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Abstract. Several of the Major Transitions in natural evolution, such as the 
symbiogenic origin of eukaryotes from prokaryotes, share the feature that existing 
entities became the components of composite entities at a higher level of 
organisation. This composition of pre-adapted extant entities into a new whole is a 
fundamentally different source of variation from the gradual accumulation of small 
random variations, and it has some interesting consequences for issues of 
evolvabilit y. In this paper we present a very abstract model of ‘symbiotic 
composition’ to explore its possible impact on evolvabilit y. A particular adaptive 
landscape is used to exempli fy a class where symbiotic composition has an adaptive 
advantage with respect to evolution under mutation and sexual recombination. 
Whilst innovation using conventional evolutionary algorithms becomes 
increasingly more diff icult as evolution continues in this problem, innovation via 
symbiotic composition continues through successive hierarchical levels unimpeded. 

Introduction 

The Major Transitions in evolution [1,2,3] involve the creation of new higher-level 
complexes of simpler entities. Summarised by Michod for example [3], they include the 
transitions “ from individual genes to networks of genes, from gene networks to bacteria-
like cells, from bacteria-like cells to eukaryotic cells with organelles, from cells to 
multicellular organisms, and from solitary organisms to societies” . There are many good 
reasons to be interested in the evolutionary transitions: they challenge the Modern 
Synthesis preoccupation with the individual as the unit of selection, they involve the 
adoption of new modes of transmitting information, they address fundamental questions 
about individuality, cooperation, fitness, and not least, the origins of li fe [1,2,3]. 

In several of the transitions “entities that were capable of independent replication 
before the transition can replicate only as part of a larger whole after it” [2]. Although 
Maynard Smith and Szathmary identify some transitions which do not fit what they 
describe as “symbiosis followed by compartmentation and synchronised replication” , 
several of the transitions including the origin of eukaryotes from prokaryotes [4], and the 
origin of chromosomes from independent genes, do involve the quite literal union of 
previously free-living entities into a new whole. This paper focuses on the evolutionary 
impact of this mechanism, which we shall refer to as ‘symbiotic composition’ , or simply 
‘composition’ . We are concerned with an algorithmic understanding of this mechanism 
the Major Transitions: What kind of adaptation does the formation of higher-level 
complexes from simpler entities afford? And we seek to understand the class of adaptive 
problem, the kind of f itness landscape, for which this mechanism is well suited. 



 

 

Composition presents some obvious contrasts with how we normally understand the 
mechanisms of neo-Darwinist evolution. The ordinary (non-transitional) view of 
evolutionary change involves the accumulation of random variations in genetic material 
within an entity. But innovation by composition involves the union of different entities, 
each containing relatively large amounts of genetic material, that are independently pre-
adapted as entities in their own right, if not in their symbiotic role. This immediately 
suggests some concepts impacting evolvabilit y. 

First, a composition mechanism may potentially allow ‘ jumps’ in feature space that 
may cross ‘f itness saddles’ [ 5] in the original adaptive landscape (defined by the mutation 
neighbourhood). Moreover, since these higher-level aggregations of features are not 
arbitrary but rather are shaped by prior adaptation, these jumps are not equivalent to large 
random mutations, but rather are ‘ informed’ by prior or parallel adaptation.  

Crossing fitness saddles has been a central issue in evolvabilit y. There are many 
possible scenarios for how adaptation may overcome a fitness saddle: for example, 
genetic drift and ‘Shifting Balance Theory’ [ 5,6], exaptation [7], neutral networks [8], 
extra-dimensional bypass [9], ontogenic processes [10], or landscape dynamics [11]. 
Each of these affords an increase in the width of f itness saddle that might be crossed 
(with respect to that which may be crossed by simple mutation). And conceivably, some 
of them may produce saddle-crossing abilit y that is not arbitrary, but informed by prior or 
parallel adaptation. But, what is the size of f itness saddle that we should expect to 
encounter? It seems likely that as one scale of ruggedness is overcome, a larger scale of 
ruggedness becomes the limiting characteristic of a landscape. Under composition, the 
entities resulting from one level of organisation provide a new ‘unit of variation’ f or 
compositions at the next level, and thus the size of jumps is proportional to extant 
complexity. In this sense, composition suggests a scale-invariant adaptive mechanism. 

Second, in composition, the sets of features that are composed are pre-adapted in 
independent entities. The components of the union arise from entities at a lower level 
‘unit of selection’ . This independence provides a ‘divide and conquer’ treatment of the 
feature set. Intuitively, the hope is that a generalist entity, utili sing two different niches, 
resources, or habitats, for example, can be created by the composition of two specialist 
entities each independently adapted to one of these niches, resources or habitats. Thereby, 
the problem of being well adapted to the general habitat is divided into the independent 
problems of being well adapted to component habitats. This decomposition of a problem 
into smaller problems is know algorithmically as ‘divide and conquer’ (e.g. [12]); so 
named because of the significant algorithmic advantage it offers when applicable. Such 
divide and conquer advantage is not available to natural selection when features are 
adapted within a single reproductive entity.  

The model we describe below develops these two concepts – a scalable mechanism of 
saddle-crossing, and divide and conquer advantage – both applied in a scale-invariant 
hierarchical fashion. We do not attempt to model biological mechanisms in any detailed 
way; our model is deliberately very abstract. For example, we assume a mechanism of 
symbiotic composition that simply produces the union of features from two organisms. 
And, the fitness landscape that we use for our experiments is deliberately chosen to 
exempli fy the adaptive utilit y of composition as contrasted with conventional 
evolutionary algorithms. However, by using an abstract model we can focus on the 
combinatorial aspects of the processes, and an algorithmic model such as this provides an 
important facet to our understanding of the Major Evolutionary Transitions and the 
adaptational significance of symbiotic composition. 



  

 

The remainder of the paper is structured as follows: Section 2 describes a scale-
invariant fitness landscape; Section 3 describes our composition model, the Symbiogenic 
Evolutionary Adaptation Model (SEAM); Section 4 describes the results of some 
experiments with SEAM and this scale-invariant fitness landscape; Section 5 concludes. 

2 A Scale-Invariant Fitness Landscape 

In this section we examine a fitness landscape that we will use to exempli fy the 
characteristics of the composition model we describe later. Of interest to us here is that 
this landscape has saddles at all scales, resulting from its hierarchical construction [13]. 

Sewell Wright [5] stated that “ the central problem of evolution... is that of a trial and 
error mechanism by which the locus of a population may be carried across a saddle from 
one peak to another and perhaps higher one

�

� This conception of evolutionary diff iculty, 
and the concept of evolution as a combinatoric optimisation process on a rugged 
landscape [14], provides the now famili ar model at the heart of the issues addressing 
evolvabilit y. Ruggedness in a fitness landscape is introduced by the frustration of 
adaptive features, or epistasis when referring to the interdependency of genes – that is, it 
occurs when the ‘selective value’ of one feature is dependent on the configuration of 
other features. Fitness saddles are created between local optima. The simplest ill ustration 
is provided by a model of two features, F1 and F2, each with two possible discrete values, 
a and b, creating four possible configurations: F1a/F2a, F1a/F2b, F1b/F2a, F1b/F2b. Table 1, 
below, gives four exemplary cases for selective values, or fitnesses, for these four 
combinations. The overlayed arrows in each case show possible paths of adaptation that 
improve in fitness by changing one feature at a time. 

 
 Case 1  Case 2  Case 3  Case 4  Case 4b 
 F2a F2b  F2a F2b  F2a F2b  F2a F2b  F2a F2b 

F1a 
1 3  1 3  1 4  3 2  1 0 

F1b 
2 4  2 5  2 3  1 4  0 1 

Table 1. Example selective values for combinations of two features. 

Case 1 shows no epistasis: the difference in selective value between F1a and F1b is the 
same regardless of the value of F2; and the difference in selective value between F2a and 
F2b is the same regardless of F1. Cases 2, 3 and 4 each show some epistasis but with 
different effects. In Cases 2 and 3, the landscape is not planar, and the possible routes of 
single-feature variation are different in Case 3, but the landscapes still only have one 
optimum. Only in Case 4, where preference in selective value between F1a and F1b is 
reversed depending on the value of F2, and the preference in selective value between F2a 
and F2b is reversed depending on F1, does epistasis create two optima and a resultant 
fitness saddle. Changing from F1aF2a to F1bF2b without going through a lower fitness 
configuration requires changing two features at once. Lewontin ([11], p84) identifies this 
same problematic case (for two diploid loci) in a concrete biological example. 
Accordingly, this form of epistasis provides the base case for the landscape we will use, 
but for further simpli fication, we make the fitness values symmetric (Case 4b). 



 

 

Having established an appropriate two-feature epistasis model, we need an appropriate 
way to extend it to describe epistasis between a larger number of features. In particular, 
we want to re-use the same structure at a higher level so as to create the same kind of 
epistasis between sets of features as we have here between single features; in this way, 
we can create a principled method for producing fitness saddles of larger scales. Our 
approach is to describe the interaction of four features F1, F2, F3, F4, using the interaction 
of F1 with F2 in one pair, as above, the interaction of F3 and F4 as a second pair similarly, 
and then, at a higher level of abstraction, describe the interaction of these two pairs in the 
same fashion. To do this abstraction we treat the two possible end states of the F1/F2 
subsystem, i.e. its two local optima (labelled c and d, in Table 2), as two discrete states of 
an ‘emergent variable’ , or ‘meta-feature’ , MF1. Similarly, the two possible end states of 
the F3/F4 subsystem (e and f) form two states for MF2. If the original, ‘atomic’ f eatures are 
interpreted as low-level features of an entity, then a meta-feature may be interpreted as a 
higher-level phenotypic feature of an entity, or some higher-level property of an entity 
that determines its interaction with other entities and/or its environment.  

In this manner we may describe the interaction of the two subsystems as the additional 
fitness contributions resulting from the epistasis of MF1 and MF2. Since each meta-feature 
includes two ‘atomic’ f eatures, we double the fitness contributions in the inter-group 
interaction. Table 2 ill ustrates. 

  F1/F2   F3/F4   MF1/MF2 
  F2a F2b   F4a F4b   MF2e MF2f 

 F1a 
1 0 

 F3a 
1 0 

 MF1c 
2 0 

 F1b 
0 1 

 F3b 
0 1 

 MF1d 
0 2 

Table 2. Abstracting the interaction of two pairs of features, F1/ F2 and F3/F4, into the interaction of 
two ‘meta-features’ MF1/MF2. 

The fitness landscape resulting from this interaction at the bottom level, together with 
the interaction of pairs at the abstracted level, produces four local optima altogether. 
Using a=0 and b=1, we can write these four optima as the strings 0000 and 1111, which 
are equally preferred, and, 0011 and 1100, which are equally preferred but less so. 
Naturally, we can take the two best-preferred configurations from the F1…4 system and 
describe a similar interaction with an F5…8 system, and so on. Equation 1 below, describes 
the fitness of a string of bits (corresponding to binary feature values, as above) using this 
construction. This function, which we call Hierarchical If -and-Only-If (HIFF), was first 
introduced in previous work as an alternative to functions such as ‘The Royal Roads’ and 
‘N-K landscapes’ , (see [15]). 
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where B is a set of features, { b1,b2,...bk} , |B| is the size of the set=k, bi is the ith element 
of B, BL and BR are the left and right subsets of B (i.e. BL={ b1,...bk/2} , BR={ bk/2+1,...bk} ).  
The length of the string evaluated must equal 2p where p is an integer (the number of 
hierarchical levels). 
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A 64-feature landscape using HIFF, as used in our experiments, has 232 local optima 
(for adaptation changing one feature at a time) [16], only two of these give maximal 
fitness. To jump from either of the second-best optima (at half-ones and half-zeros) to 
either global optimum requires changing 32 features at once. Thus, an algorithm using 
only mutation cannot be guaranteed to succeed in less than time exponential in the 
number of features [16]. A particular section through the fitness landscape is shown in 
Figure 1 – the section runs from one global optimum to the other at the opposite corner of 
the hyperspace (see [13]). As is clearly seen in the fractal nature of the curve in Figure 1, 
the local optima create fitness saddles that are scale-invariant in structure: that is, the 
nature of the ruggedness is the same at all resolutions. 
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Fig. 1. A section through a ‘scale-invariant’ HIFF fitness landscape. 

The hierarchical structure of the HIFF landscape makes the problem recursively 
decomposable. For example, a 64-feature problem is composed of two 32-feature 
problems, each of which has two optima. If both of these optima can be found for both of 
these subproblems then a global optima will be found in 2 of their 4 possible 
combinations. Thus, if this decomposition is known, then the search space that must be 
covered is at most 232 + 232 + 4. Compared with the original 264 configuration space, even 
this two-level decomposition is a considerable saving. In addition, each size 32-problem 
may be recursively decomposed giving a further reduction of the search space. In [16] we 
describe how an algorithm having some bias to exploit the decomposition structure (using 
the adjacency of features on the string) can solve HIFF in polynomial time. Here 
however, we are interested in the case where the decomposition structure is not known. 
We call  this the ‘Shuff led-HIFF’ landscape [15] because this preferential bias is 
prevented by randomly re-ordering the position of features on the string such that their 
genetic linkage does not correspond to their epistatic structure (see [17]).   

