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Abstract. In this paper a formal approach to construction of a similarity
measure for complex creatures is presented. The simulation model isdescribed,
and a Framsticks agent is expressed in a formal way. This helps in defining a
dissimilarity measure. Two main ideas are discussed with reference to biol ogy,
namely genotypic and phenotypic methods. The holistic phenotypic measure is
then proposed, where a fast, heuristic algorithm is used. Examples of its
application are shown, including mutation and crossing over analysis, and a
clustering tree based on distances between pairs of seven artificia individuals.

1 Introduction

Many research works in the field of artificial life concern studies of evolutionary
processes, their dynamics and efficiency. Various measures and methods have been
developed in order to be able to analyze evolution, complexity, and interaction in the
observed systems. Other works try to understand behaviors of artificial creatures,
regarding them as subjects of survey rather than black boxes with assigned fitness and
performance. There are some works which employ formal views for these purposes
[2,5,14].

Artificial life systems, especially those applied to evolutionary robotics and design
[4,6,11], are quite complex and it is difficult to understand the behavior of existing
agentsin detail. The only way isto observe them carefully and use human intelligence
to draw conclusions. Usually, the behavior of such agents is non-deterministic, and
their control systems are sophisticated, often coupled with morphology and very
strongly connected functionally [12].

Thus for the purposes of studying behaviors and populations of individuals, one
needs high-level, intelligent support tools[10]. It isnot likely that automatic toolswill
soon be able to produce understandable, non-trivial explanations of sophisticated
artificial agents. However, it is possible to devise automatic measures of similarity
which will help in observation of regularities, groups of related individuals, etc.



Similarity can be identified in many ways, including aspects of morphology
(body), brain, size, function, behavior, performance, fitness, etc. Whatever definition
is used, automatic measure of similarity can be useful for

— optimization to introduce artificial niches by modification of fitness values[7,13],

— studies of evolutionary processes and the structure of populations of individuals,

— studies of function/behavior of agents,

— reduction of the number of agents to a small subset of interesting, diverse, unique
individuals,

- inferring dendrograms (and hopefully, phylogenetic trees) based on distances
between organisms.

For such reasons we developed a measure of dissimilarity on the realistic agents
model of Framsticks. Although the model is smpler than biological creatures, it is
general enough to observe various properties and difficulties. Devising a good
measure of similarity on agents of such complexity is not an easy task, and was not
studied so far. The results and conclusions of thislong-term work are meaningful for
the fields of artificial life, optimization, biology, and robotics. In this paper we report
the first step towards such measure.

The paper is organized as follows: section 2 describes the model of smulation and
evolution, as well as the formal definition of an agent. In section 3 we focus on the
dissimilarity measure, discussing our motivations and biological background. In
section 4 afew simple experiments are presented. Section 5 summarizes the work and
outlines future goals.

2 Themodd

2.1 Simulation

Agents in Framsticks are built of body and brain. Body is composed of material
points (called parts in this paper) connected by elastic joints. Brain is made from
neurons and their elements called neuroitems (these are receptors, effectors, and
neural connections). For more detailed description of the model mechanics and neural
network refer to [9,8,1].

It is possible to use the system for simulation of various processes, including local
optimization, evolutionary optimization, coevolution of populations, spontaneous
evolution, multi-criteria optimization, etc. Such universality is obtained by the use of
a scripting language, which controls the overall architecture of the system as well as
more specific issues.

Framsticks supports a few genetic representations of agents, including direct and
developmental [10]. It is possible to easily “plug in” a new encoding and genetic
operators. The fact of diverse genotype languages influences the characteristics of
evolutionary process in each case, but finally, each encoding has to produce an agent.
Thus it is possible to compare phenotypes which are “compatible’ because they are
build of a set of standardized components (parts, joints, neurons, and neuroitems).



2.2 Formal view

Elements of a framstick agent are characterized by many properties. Morphol ogical
elements have mass, friction, stiffness, etc., and control e ements — weights, sigmoid
coefficients, etc. Body and brain are connected. All these aspects make the definition
of a similarity measure difficult; to devise a formal measure it is helpful to
mathematically describe an agent.

