

LIPE: A Lightweight Process for E-Business
Startup Companies based on Extreme Pro-
gramming

Authors:
Jörg Zettel
Frank Maurer
Jürgen Münch
Les Wong

Partially supported by
Stiftung Rheinland-Pfalz für Innovation,
Geschäftszeichen 8312-38 62 61/450

Accepted for publication in Proceedings
of the 3rd International Conference on
Product Focused Software Process
Improvement (PROFES 2001), September
10-13, 2001, Kaiserslautern, Germany

IESE-Report No. 042.01/E
Version 1.0
June 26, 2001

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the
Fraunhofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists com-
panies in building software competencies
customized to their needs, and helps them
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6
D-67661 Kaiserslautern

Copyright © Fraunhofer IESE 2001 v

Abstract

Lightweight development techniques (e.g., Extreme Programming) promise im-
portant benefits for software development with small teams in the face of un-
stable and vague requirements. Software development organizations are con-
fronted with the problem that a bunch of techniques exist without knowing
which ones are suited for their specific situation and how to integrate them
into a comprehensive process. Especially for startup companies, guidance is
crucial because they usually do not have time and money for creating their de-
velopment process on a trial-and-error basis. This paper proposes a lightweight
software process for a specific application domain (i.e., database- and user-
interface-oriented off-the-shelf e-business applications). The process originates
from analyzing experience from past e-business projects, interviews conducted
with industry, and literature study. Expected benefits of this process are cost
effectiveness, sufficiently high quality of the end product, and accelerated
functionality-to-market. The process is described according to the dimensions
activities, artifacts, roles and tools. In addition, this paper includes a description
of a lightweight measurement program that is tailored to the characteristics of
the described process. It can be used for controlling the project progress during
project execution as well as for evaluating the effects of performing the proc-
ess in a specific organization or company.

Copyright © Fraunhofer IESE 2001 vii

Table of Contents

1 Introduction 1

2 Implications from the Business Context of Startups 3

3 LIPE: A Lightweight Software Process 5
3.1 LIPE’s Technical Activities 6
3.2 LIPE’s Organizational and Management-Oriented Activities 9
3.3 LIPE’s Roles and Tools 10

4 Software Metrics 12

5 Discussion and Future Work 17

6 References 18

Introduction

Copyright © Fraunhofer IESE 2001 1

1 Introduction

In the last couple of years, one of the major trends for software development
organizations was the move towards e-business systems. These years also saw
a large number of startup companies emerging in this area. Unlike older soft-
ware organizations, these startup companies do not have established devel-
opment practices. Their processes usually are immature and ad-hoc. Often this
is coupled with a less than positive attitude towards software engineering prac-
tices and, especially, software process improvement initiatives and software
metrics collection. In particular, code metrics (such as lines of code, code com-
plexity etc.) and process improvements standards (such as the Capability Ma-
turity Model) are often viewed as obsolete and irrelevant. Many organizations
have developed their own ad-hoc methods of assessing processes and metrics.
Other software engineering techniques, such as requirements engineering and
semi-formal specification, are only practiced in an abbreviated fashion.

Seeing this attitude coming from many highly qualified and experienced soft-
ware developers, we believe that it is a result of the business context of start-
ups. Nevertheless, we also believe that there are long-term benefits from the
application of software engineering methods, and it is a good idea to use some
of them from the very start. To overcome the negative attitude and create a
base for future growth, we propose in this paper a lightweight software proc-
ess for developing e-business applications called LIPE (for: LIghtweight Process
for E-business software development).

The process is based on initial results of several interviews conducted with in-
dustry as well as on a literature survey and our own experience in e-business
software development. The interviews conducted showed two major trends:

1.) Current e-business software development focuses on one hand on up-
grading legacy business-to-business systems such as EDI (Electronic Data
Interchange) to operate over the Internet.

2.) On the other hand, the focus is on implementing new e-business solu-
tions from scratch.

Furthermore, a significant amount of e-business development activities consists
of integrating third party applications and platforms.

The first trend is primarily seen in older organizations while the second one is
often found in startup companies. LIPE focuses on the second area.

Introduction

Copyright © Fraunhofer IESE 2001 2

A first empirical validation of LIPE is planned for. By then, LIPE’s justification is
based on its link to the business context of product-focused startup companies
as it is described in Section 2. Section 3 of this paper introduces LIPE and de-
fines its activities, products, and the roles of the team members. Section 4 de-
scribes a lightweight measurement program associated with LIPE. The last sec-
tion discusses our results and future work.

Implications from the Business
Context of Startups

Copyright © Fraunhofer IESE 2001 3

2 Implications from the Business Context of Startups

Time-to-market pressures, the small size of the development team, and the in-
teraction with venture capitalists usually govern the business context of a
startup:

• Time-to-market: Before any revenues come in, a startup has to solely rely
on external capital for covering the costs of development and marketing ef-
forts. The burn rate (amount of money spent per month) allows determin-
ing the time when the next round of financing needs to be available. Being
able to create revenue and earnings moves this deadline more into the fu-
ture and, in addition, increases the net present value (which is important in
negotiations with venture capitalists). As a result, reducing time-to-market is
a primary concern for the startup.

• Size of development team: Initially, software development groups of
startups are rather small. If the company is a spring-off of a research insti-
tute or university, the development team usually includes recent graduates
and/or students.

• Venture capital: Startup enterprises are usually financed by venture capital
and private or corporate angels. Often, the target of venture capital com-
panies is to have an initial public offering of the startup within two to four
years. In this timeframe, early stage companies are going through several
rounds of financing and substantial increases in size of the development or-
ganization. Each round of financing usually increases in size quite dramati-
cally. Additional rounds of financing are not guaranteed from the begin-
ning. Hence, startups see venture capital companies as one of their targets
for marketing and they “want to keep the venture capitalists happy”. To
encourage the venture capitalists to kick in the next round, the startup is
required to show strong progress concerning the software product and/or
concerning revenues. As a result, the software development organization
focuses at least for the very beginning on producing visible results in the
short term instead of a long-term perspective. In the end, there will be no
long-term perspective if the next round does not kick in.

The business context described above has several implications on the software
development process.

First, due to the time-to-market constraints and the focus on visible results,
startups postpone documentation effort into the future. The focus is on pro-
ducing executable code, not design documentation. The small size of the de-
velopment team enables this lack of documentation: As all developers work
closely together, they replace time spent on formally documenting designs and

Implications from the Business
Context of Startups

Copyright © Fraunhofer IESE 2001 4

decisions by time spent on informal communication. As long as the team is
small, this approach pays off because it is faster to directly talk to each other
instead of writing development knowledge down. In addition, direct communi-
cation usually deals with existing issues while for producing documentation the
writer has to make assumptions on what information may prove useful for the
reader. If these assumptions are wrong or if the software design changes dras-
tically, the documentation effort was wasted. As the development organization
grows, the time spent on exchanging knowledge about the software product
and on training new people increases sharply.

Second, the pressure to produce additional product features often reduces
time spent on quality assurance (like inspections and testing). In the long run,
this may lead to quality problems and increased maintenance effort. Neverthe-
less, this product focus makes sense from a business perspective because of
the relatively short timelines for additional rounds of venture capital funding.

The lightweight process proposed in the remainder of this paper is based on
results from interviews with software developers in the area of e-business
software, relevant literature (especially on Extreme Programming [3, 4, 9, 13]),
as well as our own experience. It is bottom-up and lightweight. A top down
approach would try to enforce a process with emphasis on documentation and
long-term applicability from the very start. We start from existing ad-hoc or
“natural” processes and try to add a parsimonious structure to have a basis for
future growth and maturing of the software development organization. The
process is lightweight because it focuses on the production of high-quality
code and not on additional documents. The proposed process is designed for
developing database-oriented and user-interface-centric off-the-shelf e-
business software using the Java Enterprise framework. User interfaces are ei-
ther web-based or WAP-based. The process assumes that some team members
are inexperienced in the software technologies used as well as in software de-
velopment in general (recent graduates or last year students of computer sci-
ence or information technology programs). We also assume that the develop-
ment team has access to a senior member of the marketing or consultancy
group, who represents the customer’s side and is able to make decisions on
requirements and feature priorities. The process also takes for granted that re-
quirements change when the marketing efforts progress. Another focus of the
process is on customer satisfaction and usability. We use scenario-based re-
quirements specification and prototyping of user interfaces for reaching the
last two goals.

To have a basis for future improvements and growth of the development or-
ganization, the process also defines a lightweight measurement program. This
program focuses on progress tracking as well as on software quality. The for-
mer is directly linked to time-to-market issues; the latter is trying to avoid long-
term quality problems.

LIPE: A Lightweight Software
Process

Copyright © Fraunhofer IESE 2001 5

3 LIPE: A Lightweight Software Process

LIPE is based on a small set of key ideas. First, all Extreme Programming (XP)
practices [3, 9] except for pair programming are considered to be used: Plan-
ning game, on-site customer, small releases, metaphor, simple design, testing,
collective ownership, refactoring, continuous integration, and coding stan-
dards. Second, goal-oriented and parsimonious software measurement and
demand-driven inspections have been added to overcome XP’s limitation con-
cerning team size in the long run. They also replace pair programming in its in-
tention to achieve high quality since project managers often are hesitant to use
pair programming.

LIPE has been modeled with SPEARMINT™/EPG, a process modeling and proc-
ess guidance tool developed by Fraunhofer IESE.1 The description of LIPE is
based on a small number of intuitive concepts that are commonly used in
software process modeling [5, 12, 10]: Activities, artifacts, roles, and tools;
product flow between activities and artifacts; responsibility of roles for activi-
ties; and usage of tools in activities. Product flow among activities and artifacts
may occur in three variants: Activities may use artifacts (i.e. without modifying
them), modify artifacts (i.e. change them during use), or produce artifacts (i.e.
create or update them). Product flow clarifies the prerequisites and expected
results of each activity. In addition, it implies a restriction on the order, in
which activities are actually performed. However, product flow does not de-
termine this order. In an actual project, each activity may be performed as soon
as its prerequisites are available and until its expected results are available. It is
up to project management to schedule tasks by assigning people to roles and
activities, where task assignment is guided by responsibilities in the process de-
scription.

Fig. 1, Fig. 2, and Fig. 3 give an overview of LIPE. Fig. 1 and Fig. 2 show the
technical development activities together with their products and the product
flow among them. They are described in Section 3.1. To complement this, Fig.
3 shows additional organizational and management-oriented activities. They
are described in Section 3.2. As can be seen, LIPE consists of a small number of
activities (14) and artifacts (18) only. In addition, some important roles and
some useful tools have been identified and are described in Section 3.3.

1 The development of SPEARMINT™/EPG has been in part financially supported by Stiftung Rheinland-Pfalz

für Innovation. More information and a free copy of the tool are available at:
http://www.iese.fhg.de/Spearmint_EPG.

LIPE: A Lightweight Software
Process

Copyright © Fraunhofer IESE 2001 6

3.1 LIPE’s Technical Activities

Fig. 1 and Fig. 2 show LIPE’s technical activities. They can be divided into four
areas: Activities at the top and to the bottom of Fig. 1 form the interface to
the customer. Those in the middle of Fig. 1 are essential development activities,
whereas those in Fig. 2 add to the system’s quality. Each of the areas is de-
scribed in turn now.

Top of Fig. 1: In “Collect Scenarios”, customer and developers sit together
and the customer writes down usage scenarios for the system, which are called
user stories by XP. Scenarios play an essential role in the process: They specify
required functionality; effort is estimated and measured per scenario; progress
is measured in terms of finished scenarios; iterations are planned based on pri-
orities of scenarios; and so forth. In the “Acceptance Test” activity, the cus-
tomer uses scenarios to judge whether the system fulfills the anticipated
needs.

Middle of Fig. 1: In “Realize Scenario”, “Refactor System”, and “Rework
Code”, the developers write and test Java code (including code for unit test
cases), and write any necessary text/markup files (e.g., HTML, WML, XML).
However, the starting points and purposes differ: In “Realize Scenario”, devel-
opers extend the system to provide additional functionality according to the re-
spective scenario, potentially by integrating existing COTS components. In
“Refactor System”, developers do not change the system’s functionality but its
internal design [8]. Refactoring supports specific needs or improves maintain-
ability. In “Rework Code”, developers fix a defect described by an open issue
report or improve the system’s non-functional quality as it has been proposed
by a non-functional system test report. Though purposes are different, the ba-
sic steps performed are the same in any of the three activities: “Write code for
automated unit tests (e.g., based on JUnit2 [9]). Write code for functionality.
Write text/markup files. Compile and integrate code. Run unit tests. Release
changes (configuration management is mandatory). If a defect is found either
fix it immediately, or report it as an open issue.” In general, standardized cod-
ing styles3 as well as some configuration and issue management guidelines
need to be followed. The former ensures readability and understandability of
the code. The latter ensures that changes to the code are linked to issue re-
ports in such a way that issue-related metrics can be calculated automatically
(see Section 4). Both coding style and guidelines are provided by the com-
pany’s experience base. Initially, the experience base can be a small set of web
pages.

2 Available at: http://www.junit.org.
3 For example, Sun’s “Code Conventions for the Java Programming Language”, available at:

http://java.sun.com/docs/codeconv/index.html.

LIPE: A Lightweight Software
Process

Copyright © Fraunhofer IESE 2001 7

Fig. 1: LIPE’s technical activities and product flow among them (Part 1). Notation: Each represents an activity;
each represents an artifact; each dashed arrow represents a product flow in the given direction.

Bottom of Fig. 1: In “Create User Documentation”, the documentation spe-
cialist writes the online help and the user handbook. In “Release System”, the
release manager assembles the system (e.g., using an installation wizard tool)

LIPE: A Lightweight Software
Process

Copyright © Fraunhofer IESE 2001 8

and writes the installation instructions. The system – including small incre-
mental releases – is given to the customer for acceptance testing.

Fig. 2: LIPE’s technical activities and product flow among them (Part 2).

Fig. 2: In “Non-Functional System Test”, the system is tested for acceptable
levels of non-functional quality (e.g., usability, scalability, availability [6]) based
on what is stated in the scenarios. Insufficient results are documented in a
non-functional system test report. System failures are reported as open issues.
In “Create System Documentation”, package-level documentation (e.g., using
UML diagrams [11]) is written as part of the documentation of the application
programming interface (API)4, and documents are written to describe the high-
level design and/or architecture of the system. In “Inspection”, peers of the au-
thor inspect a specific class or text file, and open issues that have been de-
tected are documented and reported. In contrast to the essential development
activities in Fig. 1, the activities in Fig. 2 are performed on demand only. It is
the task of the quality manager to decide upon their necessity based on ex-
perience, measurement data (see Section 4), and project needs.

4 It is assumed that the API documentation is periodically generated (e.g., with javadoc).

LIPE: A Lightweight Software
Process

Copyright © Fraunhofer IESE 2001 9

Fig. 3: LIPE’s organizational and management-oriented activities and product flow among them.

3.2 LIPE’s Organizational and Management-Oriented Activities

In addition to the technical activities described in the previous section, LIPE
contains a few organizational and management-oriented activities, shown in
Fig. 3. In “Manage Project”, the project manager plans, schedules, and moni-
tors the development project based on open scenarios (including effort esti-
mates and priorities), issue reports (which may be defect descriptions, failure
reports, or change requests), and measurement data (see Section 4). Planning
is actually done by the team as described by XP (see “Iteration Planning” in
[9]). In “Control Quality”, the quality manager supervises quality indicators of
the system and schedules appropriate quality improvement actions based on
experience, measurement data, and project needs. For example: A non-
functional system test is necessary if a scenario requires minimum levels of us-
ability, scalability, availability, etc.; writing system documentation may become
adequate for very central parts of the system that have reached a sensible level
of stability; inspections can be used to look at classes or text files with high is-
sue density or high probability of defects. Especially the latter depends on the
availability of measurement data. Therefore, it’s everybody’s task to “Collect
Measurement Data” as part of any other activity. However, measures are col-
lected automatically as far as possible. The last remaining activity, “Research
and Training” has been included to reflect the low experience of the antici-
pated development team and the continuous introduction of new technologies
in the area of e-business at least today. Therefore, effort spent on learning
should not be neglected but monitored as well.

LIPE: A Lightweight Software
Process

Copyright © Fraunhofer IESE 2001 10

3.3 LIPE’s Roles and Tools

Table 1 shows important roles and their responsibilities for activities in LIPE.
Roles are meant to describe a collection of correlated responsibilities and com-
petencies, not individual people. The project manager assigns each project par-
ticipant to one or more roles during task assignment. An individual’s skills
might constrain such assignments, and assignments to roles change over time,
depending on the context as well.

Table 1: LIPE’s roles and their responsibilities for activities.

C
ol

le
ct

 S
ce

na
rio

s

A
cc

ep
ta

nc
e

Te
st

Re
al

iz
e

Sc
en

ar
io

Re
fa

ct
or

 S
ys

te
m

Re
w

or
k

C
od

e

C
re

at
e

U
se

r D
oc

um
en

ta
tio

n

Re
le

as
e

Sy
st

em

N
on

-F
un

ct
io

na
l S

ys
te

m
 T

es
t

C
re

at
e

Sy
st

em
 D

oc
um

en
ta

-
i In
sp

ec
tio

n

M
an

ag
e

Pr
oj

ec
t

C
ol

le
ct

 M
ea

su
re

m
en

t D
at

a

C
on

tr
ol

 Q
ua

lit
y

Re
se

ar
ch

 a
nd

 T
ra

in
in

g

Customer X X X
Developer X X X X X X X X
Documentation Specialist X X X
System Tester X X X
Inspector X X X
Release Manager X X X
Project Manager X X X X
Quality Assurance Man-
ager X X X

Of all roles listed in Table 1, only the customer role is incompatible with any of
the other roles. That is, the individual who is playing the role of the customer
may not play any other role in the project. All other roles might be combined,
with one exception only: The author of an artifact that is to be inspected may
not be one of the inspectors. So, the minimum number of project participants
is two people: one customer and one developer/etc.

Table 2 shows some useful tools and their usage in LIPE’s activities. We now
give some examples for these tools by looking at open source or freely avail-
able tools. The Java development environment could be IBM’s VisualAge5 or a
combination of Sun’s JDK6, Emacs7 with JDE8, and make. The unit test tool

5 Available at: http://www-4.ibm.com/software/ad/vajava/
6 Available at: http://www.javasoft.com/j2ee/
7 Available at: http://www.gnu.org/software/emacs/emacs.html
8 Available at: http://jde.sunsite.dk/

LIPE: A Lightweight Software
Process

Copyright © Fraunhofer IESE 2001 11

could be JUnit9. For automatic regression testing of Web-based user interfaces,
Empirix e-test suite10 could be used. Configuration management is integrated
in VisualAge, or can be done with CVS11. Issue management can be done with
GNATS12 or Bugzilla13. Many metrics tools do exist for different purposes, e.g.,
JDepend14 for code metrics. The Apache Software Foundation15 provides HTTP
server, Java Servlet engine, etc. Numerous free databases exist and one com-
patible with the application server can be selected.

Table 2: Useful tools and their usage in LIPE’s activities.

C

ol
le

ct
 S

ce
na

rio
s

A
cc

ep
ta

nc
e

Te
st

Re
al

iz
e

Sc
en

ar
io

Re
fa

ct
or

 S
ys

te
m

Re
w

or
k

C
od

e

C
re

at
e

U
se

r D
oc

um
en

ta
tio

n

Re
le

as
e

Sy
st

em

N
on

-F
un

ct
io

na
l S

ys
te

m
 T

es
t

C
re

at
e

Sy
st

em
 D

oc
um

en
ta

-
ti In

sp
ec

tio
n

M
an

ag
e

Pr
oj

ec
t

C
on

tr
ol

 Q
ua

lit
y

C
ol

le
ct

 M
ea

su
re

m
en

t D
at

a

Re
se

ar
ch

 a
nd

 T
ra

in
in

g

Java Development Envi-
ronment X X X X X X

Unit Test Tool X X X
User Interface Test Tool X X X X
Configuration Manage-
ment System X X X X X X X

Issue Management System X X X X X X X X
Metrics Tools X X
Application Server X X X
Database Management
System X X X

9 Available at: http://www.junit.org
10 Available at: http://www.empirix.com/
11 Available at: http://www.cvshome.org/
12 Available at: http://sources.redhat.com/gnats/
13 Available at: http://www.mozilla.org/bugs
14 Available at: http://www.clarkware.com/software/JDepend.html
15 Available at: http://www.apache.org

Software Metrics

Copyright © Fraunhofer IESE 2001 12

4 Software Metrics

This section describes the derivation of metrics for the following purposes:

1.) Measurement data shall be used for controlling progress during project
execution.

2.) Measurement results can be used to support the application for venture
capital by demonstrating the ability to produce functionality in a defined
time slot.

Beyond that, the results can be used for weakness analyses of the process to
identify improvement potentials. The derivation of metrics is performed in a
goal-oriented manner. This enables to concentrate on a small set of relevant
metrics and is the basis for performing a lightweight (i.e., parsimonious) meas-
urement program. There are essential differences in measuring key factors
(such as effort) in a lightweight process than in a more traditional (i.e., phase-
oriented) process. One example for such a difference is the measurement of
defect slippage in the context of a lightweight process where inspection activi-
ties are demand-driven.

For the description of quantifiable measurement goals we use the
Goal/Question/Metric paradigm (GQM). GQM supports the definition of goals
and their refinement into metrics as well as the interpretation of the resulting
data [1, 2]. The GQM paradigm explicitly states goals so that all data collection
and interpretation activities are based on a clearly documented rationale. Ac-
cording to [6], goal-oriented measurement is the definition of a measurement
program based on explicit and precisely defined goals that state how meas-
urement will be used. Advantages of goal-oriented measurement are:

• It helps ensure adequacy, consistency, and completeness of the measure-
ment plan and therefore of data collection.

• It helps manage the complexity and reduce the effort of the measurement
program.

• It helps stimulate a structured discussion and promote consensus about
measurement goals.

In this article, we focus on project control. The goals are to control effort, is-
sues (as defined above), and functionality-to-market. Data concerning func-
tionality-to-market can be used, for example, to get a project trace of the real-
ized functionality, to perform analysis concerning parallel work, or to identify
extraordinarily long lasting implementation activities for specific scenarios. In
terms of GQM, the goals are:

Software Metrics

Copyright © Fraunhofer IESE 2001 13

Goal 1 / 2 / 3: Analyze the LIPE-based development project
for the purpose of control
with respect to (1) effort / (2) issues / (3) functionality-to-market
from the point of view of the project manager and the quality assurance
 manager
in the context of the company or organization where the process will be
 applied.

A GQM plan describes precisely why the measures are defined. Besides the
goal, it consists of a set of questions and measures. Additionally, models and
hypotheses may be part of a GQM plan. In the following we sketch GQM plans
for the above goals:

The motivation for question E2 is to get a better foundation for effort estima-
tions.

GQM-Plan for Goal 1 (effort):
Quality Focus:
Q1: What is the effort distribution of LIPE broken down by activities?

Metrics to collect:
1) identifier of the activity
2) effort in hours

Q2: What is the distribution of effort broken down by scenarios and activities?
 Metrics to collect:

1) identifier of the scenario (or ‘overhead’)
2) activity identifier
3) effort in hours

Variation Factors / Explanatory Variables:
E1: What is the experience of the developers with the technology used?

Metrics to collect:
1) name of the developer
2) experience level

E2: How much effort did the developers estimate for each scenario?
Metrics to collect:

1) identifier of the scenario
2) estimated effort in hours

Dependencies:
D1: What influence has the experience of the developers with the used technology

on the effort distribution (broken down by activities)?
Hypothesis H2: The effort per activity decreases with the experience of the

involved developers.
Metrics to collect:

1) activity identifier
2) experience level of developer
3) effort in hours

Software Metrics

Copyright © Fraunhofer IESE 2001 14

GQM-Plan for Goal 2 (issues):
Quality Focus:
Q1 How many issues were detected in each activity of LIPE (distinguished by source

products)?
Metrics to collect:

1) issue-id
2) identifier of the detection activity
3) identifier of the source product

Q2: How many issues were detected in each product of LIPE (distinguished by detec-
tion activity)?
Metrics to collect:

1) issue-id
2) identifier of the detection activity
3) identifier of the source product

Q3: For each product: What is the distribution of detected issues broken down by
issue class?
Metrics to collect:

1) issue-id
2) identifier of the source product
3) issue class

Q4: For each product: What is the average effort and the average calendar time for
issue resolution broken down by issue class?
Metrics to collect:

1) issue-id
2) identifier of the source product (and of the part of the product)
3) resolution effort in hours
4) start time [dd.mm.yy:hh.mm]
5) end time [dd.mm.yy:hh.mm]
6) issue class

Q5: How many test cases have been created?
Metrics to collect:

1) number of test cases
Variation Factors / Explanatory Variables:
E1: What is the experience of the developers with the technology used?

Metrics to collect:
1) name of the developer
2) experience level

E2: How new is the basis technology?
Metrics to collect:

1) identifier of technique
2) maturity level

Dependencies:
D1: What influence does the experience of the developers with the used technology

have on the issues?
Hypothesis H1: The number of detected issues decreases with the experience

of the developers.
Metrics to collect:

1) product identifier
2) experience level of developer
3) number of issues

Software Metrics

Copyright © Fraunhofer IESE 2001 15

The effort for resolving of an issue (Q4) is the effort for the resolution of the is-
sue in the source product and in subsequent products (if affected). Issues can
also show up in external products (i.e., COTS components). The resolution ef-
fort does not include effort for additional inspections. The issue classification
may vary in dependence of the source product. The issue classification depends
on the product and the type of issue. An example for an issue classification for
code defects is: [{omission, commission}, {initialization, control, interface, data,
computation, cosmetic}]. The quantity of created test cases (Q5) indicates a
certain level of quality of regression testing and might be used for estimating
completion time for a scenario. This could be used as an entry criterion for in-
spections.

Based on these GQM plans, data collection procedures have to be defined. The
overhead caused by measurement should be minimized. Therefore, several
measures may have to be collected concurrently through integrated data col-
lection procedures. A description on how to define such data collection proce-
dures can be found in [6]. For the above GQM plans, this requires the instan-
tiation of generic attribute types (e.g., product-specific issue classifications) and
decisions concerning the point in time, the responsible person, and the best
means for data collection. As an example, developers could measure issues al-

GQM-Plan for Goal 3 (functionality-to-market):
Quality Focus:
Q1: For all scenarios: When was the scenario implemented?

Metrics to collect:
1) identifier of the scenario
2) start time [dd.mm.yy:hh.mm],
3) end time [dd.mm.yy:hh.mm]

Q2: For all scenarios: Which incorrect estimations concerning the implementation
of scenarios occurred?
Metrics to collect:

1) identifier of the scenario
2) planned end time [dd.mm.yy:hh.mm]
3) actual end time [dd.mm.yy:hh.mm]
4) description of the reason

Q3: For all activities: Which dependencies to other activities exist?
Metrics to collect:

1) activity identifier
2) list of dependent activity identifiers

Variation Factors / Explanatory Variables:
E1: How much effort did the developers estimate for each scenario?

Metrics to collect:
1) identifier of the scenario
2) estimated effort in hours

Dependencies:
 For this GQM plan, we do not describe dependencies because this requires a

deeper understanding of the causes for functionality-to-market delays.

Software Metrics

Copyright © Fraunhofer IESE 2001 16

ways when they document them in an “Issue Report”. A means for collecting
data could be an adequate documentation structure for issue entries in the “Is-
sue Report”. A possible template for issue entries in this document could be:

Finally, measurement data has to be analyzed and interpreted in the context of
the measurement goal. For example, a defect baseline could be used to iden-
tify products with particularly high defect rates. Possible interpretations might
be that the structure of the product is inadequate and needs refactoring, that
the developers are not familiar with the enactment of the activity, or that the
inspection activity is inefficient. Consequences could be a change of the prod-
uct structure, training, or a change of the inspection technique (such as provid-
ing modified checklists). The quantitative models gained (such as effort base-
line, defect baseline, defect slippage model) can be used as a basis for better
planning in similar future projects. This creates an organizational learning cycle
and, in the long run, a learning software organization.

Issue-id: _____________________________
Discoverer: _____________________________
Date: __:__:__
Identifier of the detection process: _____________________________
Identifier of the source product: _____________________________
Version no. of issue-prone product: ___
Issue description: _____________________________
Issue class: Java Code: () class A.1, () class A.2, …

Markup Files: () class B.1, () class B.2, …
Resolution effort: ___ hours

Discussion and Future Work

Copyright © Fraunhofer IESE 2001 17

5 Discussion and Future Work

In this paper, we analyzed the business context of e-Business startup compa-
nies and showed how this could be related to a less than positive attitude on
standard software engineering methods and procedures. We illustrated why
their business context more or less implies an ad-hoc, code-oriented develop-
ment process. Realizing that these processes do not scale very well, we pro-
posed LIPE as a lightweight development approach that integrates Extreme
Programming with ideas from the areas of software measurement for project
control and process improvement. We see LIPE as a compromise between ad-
hoc, “natural” development processes and more rigorous approaches found in
larger software organizations. Following the LIPE approach should provide
scalability of the development process over and above the small team sizes for
which Extreme Programming was developed and proved successful.

In the future, we are planning to evaluate LIPE in a case study. The startup
company that will likely be used for evaluating the benefits of the process has
some specific requirements concerning portability of the code, usability, scal-
ability, and availability of their Internet-based software product. These were
taken into account when we designed LIPE resulting in activities concerning
testing of non-functional requirements. If these requirements do not hold in
another contexts, the “Non-Functional System Test” activity can be omitted or
the effort spent on it can be reduced.

References

Copyright © Fraunhofer IESE 2001 18

6 References

1. V. Basili and D. Weiss. A Methodology for Collecting Valid Soft-
ware Engineering Data. IEEE Transactions on Software Engineering,
10(6), pp. 728-738, November 1984.

2. V. Basili and D. Rombach. “The TAME Project: Towards Improve-
ment-Oriented Software Environments.” IEEE Transactions on
Software Engineering, 14(6), pp. 758-773, June, 1988.

3. Kent Beck. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 2000.

4. Kent Beck and Martin Fowler. Planning Extreme Programming.
Addison-Wesley, 2000.

5. Ulrike Becker-Kornstaedt et al. “Support for the process engineer:
The Spearmint approach to software process definition and proc-
ess guidance.” Advanced Information Systems Engineering: 11th
International Conference, CAiSE’99, Proceedings, LNCS 1626, pp.
119–133. Springer, 1999.

6. L. C. Briand, C. M. Differding, and H. D. Rombach. “Practical
Guidelines for Measurement-Based Process Improvement.” Soft-
ware Process: Improvement and Practice, 2(4), pp.253-280, 1996.

7. Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics:
A Rigorous and Practical Approach. Internal Thomson Computer
Press, London et al, second edition, 1997.

8. Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

9. Ronald E. Jeffries, Ann Anderson, and Chet Hendrickson. Extreme
Programming Installed. Addison-Wesley, 2001.

10. Frank Maurer et al. “Merging Project Planning and Web-Enabled
Dynamic Workflow Technologies.” IEEE Internet Computing, 4(3),
pp. 65-74, May/June 2000.

11. Object Management Group (OMG). OMG Unified Modeling Lan-
guage Specification, Version 1.3, First Edition. OMG document ad/
00-03-01, March 2000.

References

Copyright © Fraunhofer IESE 2001 19

12. M. Verlage et al. “A synthesis of two process support ap-
proaches.” Proceedings of the Eighth Software Engineering and
Knowledge Engineering Conference (SEKE'96), Knowledge Systems
Institute, Skokie (IL), USA, pp. 59-86, June 1996.

13. J. Donovan Wells. Extreme Programming: A gentle introduction.
Available: http://www.extremeprogramming.org/index.html. 6.
April 2001.

Document Information

Copyright 2001, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means includ-
ing, without limitation, photocopying, recording,
or otherwise, without the prior written permission
of the publisher. Written permission is not needed
if this publication is distributed for non-commercial
purposes.

Title: LIPE: A Lightweight Process
for E-Business Startup
Companies based on Ex-
treme Programming

Date: June 26, 2001
Report: IESE-042.01/E
Status: Final
Distribution: Public

