. M. J. B. Krieger and J.-B. Billeter. The call of duty: Self-organised task allocation in a population of up to twelve mobile robots. Robotics and Autonomous Systems, 30:65–84, 2000.

    Article  Google Scholar 

  39. P. Kuntz, D. Snyers, and P. Layzell. A stochastic heuristic for visualizing graph clusters in a bi-dimensional space prior to partitioning. Journal of Heuristics, 5:327–351, 1999.

    Article  MATH  Google Scholar 

  40. S. Lawrence and C. L. Giles. Searching the world wide web. Science, 280:98–100, 1998.

    Article  Google Scholar 

  41. G. Leguizamón and Z. Michalewicz. A new version of Ant System for subset problems. In Proceedings of the 1999 Congress on Evolutionary Computation (CEC’99), pages 1459–1464. IEEE Press, Piscataway, NJ, 1999.

    Chapter  Google Scholar 

  42. Y.-C. Liang and A. E. Smith. An Ant System approach to redundancy allocation. In Proceedings of the 1999 Congress on Evolutionary Computation, pages 1478–1484. IEEE Press, Piscataway, NJ, 1999.

    Chapter  Google Scholar 

  43. E. Lumer and B. Faieta. Diversity and adaptation in populations of clustering ants. In J.-A. Meyer and S. W. Wilson, editors, Proceedings of the Third International Conference on Simulation of Adaptive Behavior: From Animals to Animats 3, pages 501–508. MIT Press, Cambridge, MA, 1994.

    Google Scholar 

  44. V. Maniezzo. Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFORMS Journal on Computing, 11(4):358–369, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  45. V. Maniezzo and A. Carbonaro. An ANTS heuristic for the frequency assignment problem. Future Generation Computer Systems, 16(8):927–935, 2000.

    Article  Google Scholar 

  46. V. Maniezzo and A. Colorni. The Ant System applied to the quadratic assignment problem. IEEE Transactions on Data and Knowledge Engineering, 11(5):769–778, 1999.

    Article  Google Scholar 

  47. V. Maniezzo, A. Colorni, and M. Dorigo. The Ant System applied to the quadratic assignment problem. Technical Report IRIDIA/94-28, IRIDIA, Université Libre de Bruxelles, Belgium, 1994.

    Google Scholar 

  48. D. Merkle, M. Middendorf, and H. Schmeck. Ant colony optimization for resource-constrained project scheduling. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000), pages 893–900. Morgan Kaufmann Publishers, San Francisco, CA, 2000.

    Google Scholar 

  49. R. Michel and M. Middendorf. An island model based Ant System with lookahead for the shortest supersequence problem. In A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Proceedings of PPSN-V, Fifth International Conference on Parallel Problem Solving from Nature, volume 1498 of Lecture Notes in Computer Science, pages 692–701. Springer Verlag, Berlin, Germany, 1998.

    Chapter  Google Scholar 

  50. R. Michel and M. Middendorf. An ACO algorithm for the shortest supersequence problem. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 51–61. McGraw Hill, London, UK, 1999.

    Google Scholar 

  51. G. Navarro Varela and M. C. Sinclair. Ant colony optimisation for virtual-wavelength-path routing and wavelength allocation. In Proceedings of the 1999 Congress on Evolutionary Computation (CEC’99), pages 1809–1816. IEEE Press, Piscataway, NJ, 1999.

    Chapter  Google Scholar 

  52. H. Ramalhinho Lourenço and D. Serra. Adaptive approach heuristics for the generalized assignment problem. Technical Report Technical Report Economic Working Papers Series No.304, Universitat Pompeu Fabra, Dept. of Economics and Management, Barcelona, Spain, 1998.

    Google Scholar 

  53. R. Schoonderwoerd, O. Holland, and J. Bruten. Ant-like agents for load balancing in telecommunications networks. In Proceedings of the First International Conference on Autonomous Agents, pages 209–216. ACM Press, 1997.

    Google Scholar 

  54. R. Schoonderwoerd, O. Holland, J. Bruten, and L. Rothkrantz. Ant-based load balancing in telecommunications networks. Adaptive Behavior, 5(2):169–207, 1996.

    Article  Google Scholar 

  55. C. Solnon. Solving permutation constraint satisfaction problems with artificial ants. In W. Horn, editor, Proceedings of the 14th European Conference on Artificial Intelligence, pages 118–122. IOS Press, Amsterdam, The Netherlands, 2000.

    Google Scholar 

  56. T. Stützle. \( \mathcal{M}\mathcal{A}\mathcal{X} - \mathcal{M}\mathcal{I}\mathcal{N} \) Ant System for the quadratic assignment problem. Technical Report AIDA-97-4, FG Intellektik, FB Informatik, TU Darmstadt, July 1997.

    Google Scholar 

  57. T. Stützle. An ant approach to the flow shop problem. In Proceedings of the 6th European Congress on Intelligent Techniques & Soft Computing (EUFIT’98), volume 3, pages 1560–1564. Verlag Mainz, Wissenschaftsverlag, Aachen, 1998.

    Google Scholar 

  58. T. Stützle. Local Search Algorithms for Combinatorial Problems: Analysis, Improvements, and New Applications. Infix, Sankt Augustin, Germany, 1999.

    MATH  Google Scholar 

  59. T. Stützle and M. Dorigo. A short convergence proof for a class of aco algorithms. Technical Report IRIDIA/2000-35, IRIDIA, Université Libre de Bruxelles, Belgium, 2000.

    Google Scholar 

  60. T. Stützle and H. H. Hoos. The \( \mathcal{M}\mathcal{A}\mathcal{X} - \mathcal{M}\mathcal{I}\mathcal{N} \) Ant System and local search for the traveling salesman problem. In T. Bäck, Z. Michalewicz, and X. Yao, editors, Proceedings of the 1997 IEEE International Conference on Evolutionary Computation (ICEC’97), pages 309–314. IEEE Press, Piscataway, NJ, 1997.

    Chapter  Google Scholar 

  61. T. Stützle and H. H. Hoos. \( \mathcal{M}\mathcal{A}\mathcal{X} - \mathcal{M}\mathcal{I}\mathcal{N} \) Ant System. Future Generation Computer Systems, 16(8):889–914, 2000.

    Article  Google Scholar 

  62. I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein. Smell as a computational resource-a lesson we can learn from the ant. In Proceedings of the Fourth Israeli Symposium on Theory of Computing and Systems (ISTCS-99), pages 219–230, 1996.

    Google Scholar 

  63. I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein. Efficient graph search by a smell-oriented vertex process. Annals of Mathematics and Artificial Intelligence, 24:211–223, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  64. I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein. ANTS: Agents, networks, trees and subgraphs. Future Generation Computer Systems, 16(8):915–926, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dorigo, M. (2001). Ant Algorithms Solve Difficult Optimization Problems. In: Kelemen, J., Sosík, P. (eds) Advances in Artificial Life. ECAL 2001. Lecture Notes in Computer Science(), vol 2159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44811-X_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-44811-X_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42567-0

  • Online ISBN: 978-3-540-44811-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics