Skip to main content

String Rewriting Grammar Optimized Using an Evolvability Measure

  • Conference paper
  • First Online:
Advances in Artificial Life (ECAL 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2159))

Included in the following conference series:

Abstract

As an example of the automatic optimization of an Artificial Life system design, a string rewriting system is studied. The system design is represented by a set of rewriting rules that defines the growth of strings, and a rule set is experimentarily optimized in terms of maximizing the evolvability measure, that is, the occurrence ratio of self-replicating strings. It is shown that the most optimized rule set allows many strings to self-replicate by using a special character able to copy an original string sequentially. In the paper, a man-made rule set is also presented and is compared to the optimized rule set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altenberg, L.: Evolvability checkpoints against evolutionary pathologies. In: Maley, C.C., Boudreau, E. (eds.): Artificial Life 7 Workshop Proceedings (2000) 3–7

    Google Scholar 

  2. Bedau, M.A., Packard, N.H.: Measurement of evolutionary activity, teleology, and life. In: Langton, C.G. et al. (eds.): Artificial Life II: Proceedings of an Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems (Santa Fe Institute Studies in the Sciences of Complexity, Vol. 10). Addison-Wesley (1992) 431–461

    Google Scholar 

  3. Chou, H.H., Reggia, J.A.: Emergence of self-replicating structures in a cellular automata space. Physica D 110 (1997) 252–276

    Article  MATH  Google Scholar 

  4. Dittrich, P., Banzhaf, W.: Self-evolution in a constructive binary string system. Artificial Life 4 (1998) 203–220

    Article  Google Scholar 

  5. Fontana, W.: Algorithmic chemistry. In: Langton, C.G. et al. (eds.): Artificial Life II: Proceedings of an Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems (Santa Fe Institute Studies in the Sciences of Complexity, Vol. 10), Addison-Wesley (1992) 159–209

    Google Scholar 

  6. Fontana, W., Buss, L.W.:’ The Arrival of the Fittest’: Toward a Theory of Biological Organization. Bull. Math. Biol. 56 (1994) 1–64

    MATH  Google Scholar 

  7. Ikegami, T., Hashimoto, T.: Coevolution of machines and tapes. In: Morán, F. et al. (eds.): Advances in Artificial Life (Third European Conference on Artificial Life Proceedings), Springer, Berlin (1995) 234–245

    Google Scholar 

  8. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Boston (1992)

    MATH  Google Scholar 

  9. Lohn, J.D., Reggia, J.A.: Automatic discovery of self-replicating structures in cellular automata. IEEE Transactions on Evolutionary Computation 1 (1997) 165–178

    Article  Google Scholar 

  10. Nehaniv, C.L., Rhodes, J.L.: The Evolution and Understanding of Biological Complexity from an Algebraic Perspective. Artificial Life 6 (2000) 45–67

    Article  Google Scholar 

  11. Ray, T.S.: An approach to the synthesis of life. In: Langton, C.G. et al. (eds.): Artificial Life II: Proceedings of an Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems (Santa Fe Institute Studies in the Sciences of Complexity, Vol. 10). Addison-Wesley (1992) 371–408

    Google Scholar 

  12. Ray, T.S., Xu, C.: Measures of evolvability in tierra. In: Sugisaka, M., Tanaka, H. (eds.): Proceedings of The Fifth International Symposium on Artificial Life and Robotics (AROB 5th’ 00) Vol. 1 (2000) I-12–I-15

    Google Scholar 

  13. Reggia, J.A., Lohn, J.D., Chou, H.H.: Self-replicating structures: evolution, emergence, and computation. Artificial Life 4 (1998) 283–302

    Article  Google Scholar 

  14. Suzuki, H.: An Approach to Biological Computation: Unicellular Core-Memory Creatures Evolved Using Genetic Algorithms. Artificial Life 5 N. 4 (2000) 367–386

    Article  Google Scholar 

  15. Suzuki, H.: Evolution of Self-reproducing Programs in a Core Propelled by Parallel Protein Execution. Artificial Life 6 N. 2 (2000) 103–108

    Article  Google Scholar 

  16. Suzuki, H.: Minimum Density of Functional Proteins to Make a System Evolvable. In: Sugisaka, M., Tanaka, H. (eds.): Proceedings of The Fifth International Symposium on Artificial Life and Robotics (AROB 5th’ 00) Vol. 1 (2000) 30–33

    Google Scholar 

  17. Suzuki, H.: Evolvability Analysis Using Random Graph Theory. Proceedings of AFSS 2000 (The Fourth Asian Fuzzy Systems Symposium) Vol. 1 (2000) 549–554

    Google Scholar 

  18. Suzuki, H.: Evolvability Analysis: Distribution of Hyperblobs in a Variable-Length Protein Genotype Space. In: Bedau, M.A. et al. (eds.): Artificial Life VII: Proceedings of the Seventh International Conference on Artificial Life. MIT Press, Cambridge (2000) 206–215

    Google Scholar 

  19. Suzuki, H.: Optimal Design for the Evolution of Composite Mappings. In: Sugisaka, M., Tanaka, H. (eds.): Proceedings of The Sixth International Symposium on Artificial Life and Robotics (AROB 6th’ 01), Vol. 2 (2001) 373–376

    Google Scholar 

  20. Suzuki, Y., Tanaka, H.: Chemical evolution among artificial proto-cells. In: Bedau, M.A. et al. (eds.): Artificial Life VII: Proceedings of the Seventh International Conference on Artificial Life, MIT Press, Cambridge (2000) 54–63

    Google Scholar 

  21. Taylor, T.: On Self-reproduction and Evolvability. In: Floreano, D. et al. (eds.): Advances in Artificial Life (5th European Conference on Artificial Life Proceedings) Springer-Verlag, Berlin (1999) 94–103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suzuki, H. (2001). String Rewriting Grammar Optimized Using an Evolvability Measure. In: Kelemen, J., Sosík, P. (eds) Advances in Artificial Life. ECAL 2001. Lecture Notes in Computer Science(), vol 2159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44811-X_52

Download citation

  • DOI: https://doi.org/10.1007/3-540-44811-X_52

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42567-0

  • Online ISBN: 978-3-540-44811-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics