Symbiotic Composition and Evolvability

Richard A. Watson, and Jordan B. Pollack

Dynamicd and Evolutionary Madhine Organizaion
Volen Center for Complex Systems — Brandeis University — Watham, MA — USA

richardw@cs.brandeis.edu

Abstract. Several of the Maor Transitions in natural evolution, such as the
symbiogenic origin of eukaryotes from prokaryotes, share the feaure that existing
entities becane the mporents of composite ettities at a higher level of
organisation. This composition d pre-adapted extant entities into a new wholeisa
fundamentally diff erent source of variation from the gradual acaimulation o small
randan variations, and it has ©me interesting consequences for iswues of
evolvability. In this paper we present a very abstrad model of ‘symbiotic
compasition’ to explore its posdble impad on evolvability. A particular adaptive
landscape is used to exemplify a dasswhere symbiotic composition has an adaptive
advantage with resped to evolution under mutation and sexual recombination.
Whilst innowation wing conventional evolutionary agorithms beames
increasingly more difficult as evolution continues in this problem, innowvation via
symbiotic composition continues throughsuccessve hierarchicd levels unimpeded.

I ntroduction

The Mgjor Transitions in evolution [1,2,3] invave the aedion d new higher-level
complexes of simpler entities. Summarised by Michod for example [3], they include the
transitions “from individual genes to networks of genes, from gene networks to baderia-
like cdls, from baderialike cdls to eukaryotic cdls with organelles, from cdls to
multi cdlular organisms, and from solitary organisms to societies’. There ae many good
ressons to be interested in the evolutionary transitions: they challenge the Modern
Synthesis preoccupation with the individual as the unit of seledion, they invave the
adoption d new modes of transmitting information, they addressfundamental questions
abou individuality, cooperation, fithess and nd least, the origins of life[1,2,3].

In several of the transitions “entities that were cgable of independent replication
before the transition can replicae only as part of a larger whole dter it” [2]. Although
Maynard Smith and Szathmary identify some transitions which do nda fit what they
describe & “symbiosis followed by compartmentation and synchronised replication”,
severa of the transitions including the origin of eukaryotes from prokaryotes [4], and the
origin of chromosomes from independent genes, do invalve the quite literal union of
previoudly freeliving entities into a new whale. This paper focuses on the evolutionary
impad of this medchanism, which we shall refer to as ‘ symbiotic compasition’, or smply
‘composition’. We ae @ncerned with an algorithmic understanding d this mechanism
the Mgjor Transitions: What kind d adaptation dces the formation o higher-level
complexes from simpler entiti es afford? And we seek to uncerstand the dassof adaptive
problem, the kind o fitnesslandscape, for which this mechanism iswell suited.



Composition presents ssme obvious contrasts with hov we normally understand the
medchanisms of neo-Darwinist evolution. The ordinary (nontransitional) view of
evolutionary change invalves the acemulation o randam variations in genetic material
within an entity. But innovation by compaosition invalves the union d different entities,
ead containing relatively large anourts of genetic material, that are independently pre-
adapted as entities in their own right, if not in their symbiotic role. This immediately
sugeests ome mncepts impading evolvability.

First, a composition mechanism may patentially allow ‘jumps’ in feaure spacethat
may cross'fitness sddles [5] in the original adaptive landscgpe (defined by the mutation
neighbouhood. Moreover, since these higher-level aggregations of feaures are not
arbitrary but rather are shaped by grior adaptation, these jumps are not equivalent to large
randam mutations, but rather are ‘informed’ by prior or parall el adaptation.

Crossng fitness sddles has been a central isaue in evolvability. There ae many
possble scenarios for how adaptation may overcome a fitness sddle: for example,
genetic drift and * Shifting Balance Theory’ [5,6], exaptation [7], neutral networks [8],
extra-dimensional bypass [9], ontogenic processes [10], or landscagpe dynamics [11].
Each of these dfords an increase in the width of fitness sdde that might be aossed
(with resped to that which may be aossed by simple mutation). And conceivably, some
of them may produce sadde-crossng ability that is not arbitrary, but informed by prior or
parale adaptation. But, what is the size of fitness sddle that we shoud exped to
encourter? It seems likely that as one scde of ruggednessis overcome, a larger scde of
ruggedness becomes the limiting charaderistic of a landscgpe. Under composition, the
entities resulting from one level of organisation provide anew ‘unit of variation' for
compositions at the next level, and thus the size of jumps is propartional to extant
complexity. In this ense, compasition suggests a scd e-invariant adaptive mechanism.

Seoond, in composition, the sets of fedures that are composed are pre-adapted in
independent entities. The comporents of the union arise from entities at a lower level
‘unit of seledion’. This independence provides a ‘divide and conquer’ treament of the
fedure set. Intuitively, the hope is that a generalist entity, utilising two dfferent niches,
resources, or habitats, for example, can be aeaed by the mmposition o two speddlist
entiti es eat independently adapted to ore of these niches, resources or habitats. Thereby,
the problem of being well adapted to the general habitat is divided into the independent
problems of being well adapted to comporent habitats. This decompasition d a problem
into smaller problems is know algorithmicadly as ‘divide and conquer’ (e.g. [12]); so
named because of the significant algorithmic advantage it offers when applicable. Such
divide and conquer advantage is not available to natural seledion when fedures are
adapted within asingle reprodictive antity.

The model we describe below develops these two concepts — a scd able medhanism of
sadde-crosdng, and dvide and conquer advantage — both applied in a scde-invariant
hierarchicd fashion. We do nd attempt to model biologicd mechanisms in any detail ed
way; our model is deliberately very abstrad. For example, we ssaume amechanism of
symbiotic compasition that simply produces the union o feaures from two organisms.
And, the fitness landscepe that we use for our experiments is deliberately chosen to
exemplify the alaptive utility of composition as contrasted with conventional
evolutionary algorithms. However, by using an abstrad model we cax focus on the
combinatorial aspeds of the processes, and an algorithmic model such asthis provides an
important faceé to ou understanding o the Major Evolutionary Transtions and the
adaptational significance of symbiotic composition.



The remainder of the paper is dructured as follows: Sedion 2 dscribes a scde-
invariant fitnesslandscgpe; Sedion 3describes our compasition model, the Symbiogenic
Evolutionary Adaptation Model (SEAM); Sedion 4 describes the results of some
experiments with SEAM and this sde-invariant fithesslandscgpe; Sedion 5concludes.

2 A Scale-lnvariant Fitness L andscape

In this £dion we eamine a fitness landscepe that we will use to exemplify the
charaderistics of the compaosition model we describe later. Of interest to us here is that
thislandscape has ssddles at all scaes, resulting from its hierarchicd construction[13].

Sewell Wright [5] stated that “the central problem of evolution... is that of atrial and
error mechanism by which the locus of a popuation may be caried acossa saddle from
one pe&k to another and perhaps higher one”. This conception d evolutionary difficulty,
and the oncept of evolution as a combinatoric optimisation process on a rugged
landscape [14], provides the now familiar model at the heat of the isaues addressng
evolvability. Ruggedness in a fitness landscape is introduced by the frustration of
adaptive feaures, or epistasis when referring to the interdependency of genes —that is, it
occurs when the ‘seledive value' of one feaure is dependent on the mnfiguration o
other feaures. Fitness sddles are aeaed between locd optima. The simplest ill ustration
is provided by amodel of two fedures, F, and F,, ead with two pcssble discrete values,
a and b creding four posshle monfigurations: F.a/F,a, Fa/F,b, Fb/F,a Fb/Fb. Table 1,
below, gives four exemplary cases for seledive values, or fitnesses, for these four
combinations. The overlayed arrows in eat case show posshble paths of adaptation that
improve in fitnessby changing ore fedure & atime.

Casel Case 2 Case 3 Case 4 Case 4b
Fa | Fb Fa | Fb Fa | Fb Fa | Fb Fa | Fb

1 3 1 3 1 4 3 2 1 0

m H *a £ £
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Table 1. Example seledive values for combinations of two fedures.

Case 1 shows no epistasis: the differencein seledive value between F,a and Fb is the
same regardlessof the value of F,; and the differencein seledive value between F,a and
F,b is the same regardless of F,. Cases 2, 3 and 4 ead show some epistasis but with
different effeds. In Cases 2 and 3 the landscape is nat planar, and the possble routes of
single-feaure variation are different in Case 3, but the landscgpes gill only have one
optimum. Only in Case 4, where preference in seledive value between Fa and Fb is
reversed depending onthe value of F,, and the preferencein seledive value between F,a
and Fb is reversed depending onF,, does epistasis crede two ogima and a resultant
fitness sdde. Changing from F,aF,a to F,bF,b withou going through a lower fitness
configuration requires changing two feaures at once. Lewontin ([11], p84) identifiesthis
same problematic case (for two dploid loci) in a @ncrete biologicd example.
Accordingly, this form of epistasis provides the base cae for the landscape we will use,
but for further simplification, we make the fithessvalues symmetric (Case 4b).



Having established an appropriate two-feaure epistasis model, we neal an appropriate
way to extend it to describe eistasis between a larger number of feaures. In particular,
we want to re-use the same structure & a higher level so as to creae the same kind o
epistasis between sets of feaures as we have here between single feaures; in this way,
we can crede aprincipled method for producing fitness sddes of larger scdes. Our
approadh is to describe the interadion d four feaures F, F,, F,, F,, using the interadion
of F, with F, in ore pair, as above, the interadion o F, and F, as asecond ir similarly,
andthen, at ahigher level of abstradion, describe the interadion o these two pairsin the
same fashion. To do this abstradion we trea the two passble end states of the F/F,
subsystem, i.e. itstwo locd optima (labelled ¢ and d in Table 2), astwo discrete states of
an ‘emergent variable', or ‘meta-fedure’, MF,. Similarly, the two possble end states of
the F/F, subsystem (e andf) form two statesfor MF,. If the original, ‘atomic’ fedaures are
interpreted as low-level feaures of an entity, then a meta-feaure may be interpreted as a
higher-level phenatypic feaure of an entity, or some higher-level property of an entity
that determines its interadion with ather entities and/or its environment.

In this manner we may describe the interadion o the two subsystems as the alditional
fitnesscortributions resulting from the gistasis of MF, and MF,. Since eab meta-fegure
includes two ‘atomic’ feaures, we douHe the fitness contributions in the inter-group
interadion. Table 2 ill ustrates.

FJF, FJF, MF/MF,
Fa | Fb Fa | Fb MFe | MFf

0 1 0 2 0
F.a

Fa lcﬂ ] i"—l MF.c ﬂ-—l
Fb I_Ed F.b Y MFd Lf
0 1 0 1 0 2

Table 2. Abstrading the interadion d two pairs of fegures, F/ F, and F/F,, into the interadion o
two ‘meta-fegures MF/MF,.

The fitnesslandscape resulting from this interadion at the bottom level, together with
the interadion d pairs at the @straded level, produces four locad optima dtogether.
Using a=0 and b=1, we can write these four optima & the strings 0000and 1111 which
are eualy preferred, and, 0011 and 1100 which are equally preferred but less ®.
Naturaly, we can take the two best-preferred configurations from the F, , system and
describe asimilar interadion with an F, , system, and so on Equation 1 telow, describes
the fitnessof a string d bits (correspondng to hinary feaure values, as above) using this
construction. This function, which we cdl Hierarchicd If-and-Only-If (HIFF), was first
introduced in previous work as an aternative to functions such as‘ The Royal Roads' and
‘N-K landscapes, (see[15)]).

ol if |BJ=1,
F(B)= H BI+F(B) +F(B,), if (B[>1) and (Ti{b=0} or Li{b=1})
H F(B,) + F(By). otherwise. Eq.1

where B isa set of fedures, {b,,b,,.. b}, |B| isthe sizeof the set=k, b, istheith element
of B, B, and B, are the left and right subsets of B (i.e. B.={b,,..b_,}, B;={b,..,--b})-
The length of the string evaluated must equal 2° where p is an integer (the number of
hierarchicd levels).



A 64-fedure landscape using HIFF, as used in ou experiments, has 2* locd optima
(for adaptation changing ore feaure & a time) [16], only two of these give maximal
fitness To jump from either of the second-best optima (at half-ones and helf-zeros) to
either global optimum requires changing 32feaures at once. Thus, an algorithm using
only mutation canna be guaranteed to succeeal in less than time exporentia in the
number of feaures [16]. A particular sedion through the fitnesslandscgoe is sown in
Figure 1 —the sedion runs from one global optimum to the other at the oppasite corner of
the hyperspace(see[13]). Asisclealy seen in the fradta nature of the arvein Figure 1,
the locd optima aede fitness sddles that are scde-invariant in structure; that is, the
nature of the ruggednessisthe same & all resolutions.
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Fig. 1. A sedionthrougha‘scde-invariant’ HIFF fitnesslandscape.

The hierarchicd structure of the HIFF landscgpe makes the problem reaursively
demmposable. For example, a 64-feadure problem is composed of two 32fedure
problems, eat of which hastwo optima. If both of these optima can be foundfor both of
these subproblems then a globa optima will be found in 2 d their 4 passble
combinations. Thus, if this decompaosition is known, then the searcch spacethat must be
covered is at most 2% + 2 + 4. Compared with the original 2* configuration space even
this two-level decomposition is a mnsiderable saving. In addition, ead size 32-problem
may be reaursively decomposed giving afurther reduction o the seach space In [16] we
describe how an algorithm having some bias to exploit the decompositi on structure (using
the ajacency of feaures on the string) can solve HIFF in pdynomia time. Here
however, we ae interested in the cae where the decompaosition structure is not known.
We cdl this the ‘Shuffled-HIFF landscape [15 because this preferentia bias is
prevented by randamly re-ordering the position d feaures on the string such that their
genetic linkage does nat correspondto their epistatic structure (see[17]).

In summary, this landscgpe exhibits locd optima & all scaes, which makes it very
challenging to adaptation, and fundamental to the isaues of saddie-crossng and scdable
evolvability. Moreover, it is amenable to a ‘divide aad conquer’ approach if the
demposition o the problem can be discovered and sub-solutions of successve
hierarchicd levels can be manipulated and recombined appropriately.

3 TheComposition model

In this ®dion we examine a smple @stradion d compaosition, the Symbiogenic
Evolutionary Adaptation Model, or SEAM, (to invoke the ideaof symbiotic union). This
model wasfirst introduced in [17] as avariant of abstrad genetic dgorithms.



SEAM manipulates grings of binary feaures, correspondng to feaure cmbinations
as discussd in the previous sdion. These strings, ead representing a type of entity,
have variable ‘siz€ in that the number of spedfied feaures on the string is variable: for
example, in an 8fedure system, FbF.ais represented by the string “-- 1- 0--- ", where
“-" represents a “null” feaure for which the entity has no value, or is neutral. The
primary mechanism of the model is a mecdhanism of composing two partial strings
together to form a new composite eitity. This is illustrated in Figure 2. Such a
mechanism assumes the avail ability of a means of symbiotic union such as the formation
of a cél membrane, horizontal gene-transfer [19,20], endosymbiosis [4], alopdyploidy
(having chomosome sets from different spedes) [21], or any other means of
encgpsulating genetic material from previously independent entities such that they will be
co-dispersed in future. However, asauming the availability of such a mechanism does not
predude the interesting biologicd question d when such a mechanism would provide an
adaptive advantage, and when such aunionwill be seleded for.

N J— 0—2-- A - 1-- 00-1-
B: - 1-- O-= Q--ee- B: - 1-0-- 0-1--
A+B: - 1-10-- 00-- 1-- A+B: - 1-1-- 000-1--

Fig. 2. ‘Symbiotic composition'. Left) Union o two variable size attities, A and B, produces a
compasite, A+B, that is twice the size of the dona entities with the sum of their charaderistics.
The cmposite is creaed by taking spedfied feaures from either dona where avail able. Right)
Where mnflictsin spedfied feaures occur we resolve dl conflictsin favour of onedona, e.g. A.

Algebraicdly, we define the composition d two entities A and B, as the superpaosition
of A onB, below. A={A A,,...A}, isthe aitity where fedure F, takes value A,. S(A,B)
is the superposition d entity A on entity B, and s(ab) is the superposition d two
individual feaure values, asfollows:

S(AB)=S({AA,- A} {B,B,...B}) ={S(A,B).S(A,B,),....s(A,B)}, Eq.2.

where, s(ab)=a, if a# null, s(a,b)=b, otherwise. Having defined a variation operator
that defines a union d two entities we need to determine whether such a union would be
seleded for. Our basic essumption is that the symbiotic relationship must be in the
‘selfish’ interest of both the cmponrent entities involved. That is, if the fitnessof either
comporent entity is greaer withou the proposed partner than it is with the proposed
partner then the compaosite will not be seleded for. If, on the other hand, the fitness of
both comporent entities is greaer when they co-occur then the relationship is deemed
stable and will persist. But, the fithess of any entity is dependent on its environmental
context; possbly, in ore environment an entity may be fitter when co-occurring with the
proposed symbiont, and in another context the symbiont may depredate their fitness
Thus whether a symbiotic relationship is preferred or not depends onwhat environmental
contexts are available. For our purposes, the set of possble environmental contexts is
well defined: an environmental context is smply a mmplete set of feaures (Figure 3).

- 0-11-- 110-- X, an entity spedfies a partial set of feaure values.
0110101100010011 6, an ‘environmental context’ isa mmplete set of feaures.
0110111100110011 S(x,0), the entity x superimpaosed on the context 6.

Fig. 3. A partidly spedfied entity must be sssessed in a mntext.



We @ame that the overall fitness of the entity will be asum of its fitness over
different environmental contexts weighted by the frequency with which ead
environment is encourtered. But, we would nd generally suppase that the frequencies
with which dfferent environments are encourtered by ore type of entity would be the
same & the frequencies relevant to a different type of entity. For example, a biased
distribution over environmental contexts may be ‘inherited’ by virtue of the wllocaion
of parents and dfspring, or affeded by the behavioural migration d organisms during
their lifetime, or the seledive displacanent of one spedes by ancther in short term
popuation dyramics. We did na wish to introduce such fadors and accompanying
assumptions into ou model. But fortunately, the cncept of Pareto dominance is
spedficdly designed for application in cases where the relative importance of a number
of fadorsis unknavn [21]. Put simply, this concept states intuitively that, even when the
relative weighting d dimensions is not known, the overall superiority of one candidate
with resped to ancther can be confirmed in the cae that it isnonworsein al dimensions
and better in at least one. More exadly, ‘x Pareto daminatesy’ iswritten ‘x >>y', and:

X >>y = {[00: csf(x,0) = csf(y,0)} 00 : csf(x,8) > csf(y,0)}

where, for our eclogicd application, csf(p,q) isthe ‘context sensitive fitness of entity
p in context g. So crudely, if x isfitter (or at least asfit as) y in al possble environments
then, regardiess of the weightings of the environments for ead entity we know that the
overall fitnessof x is greder than that of y. This pair-wise cmomparison d two entities
over a number of contexts will be used to determine whether a symbiotic union groduces
a stable ommposite. If we write the union o entities a and b as a+b, then using the nation
of Pareto daminance, a+b is dable if and oy if a+b >> a, and a+b >> b. In ather words,
a+bisunstableif there is any context in which either a or b isfitter than a+b.

i.e. stable(ath, a, b) = (a+b >> a) O (atb >> b),
i.e. unstable(atb, a, b) = {OOC: (csf(a,B) > csf(atb,)) O (csf(b,6))> csf(atb,6))},

where C is a set of complete feaure spedficaions. For our purposes, csf(x,6) >
csf(y,0) = f(S(x,0)) > f(S(x,0), where f(w) is the objedive fitness of the mmplete
fedure set w as given by the fitnessfunction. Thus our condtion o instability becmes:

unstable(at+b, a, b) < {D0C: (f(S(a,8)) > f(S(a+b,6))) O (f(S(b,6)) > f(S(a+b,6)))}
Eq.3.
We will build ead context in the set of contexts by the temporary superposition o
other members of the emsystem. Algebraicdly, we define a mntext using the reaursive
function S*, from a set of n>2 entities X, X,,... X,, asfollows:

S(X,, S (X,... X)), if n>2,
S(X,, X,), otherwise. Eq.4.

where S(X,, X,) isthe superpasition d two entities as per Eqg.1 above. Some mntexts
may require more or lessentities to provide afully-spedfied feaure set. In principle, we
may use dl entities of the emsystem, in randam order, to buld a mntext - but, after the
context is fully-spedfied, additional entities will have no effect. This allows us to write a
context as S*(E), where E is al members of the emsystem in randam order.
Implementationally, we may simply add entities until afully-spedfied set is obtained.

An interesting analogy for this group evaluation is made with the Baldwin effed [22],
and ‘ Symbiotic Scafolding [23,24]. That is, these scenarios have in common the fegure

S ( Xy, Xy X) =



that rapid nonheritable variation (lifetime leaning a the temporary groups formed for
contexts) guides a mechanism of relatively slow heritable variation (genetic mutation a
composition). In ather words, evaluation d entities in contextual groups ‘primes them
for subsequent joins, or equivalently, solutions foundfirst by groups are later canalised
[9] by permanent composite entities.

Figure 4 uses Equations 2, 3 and 4to define asimple verson d the Symbiogenic
Evolutionary Adaptation Model.

* Initialise eosystem, E, with randam, single-feaure, entities.
¢  Repea until stopping condition:
- Remove two entities at randam from the eosystem - a & b.
- Producetheir union, a+b=S(a,b), using compasition (seeEq.2).
- If unstable(a+b, a, b) return a and b to ecosystem, else add a+b to ecsystem.

where (asin Eq. 3)

unstable(ath, a, b) = {060C: (f(S(a,0)) > f(S(a+b,0))) O (f(S(b,0)) > f(S(a+b,0)))}
and C isarandam set of contexts ead bult using S*(E) (seeEq.4).