Let P denote a non-empty set of parts (material points) of a creature's body. We
define several functions which describe physical and biological attributes of parts (R
denotes the set of real numbers):

- position: P-R
- orientation: P — [0, 2m)°
- mass. P— Rso
- volume: P— Ry
— friction: P— Ry

— ingestion: P— Ry
— assmilation: P — Ry

Furthermore, we introduce J as a non-empty set of joints, and a function:

- joint_connects: J — P?

which represents connections (arcs) between pairs of parts (vertices). The graph
corresponding to morphology must be connected, which means that the creature's
body cannot have isolated parts. No arcs joining the same pair of vertices may exist.
The properties of joints include:

- siffness: J— Ry
- rot_stiffness: J— Ry
- Stamina: J— Ry

For brain, we define a set of neurons N, which may be empty. Properties of a neuron
can be defined as functions:

- force: N — [0, 1]
- inertia: N — [0, 1]
- sigmoid: N—R

initial_state: N— R
placement: N-—P

The set C (which may be empty) concerns neuroitems. elements related to
connections between neurons and interfacing parts of the body. This set is divided
into pair wise distinct subsets, so that C = Const 0 RecG [0 RecT O RecS O
RotMuscle [0 BendMuscle [0 Conn. These subsets describe constant signal inputs,
receptors (equilibrium, touch, smell), muscles with neural control and connections
between neurons.

There are also some properties that these items have (some functions are typical to
some specific types of neuroitems):



— parent_neuron: C—N

— connected to: Conn— N

- weight: (Congt 0 RecG O RecT O RecS Conn) — R
— on_part_placement: (RecT 0 RecS) — P

- on_joint_placement: (RecG O RotMuscle 00 BendMuscle) — J

— dgrength: (RotMuscle 0 BendMuscle) — [0, 1]

- rot_range: RotMuscle — [0, 1]

The two top functions describe the structure of a neural network of a creature. The
third one defines weights of connectionsin the network.

Thus a creature can be described by four sets: P, J, N, and C, and relations between
their elements. It can be clearly seen that the structure of an agent is quite complicated
— it has different aspects: structural (one graph defining body, another one defining
neural network which is located on the body's graph), geometrical (position and
orientation in a 3-D space), and also several parameters describing e ements of body
and brain.

3 Similarity measure
3.1 Biological reference

The measures of similarity (or dissmilarity) are widely adopted in practice by
biologists for classification and constructing taxonomies of organisms. Such measures
are built based on two kinds of information: genotypic (DNA seguences) [15] and
phenotypic (construction and behavior of individuals) [16]. These two streams (apart
from pheneticg/cladistics difference) can be characterized as molecular and
morphological approach.

The first emphasizes the role of a DNA sequence as the true indicator of on-going
evolutionary processes. The analyzed DNA fragments (or RNA transcripts/protein
sequences) are selected based on knowledge of their relative position in the genome
and their function (or the lack thereof). The analyzed sequences are often introns—the
non-coding regions of genes, which are assumed to accumulate random mutations
non-selectively, according to the defined probabilistic model [3]. However, using this
approach with artificial systems may raise a few problem issues. With Framsticks
system, these are:

— organisms genomes are very short compared to living organisms, their length
varies from a few characters to a few thousands,

— all formats encode organisms on a very high level: the building blocks are entire
elements of an ALifeform body structure,

— difficulties arise in the process of selecting common properties, on basis of which
the analysis could be performed,

- there are amost no non-coding, coevolving sequencesin the artificial genomes, for
which the assumption of a probabilistic model could be made.



Trandation of the coding format to the two-state binary mode (akin to DNA
sequences) would not eliminate these problems.

The latter approach (the morphological one), which entails defining the similarity
measure using phenetic resemblance, is more promising. In biology, the overall
phenetic resemblance is inferred from many different characters states — which, if
possible, should utilize clearly distinguished and independent properties. This serves
to minimize the randomness effect in the (dis)smilarity measure. Additional
operations in this approach cope with the problems of affine transformations
(organism size, scale, and rotations of body parts). The end results are recal culated
into an overall measure value, most often using a weighted sum model.

The important question is how to choose the properties of organisms for analysis.
Answering this requires delving into the ALife model itself. The numerical similarity
analysis and clustering of living organisms require such discrimination because
biological perspective isinherently incomplete; an all-inclusive model cannot be built
mainly because the principles of the entire system are not known. Aswe know all the
details of ALife individuals, such a holistic approach is possible. Thus such approach
in construction of a dissimilarity measureis presented in this work.

3.2 Preliminary considerations

The problem of similarity estimation in Framsticksis closely related to the problem of
isomorphism of graphs. Taking only morphology into consideration, the task would
be to find the matching between parts of the two agents. Let G=(P1, Ji,
joint_connects;) and G,=(P,, J,, joint_connects,) be the graphs representing bodies of
two agents. We assume that |P;| <|P,| without loss of generality.

In the common situation when |Py| # |P,|, it is not possible to find a mutually
single-valued function matching: P; — P,. However, one can add a number of
artificial points to P, forming P;' set, so that |P,'| = |P,|, and connect these points
with artificial joints so that the graph is connected. Thus the sets P;', J;' and the
function joint_connects,' would be obtained. The desired function matching: P,' — P,
should then maximize the covering of edgesin both sets.

However, such approach isnot feasible. It requires afew stepswhereit is unknown
how to act (adding points-vertices and joints-edges), and thefina similarity valuewill
most probably be sensitive to these arbitrary choices. Furthermore, an exact algorithm
working on such sophisticated graph representations would have an unacceptably
high computational complexity.

3.3 Heurisgtic algorithm

Following these considerations we constructed a heuristic method. This method tries
to match the body structure of two individuals based on the degrees of parts as the
main piece of information. The problematic step of adding parts and joints to the
smaller organism was abandoned, so the matching function has the form matching:
P; — M, where M O P,. In the overall measure, information about the number of



neurons and neuroitems located on point p was also used. The corresponding
functions are;

neuron_count(p) = K nON: placement(n)=p}|
nitem_count(p) = neuron_count(p) + K cOC: placement(parent_neuron(c))=p}|

To match partsin two organisms, the degree of vertices criterion was used:

dDeg(matching) = X pirpy, p2om: pe=matching(py) [dEQree(ps) — degree(p;)| +
+ X poom |degree(p)|

The second criterion of similarity considers the numbers of neurons on already
matched parts:

dNeu(matching) = X p1op1, p2om: pe=matching(pr) [NEUron_count(p,) —neuron_count(py)|
+2 pom [neuron_count(p,)|

Sets of parts are sorted by degree, then by nitem_count and neuron_count. Then the
algorithm is matching parts starting from the highest degree groups and trying to find
parts that have similar nitem_count and neuron_count. Starting from the highest
degreeislikely to preserve the most important parts from being unmatched. In case of
ambiguity (when points have the same degree, nitem_count and neuron_count), the
remaining properties of parts are used as discriminating features (except of position).

Based on the constructed function matching, two parameters dDeg and dNeu are
estimated. Finally, the dissimilarity between two organisms is evaluated using the
welghted sum modd:

dissimilarity(O;, O) = Wpeg-dDeg + Wie,-dNeu

where Wpeg and Wye, are weights of these two criteria. The proposed measure has the
following properties:

- dissmilarity(i, i) =0,

— dissimilarity(i, j) = dissmilarity(, i),

— dDeg component holds the triangular inequality.

4 Computational experiments

For all experiments, the weights of similarity criteria were Wpeg=1 and Wye,=0.5.
These values were adjusted experimentally, congtituting an acceptable tradeoff
between importance of differencesin body and brain.

4.1 Mutation

The measure was tested on two random mutationsin the “recurrent language’ genetic
encoding [1,18] (figure 1).
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Fig. 1. (a) and (c) ancestors, (b) and (d) descendants. Only morphology is shown. In (&) and (b),
the branching nodes are in different places.
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In both cases, the measure of dissimilarity of ancestors and descendants (which were
in genetic terms distant by a single mutation) indicated dissmilarity = 2. This small
value characterizes well the minor disturbances of the mutation operation.
Considering weights used, dissimilarity value of 2 corresponds to the difference of 2
unmatched parts of degree 1, or 4 unmatched neurons.

4.2 Crossover

In the crossover experiment, we combined two agents described by the direct
representation, which smply lists all elements of body and brain. The first object was
a smple table, which was a human-designed simple object with no neural network.
The second one was an individual with a neural network. This individual was the
result of along-term evolution oriented for speed in aland environment (figure 2).
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Fig. 2. () and (b) parents, (c) offspring after crossing over of parents.




The crossing over operation working on direct representation consists in cutting the
parent agents by a 3-D plane and constructing an offspring from two halves of the two
parents. It can be seen that the child has some structure parts of parents in its body
and brain. The values for the measure are as follows:

dissimilarity(a, b) = 11.5
dissimilarity(a, ¢) =2
dissimilarity(b, c) = 9.5

It isinteresting that dissmilarity(a, b) = dissmilarity(a, ¢) + dissmilarity(b, c), sothe
child is exactly “between” parents, which reflects the averaging role of the crossing
over operator used. This relation holds in the above example, but it is not the genera
property of the proposed measure. According to the above values, the offspring is
very similar to the table and different from the speed-evolved parent. Note that this
measure takes into account only structural morphological and neural quantitative
properties, but not geometrical aspects (position of parts and length of joints). Thusit
can be seen that the child (fig. 2¢) has similar structure of the body graph to the parent
(fig. 2a).

4.3 Clustering

The similarity measure was finally applied to a small example of a clustering
problem. Seven diverse creatures were chosen (figure 3).

X

Fast Lizard Scorpion

Food Finder 3D
Centipede ; s { {
Frog Food Finder 2D
Blender

Fig. 3. The seven organisms chosen for the clustering experiment.

The two creatures out of seven can seek food in water. These are food finders; their

bodies were designed, and neural networks were evolved. The Centipede and Blender

were constructed entirely by a human; Frog's and Fast Lizard’s morphologies were

constructed and brains were evolved; the remaining ones were evolved from scratch.
For each pair of these creatures, the dissimilarity was computed (table 1).



Centipede | Fast Lizard | Food 2D | Food 3D | Frog | Blender | Scorpion

Centipede 0 116 109.5 99.5 |1285| 1245 123
Fast Lizard 116 0 115 195 | 135 | 125 10

Food 2D 109.5 115 0 11 20 18 14.5

Food 3D 99.5 19.5 11 0 31 27 25.5
Frog 128.5 135 20 31 0 8 9.5
Blender 124.5 12.5 18 27 8 0 4.5
Scorpion 123 10 14.5 25.5 9.5 4.5 0

Table 1. The symmetric matrix of dissimilarity values of selected creatures.

Based on this matrix, it is possible to
construct a clugtering tree. UPGMA
method was used (unweighted pair group Fast Lizard
method with arithmetic averages) [16]. It
is a smple and intuitively appealing
example of the phenetic approach to data — Blender
summary. UPGMA groups objects that
differ least according to the similarity
measure  without other points of Food 2D
consideration. The obtained hierarchical

tree is shown on figure 4. Considering

structures of creatures shown on figure 3,

it can be seen that the hierarchy is sound. Fig. 4. Theresulting clustering tree.

Centipede

Frog

Scorpion

Food 3D

5 Conclusions and future work

In this paper, a forma approach to agent analysis was presented. Based on this
approach, a dtructural dissimilarity measure was proposed, and its prototypic
applications were shown on some exampl es.

The measure will be further devel oped to take into account all the relevant features
of an agent, including geometrical and biological properties. Considering geometry
creates additional problems, which are also present in biological analyses, nhamely
affine transformations (scaling, rotation, etc.). However, geometry has a great impact
on the behavior of agent, functionality, and dynamics of its movement, so it cannot be
neglected. Even though, the structural properties considered in this paper are an
important holistic property of a creature and cannot be easily modified by single
mutations, so it is a good basis for the matching algorithm.

There are strong complexity constraints imposed on such measure, because it isto
be used many times. For artificial speciation, the measure has to be computed for all
pairs of individuals in each generation. In analysis of structure of populations, it has
to be computed once, but the population size is usually much greater than in the case
of a typical evolutionary algorithm. Thus only the heuristic approach is possible;
exact measures would be too sow to compute for al pairs of individuals. It is



required for the measure to have some good properties, like robustness, simplicity,
clarity, etc. Another properties are required if the measure is to be used in a
biological, evolutionary context. Our future work will proceed in these directions.
Application of this measure to diversify populations of individuals will also be tested.

Acknowledgements

This work has been supported by the State Committee for Scientific Research, from
KBN research grant no. 8T11F 006 19, and by the Foundation for Polish Science,
from subsidy no. 11/2001.

References

1

© ©

10.

11.

12.

13.

14.

15.

16.

Adamatzky A., Komosinski M. and Ulatowski S. (2000) Software review: Framsticks,
Kybernetes: The International Journal of Systems & Cybernetics, 29 (9/10), 1344-1351.
Agre P. and Horswill I. (1997) Lifeworld analysis, Journal of Artificial Intelligence
Research, 6, 111-145.

Avise J.C. (1994) Molecular Markers, Natural History and Evolution. Chapman & Hall,
New York.

Bentley P. (1999) Evol utionary design by computers. Morgan Kaufmann.

Bongard J.C. and Paul C. (2000) Investigating morphological symmetry and |ocomotive
efficiency using virtual embodied evolution. In: Proceedings of the Sixth International
Conference on Smulation of Adaptive Behaviour (ed. by J.-A. Meyer), pp. 420-429. MIT
Press.

Funes P. and Pollack J.B. (1998) Evolutionary body building: adaptive physical designsfor
robots, Artificial Life, 4 (4, Autumn), 337-357.

Goldberg D.E. (1989) Genetic Algorithmsin Search, Optimization and Machine Learning.
Addison-Wesley Publishing Co.

Komosinski, M. and Ulatowski, Sz. Framsticks Internet site, http://www.frams.alife.pl/
Komasinski M. (2000) The World of Framsticks: Simulation, Evolution, Interaction. In:
Virtual Worlds. Lecture Notesin Artificial Intelligence 1834 (ed. by J.-C. Heudin), pp. 214-
224. Springer-Verlag.

Komasinski M. and Rotaru-Varga A. (2000) From Directed to Open-Ended Evolutionin a
Complex Simulation Model. In: Artificial Life VII (ed. by M.A. Bedau, J.S. McCaskill,
N.H. Packard and S. Rasmussen), pp. 293-299. MIT Press.

Lipson H. and Pollack J.B. (2000) Automatic design and manufacture of robotic lifeforms,
Nature, 406 (6799), 974-978.

Lund H.H., Hallam J. and Lee W.-P. (1997) Evolving Robot Morphology. In: Proceedings
of IEEE 4th International Conference on Evolutionary Computation. NJ. IEEE Press.
Invited paper.

Michalewicz Z. (1996) Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag.

Rasmussen S. and Barrett C.L. (1995) Elements of a theory of simulation. In: Proceedings
of the European Conference on Artificial Life (ECAL 95), Lecture Notes in Computer
Science. Springer-Verlag, Berlin.

Setubal J. and Meidanis J. (1997) Introduction to Computational Molecular Biology. PWS
Publishing Company.

Sneath P.H. and Sokal R.R. (1973) Numerical Taxonomy. Freeman & Co, San Francisco.