In summary, this landscape exhibits local optima at all scales, which makes it very 
challenging to adaptation, and fundamental to the issues of saddle-crossing and scalable 
evolvabilit y. Moreover, it is amenable to a ‘divide and conquer’ approach if the 
decomposition of the problem can be discovered and sub-solutions of successive 
hierarchical levels can be manipulated and recombined appropriately.  

3 The Composition model 

In this section we examine a simple abstraction of composition, the Symbiogenic 
Evolutionary Adaptation Model, or SEAM, (to invoke the idea of symbiotic union). This 
model was first introduced in [17] as a variant of abstract genetic algorithms. 



 

 

SEAM manipulates strings of binary features, corresponding to feature combinations 
as discussed in the previous section. These strings, each representing a type of entity, 
have variable ‘size’ in that the number of specified features on the string is variable: for 
example, in an 8-feature system, F3bF5a is represented by the string “ -- 1- 0--- ” , where 
“ - ” represents a “null ” feature for which the entity has no value, or is neutral. The 
primary mechanism of the model is a mechanism of composing two partial strings 
together to form a new composite entity. This is ill ustrated in Figure 2. Such a 
mechanism assumes the availabilit y of a means of symbiotic union such as the formation 
of a cell membrane, horizontal gene-transfer [19,20], endosymbiosis [4], allopolyploidy 
(having chomosome sets from different species) [21], or any other means of 
encapsulating genetic material from previously independent entities such that they will be 
co-dispersed in future. However, assuming the availabilit y of such a mechanism does not 
preclude the interesting biological question of when such a mechanism would provide an 
adaptive advantage, and when such a union will be selected for.  

 A:  ---- 1----- 0—1--     A:  ---- 1---- 00- 1--  

 B:  -- 1-- 0--- 0------      B:  -- 1- 0--- 0- 1----  

 A+B:  -- 1- 10--- 00-- 1--     A+B:  -- 1- 1--- 000- 1--  

Fig. 2. ‘Symbiotic composition’ . Left) Union of two variable size entities, A and B, produces a 
composite, A+B, that is twice the size of the donor entities with the sum of their characteristics. 
The composite is created by taking specified features from either donor where available. Right) 
Where conflicts in specified features occur we resolve all conflicts in favour of one donor, e.g. A. 

Algebraically, we define the composition of two entities A and B, as the superposition 
of A on B, below. A={ A1,A2,…An} , is the entity where feature Fi takes value A i. S(A,B) 
is the superposition of entity A on entity B, and s(a,b) is the superposition of two 
individual feature values, as follows: 

 S(A,B)= S({ A1,A2,…An} ,{ B1,B2,…,Bn} ) = { s(A1,B1),s(A2,B2),…,s(An,Bn)} , Eq.2. 

 where, s(a,b)=a, if a ≠ null , s(a,b)=b, otherwise. Having defined a variation operator 
that defines a union of two entities we need to determine whether such a union would be 
selected for. Our basic assumption is that the symbiotic relationship must be in the 
‘selfish’ interest of both the component entities involved. That is, if the fitness of either 
component entity is greater without the proposed partner than it is with the proposed 
partner then the composite will not be selected for. If , on the other hand, the fitness of 
both component entities is greater when they co-occur then the relationship is deemed 
stable and will persist. But, the fitness of any entity is dependent on its environmental 
context; possibly, in one environment an entity may be fitter when co-occurring with the 
proposed symbiont, and in another context the symbiont may depreciate their fitness. 
Thus whether a symbiotic relationship is preferred or not depends on what environmental 
contexts are available. For our purposes, the set of possible environmental contexts is 
well defined: an environmental context is simply a complete set of features (Figure 3). 

--- 0- 11--- 110---  x, an entity specifies a partial set of feature values. 
0110101100010011  θθ,  an ‘environmental context’ is a complete set of features. 
0110111100110011  S(x,θθ), the entity x superimposed on the context θθ. 

Fig. 3. A partially specified entity must be assessed in a context. 



  

 

We assume that the overall fitness of the entity will be a sum of its fitness over 
different environmental contexts weighted by the frequency with which each 
environment is encountered. But, we would not generally suppose that the frequencies 
with which different environments are encountered by one type of entity would be the 
same as the frequencies relevant to a different type of entity. For example, a biased 
distribution over environmental contexts may be ‘ inherited’ by virtue of the collocation 
of parents and offspring, or affected by the behavioural migration of organisms during 
their li fetime, or the selective displacement of one species by another in short term 
population dynamics. We did not wish to introduce such factors and accompanying 
assumptions into our model. But fortunately, the concept of Pareto dominance is 
specifically designed for application in cases where the relative importance of a number 
of factors is unknown [21]. Put simply, this concept states intuitively that, even when the 
relative weighting of dimensions is not known, the overall superiority of one candidate 
with respect to another can be confirmed in the case that it is non-worse in all dimensions 
and better in at least one. More exactly, ‘x Pareto dominates y’ is written ‘x >> y’ , and:  

x >> y ⇔ { ∀ θθ : csf(x,θθ) ≥ csf(y,θθ)} ∧ { ∃ θθ : csf(x,θθ) > csf(y,θθ)}  

where, for our ecological application, csf(p,q) is the ‘context sensitive fitness’ of entity 
p in context q. So crudely, if x is fitter (or at least as fit as) y in all possible environments 
then, regardless of the weightings of the environments for each entity we know that the 
overall fitness of x is greater than that of y. This pair-wise comparison of two entities 
over a number of contexts will be used to determine whether a symbiotic union produces 
a stable composite. If we write the union of entities a and b as a+b, then using the notion 
of Pareto dominance, a+b is stable if and only if a+b >> a, and a+b >> b. In other words, 
a+b is unstable if there is any context in which either a or b is fitter than a+b. 

i.e. stable(a+b, a, b) ≡ (a+b >> a) ∧  (a+b >> b), 
i.e. unstable(a+b, a, b) ⇔ { ∃ θθ∈ C: (csf(a,θθ) > csf(a+b,θθ)) ∨  (csf(b,θθ))> csf(a+b,θθ))} , 

where C is a set of complete feature specifications. For our purposes, csf(x,θθ) > 
csf(y,θθ) ⇔ f(S(x,θθ)) > f(S(x,θθ)), where f(w) is the objective fitness of the complete 
feature set w as given by the fitness function. Thus our condition of instabilit y becomes: 

unstable(a+b, a, b) ⇔ { ∃ θθ∈ C: (f(S(a,θθ)) > f(S(a+b,θθ))) ∨  (f(S(b,θθ)) > f(S(a+b,θθ)))}   
 Eq.3. 

We will build each context in the set of contexts by the temporary superposition of 
other members of the ecosystem. Algebraically, we define a context using the recursive 
function S* , from a set of n≥2 entities X1, X2,… Xn, as follows: 

S* ( X1, X2,… Xn) = {  
S(X1, S* (X2,… Xn)),  if n>2, 
S(X1, X2),  otherwise. Eq.4. 

 where S(X1, X2) is the superposition of two entities as per Eq.1 above. Some contexts 
may require more or less entities to provide a fully-specified feature set. In principle, we 
may use all entities of the ecosystem, in random order, to build a context - but, after the 
context is fully-specified, additional entities will have no effect. This allows us to write a 
context as S*(E), where E is all members of the ecosystem in random order. 
Implementationally, we may simply add entities until a fully-specified set is obtained.  

An interesting analogy for this group evaluation is made with the Baldwin effect [22], 
and ‘Symbiotic Scaffolding’ [ 23,24]. That is, these scenarios have in common the feature 



 

 

that rapid non-heritable variation (li fetime learning or the temporary groups formed for 
contexts) guides a mechanism of relatively slow heritable variation (genetic mutation or 
composition). In other words, evaluation of entities in contextual groups ‘primes’ them 
for subsequent joins, or equivalently, solutions found first by groups are later canalised 
[9] by permanent composite entities. 

Figure 4 uses Equations 2, 3 and 4 to define a simple version of the Symbiogenic 
Evolutionary Adaptation Model. 

•  Initialise ecosystem, E, with random, single-feature, entities. 
•  Repeat until stopping condition: 

- Remove two entities at random from the ecosystem →→ a & b. 
- Produce their union, a+b=S(a,b), using composition (see Eq.2). 
- If unstable(a+b, a, b) return a and b to ecosystem, else add a+b to ecosystem. 
 

where (as in Eq. 3) 
unstable(a+b, a, b) ⇔ { ∃ θθ∈ C: (f(S(a,θθ)) > f(S(a+b,θθ))) ∨  (f(S(b,θθ)) > f(S(a+b,θθ)))}  
and C is a random set of contexts each built using S* (E) (see Eq.4). 

Fig. 4. Pseudocode for a simple version of SEAM.  

In the implementations used in the following experiments the maximum number of 
contexts used in the stabilit y test is 50 (although unstable joins are usually detected in 
about 6 trials on average). Since the Pareto test of stabilit y abstracts away all population 
dynamics, only one instance of each type of entity need be maintained in the ecosystem. 

Initialisation needs to completely cover the set of single-feature ‘atoms’ so that all values 
for all features are available in the ecosystem. This can be done systematically, or as in 
our experiments, by over-generating randomly and then removing duplicates. 

4 Experimental Results 

We show empirical results of SEAM applied to a 64-bit Shuff led HIFF. Our intent is to 
ill ustrate the qualitative difference in the way that composition operates in this scale-
invariant problem as compared to the operation of accumulation of mutation and 
conventional abstractions of population-based evolutionary search. Accordingly, we 
contrast the operation of SEAM with the results of a mutation only algorithm, Random 
Mutation Hill -Climbing, RMHC, and a genetic algorithm, GA, using sexual 
recombination. RMHC repeatedly applies mutation to the features of a single string and 
accepts a variant if it is fitter [25]. We show results for various mutation rates (probabilit y 
of assigning a new random value { 0,1} to each feature). The GA is steady state using 
Deterministic Crowding to maintain diversity in the population (see [17], for details). The 
GA is tested using uniform and one-point crossover. A population size of 1000 is used; 
crossover is applied with probabilit y 0.7; and mutation is applied with 0.03 probabilit y of 
assigning a new random allele to each feature (0 or 1 with equal probabilit y). SEAM uses 
the algorithm described in Figure 4. An ecosystem is initialized to the 128 unique entities 
(for a 64-bit problem). Symbiotic composition (Figure 2) is applied in all cases, no 
mutation is required. Performance is measured by the fitness of the best string evaluated 
(in the preceding 500 evaluations) averaged over 30 runs for each algorithm. The 



  

 

problem size of 64 bits gives a maximum fitness of 448. The data for SEAM are 
terminated when all runs have found both global optima. 

As Figure 5 shows, the results for SEAM are clearly qualitatively different from the 
other algorithms: Whereas innovation by mutation and by conventional evolutionary 
algorithms becomes increasingly more diff icult as evolution continues in this problem, 
innovation by composition progresses unimpeded through successive hierarchical levels, 
and actually shows an inverted performance curve compared to the other methods. 
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Fig. 5. Performance of SEAM, regular GA with Deterministic Crowding (using one-point and 
uniform crossover), and Random Mutation Hill -Climbing, on Shuff led HIFF. Error bars are omitted 
for clarity, but the differences in means are, as they appear, significant. 

5 Discussion and Conclusions 

Scale-invariance is a property observed in many natural systems, but whether the natural 
adaptive environment has characteristics like those of the particular landscape that we use 
is an empirical matter. Also, SEAM abstracts away all population dynamics and uses a 
simple multi -context test to determine whether a composite will be stable. Resulting joins 
are compatible with a selfish model of the entities, but whether this is an appropriate 
model for multi -species competition in an ecosystem needs to be justified. The 
experiments reported here involve only one adaptive landscape, selected to exempli fy the 
utilit y of composition, and composition is modeled using one particular set of 
assumptions. The behaviour of the models must be examined in more general cases. In 
the meantime, the model we have outlined provides a concrete ill ustration of some 
important concepts raised in the introduction. Specifically: informed jumps in feature 
space – the fitness saddles in the landscape require large jumps in feature space and no 
amount of random mutation can provide this appropriately; a variation mechanism (and 



 

 

contextual evaluation) that scales-up with the size of extant entities; and divide and 
conquer problem decomposition by combining together solutions to small sets of features 
to find solutions to larger sets of features.  

Some or all of these characteristics could conceivably be provided by other 
mechanisms. Investigation of these concepts provides valuable insight for issues of 
evolvabilit y and our model shows that there is a way in which these interesting 
characteristics could be provided by composition. We suggest that this algorithmic 
perspective on the formation of higher-level entities, from the composition of simpler 
entities, provides a useful facet in our understanding of the evolutionary impact of the 
Major Evolutionary Transitions. 
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