Fig. 4. Pseudocode for asimple version d SEAM.

In the implementations used in the following experiments the maximum number of
contexts used in the stability test is 50 (athough umtable joins are usualy deteded in
abou 6 trials on average). Since the Pareto test of stability abstrads away al popuation
dynamics, only ore instance of ead type of entity need be maintained in the e@system.
Initi ali sation reads to completely cover the set of single-feaure ‘atoms’ so that all values
for al feaures are available in the emsystem. This can be done systematicdly, or asin
our experiments, by over-generating randamly and then removing dupi cates.

4  Experimental Results

We show empiricd results of SEAM applied to a 64-bit Shuffled HIFF. Our intent is to
ill ustrate the qualitative difference in the way that compaosition operates in this sde-
invariant problem as compared to the operation d acamulation o mutation and
conventional abstradions of popuation-based evolutionary seach. Accordingly, we
contrast the operation  SEAM with the results of a mutation oy algorithm, Randam
Mutation Hill-Climbing, RMHC, and a genetic dgorithm, GA, using sexua
recombination. RMHC repeaedly applies mutation to the feaures of a single string and
accetsavariant if it isfitter [25]. We show results for various mutation rates (probabilit y
of assgning a new randam value {0,1} to eat fedure). The GA is gealy state using
Deterministic Crowding to maintain dversity in the popuation (see[17], for details). The
GA istested using uriform and ore-point crossover. A popuation size of 1000is used,;
crosover is applied with probability 0.7; and mutation is applied with 0.03 probability of
assgning a new randam al ele to ead feaure (0 or 1 with equal probability). SEAM uses
the dgorithm described in Figure 4. An ecosystem isinitiali zed to the 128 urique entities
(for a 64-hit problem). Symbiotic compaosition (Figure 2) is applied in al cases, no
mutation is required. Performanceis measured by the fitnessof the best string evaluated
(in the precaling 500 evaluations) averaged ower 30 runs for ead algorithm. The



problem size of 64 hts gives a maximum fitness of 448 The data for SEAM are
terminated when all runs have found bah gobal optima.

As Figure 5 shows, the results for SEAM are dealy qualitatively different from the
other algorithms. Whereas innovation by mutation and by conventional evolutionary
algorithms becomes increasingly more difficult as evolution continues in this problem,
innovation by composition grogresses unimpeded through successve hierarchicd levels,
and adually shows an inverted performance airve cmpared to the other methods.
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Fig. 5. Performance of SEAM, regular GA with Deterministic Crowding (using ore-point and
uniform crosover), and Randam Mutation Hill -Climbing, on Shuffled HIFF. Error bars are omitted
for clarity, but the differences in means are, asthey appea, significant.

5 Discussion and Conclusions

Scde-invarianceis a property observed in many natural systems, but whether the natural
adaptive environment has charaderistics like those of the particular landscgpe that we use
is an empiricd matter. Also, SEAM abstrads away al popudation dyramics and wses a
simple multi-context test to determine whether a amposite will be stable. Resulting joins
are ompatible with a selfish model of the entities, but whether this is an appropriate
model for multi-spedes competition in an ewsystem neels to be justified. The
experiments reported here involve only one alaptive landscgpe, seleded to exemplify the
utility of composition, and composition is modeled using ore particular set of
asaumptions. The behaviour of the models must be examined in more general cases. In
the meantime, the model we have outlined provides a @ncrete illustration d some
important concepts raised in the introduction. Spedficdly: informed jumps in feaure
space-— the fitness sddles in the landscape require large jumps in feaure space ad no
amourt of randam mutation can provide this appropriately; a variation mechanism (and



contextual evaluation) that scdes-up with the size of extant entities; and dvide and
conquer problem decomposition by combining together solutions to small sets of feaures
to find solutions to larger sets of feaures.

Some or al of these daraderistics coud conceivably be provided by dher
mechanisms. Investigation d these mncepts provides valuable insight for isaes of
evolvability and ou model shows that there is a way in which these interesting
charaderistics could be provided by composition. We suggest that this algorithmic
perspedive on the formation d higher-level entities, from the compasition d simpler
entities, provides a useful face in ou understanding d the evolutionary impad of the
Major Evolutionary Transitions.
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