

Engineering Experience Base Maintenance
Knowledge

Authors:
Markus Nick
Klaus-Dieter Althoff

IESE-Report No. 018.01/E
Version 1.0
March 17, 2001

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the
Fraunhofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists com-
panies in building software competencies
customized to their needs, and helps them
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6
D-67661 Kaiserslautern

Copyright © Fraunhofer IESE 2001 v

Abstract

The value of a corporate information system such as an experience base tends
to degrade with time. To keep the value of such a system, maintenance is an
essential. Maintenance should not simply happen ad-hoc but systematically
and based on specific maintenance knowledge. As a jump-start for
maintenance, maintenance knowledge should be available right from the start
of continuous operation. This paper describes how to systematically develop
(“to engineer”) such maintenance knowledge during buildup of the corporate
information system.

Keywords: Maintenance, Maintenance Knowledge, Experience Base, Experience Factory

Copyright © Fraunhofer IESE 2001 vii

Table of Contents

1 Introduction 1

2 Assumption about EB Buildup 4

3 A Method for Engineering Maintenance Knowledge 6
3.1 Defining a Knowledge Life-Cycle Model 6
3.2 Deriving Maintenance Policies 8
3.3 Formalizing Maintenance Policies 11
3.4 Tool Support for Maintenance Policies 12

4 Integrating Evaluation and Maintenance for the EB
System 13

4.1 Harmonize & Integrate Conceptual Knowledge, Know-
ledge Collection Plan, and Evaluation Program 13

4.2 Integrating Maintenance and Quality Knowledge into the
Conceptual Model 14

4.3 Embedding Evaluation into Usage 15

5 Discussion: Engineering Maintenance and Quality
Knowledge during EB Buildup 17

6 Conclusion 19

Acknowledgements 20

References 21

Introduction

Copyright © Fraunhofer IESE 2001 1

1 Introduction

The value of a corporate information system tends to degrade with time, be it
by external impacts on the organization’s environment or by changes within an
organization (e.g., the development of a new product). This is particularly true
if exemplary knowledge (experience, case-specific knowledge) is stored in the
information system, as is typically done in experience bases (EBs), lessons
learned systems, best practice databases, or case-based reasoning (CBR)
systems, because such knowledge is gained almost continuously in daily work
[42, 47, 16, 3, 46]. In the recent past the new field “Experience Management”
[45; 14] appears to establish itself. Experience Management deals with all the
relevant research and development issues for this kind of information systems.
The ingredients of experience management stem from different scientific fields,
among others experience factory/learning software organization, case-based
reasoning, and knowledge management.

In Software Engineering, the experience factory approach was introduced in
the late eighties [13, 4, 6, 41]. It explicitly deals with continuous
(organizational) learning from experience. In the areas of Cognitive Science and
Artificial Intelligence, case-based reasoning emerged in the beginning eighties
as a model for human problem solving and learning [43]. In Artificial
Intelligence, this led to a focus of knowledge-based systems on experience
(experience knowledge, case-specific knowledge) in the late eighties and
beginning nineties, mostly in the form of problem-solution cases [11, 8, 1, 36,
10, 4].

In the eighties and nineties, various approaches in economical and social
science as well as in business information systems, which explicitly dealt with
knowledge as a resource of increasing importance, merged under the notion
of knowledge management [35, 18, 40, 25]. In spite of the high number of
approaches and their heterogeneity, two main categories can be identified [2]:
On the one hand, there are process-oriented approaches [21], which base
mainly on communication and collaboration, on the other hand, product-
oriented approaches, which base on documentation, storage, and reuse of
enterprise knowledge [6]. While the former use techniques from computer
supported collaborative work and workflow management, the latter build on
information technology tools for documenting knowledge: Database systems,
repository systems, hypertext systems, document management systems,
process modelling systems, knowledge- based systems, case-based reasoning
systems, etc. [19].

Introduction

Copyright © Fraunhofer IESE 2001 2

From a more general perspective it can be stated that product- and process-
oriented approaches are still not integrated. Usually they are used
independently from each other, or as alternatives. As one exception here,
meanwhile a deep - i.e. the cognitive science foundations considering -
integration of the approaches of experience factory and case-based reasoning
has been achieved [45, 5].

In this paper we deal with experience management approaches. While the
term “management” underlines the “process” aspects of such approaches, we
subsume the “product” aspects under the notion of experience base systems
(or experience bases, case-based reasoning systems, case bases, organizational
memory systems, organizational memory, corporate information system).
Experience management includes methods for identifying, collecting,
documenting, packaging, storing, generalizing, reusing, tailoring, and
evaluating of experience (experience packages, cases) based on an EB.

Experience base systems must be maintained on a continuous basis [15, 32].
Such maintenance should not be performed ad-hoc. Instead, a systematic
approach is required to ensure “good”, well-controlled maintenance. For this
purpose, knowledge-focused and technical issues as well as organizational
issues have to be considered. To deal with the organizational issues, a
dedicated role - e.g., a Chief Information Officer (CIO) - and/or a dedicated
organizational unit - e.g., an experience factory (EF) - should be established
[15, 6, 12]. To support the actual maintenance of the EB, specific maintenance
experience and its conceptual structure has to be included [27, 28, 23, 32].

Maintenance knowledge has been partly discussed in the literature: Leake &
Wilson [24] introduced the concept of “maintenance policies” for maintaining
the experience base. These “maintenance policies” can be viewed as
maintenance knowledge. Rombach [39] discussed principles for the
maintenance of cost models, which were based on the dimensions of software
maintenance by [44]. Minor & Hanft [29] presented a life-cycle model for test
cases and a life-cycle model for lessons learned is available in [7]. McKenna &
Smyth [26] presented competence-preserving maintenance strategies for
planning tasks.

Another type of knowledge that is related to maintenance, is quality
knowledge. Quality knowledge describes how the quality of the EB is defined
and how to measure quality as well as the rationale for the quality knowledge
[27]. Quality knowledge deals with quality aspects of the EB system as a whole,
i.e., the EB’s contents and conceptual model as well as retrieval mechanisms
and usability of the user interface. An example for content-related quality
knowledge is a definition of metrics for the utility or value of single experience
packages [34].

Introduction

Copyright © Fraunhofer IESE 2001 3

In [32], we presented the EMSIG framework and an integrated technical
solution operationalizing the (decision) support for the maintenance of an
experience base regarding experience packages and conceptual model using
specific maintenance and quality knowledge. While the quality knowledge can
be acquired and improved using a systematic approach [33, 34], the
maintenance knowledge is rather acquired “by chance” during continuous
operation (with the exception of maintenance strategies such as competence-
preserving case base maintenance strategies for planning tasks [26]). Thus, it
might take long to learn the required maintenance knowledge. The problem is
that existing methods such as INRECA [15] or DISER1 [45] only fill the
“standard” knowledge containers of CBR/EB systems (vocabulary, cases,
similarity measures, adaption [38]) and do not address the acquisition and
usage of maintenance and quality knowledge.

This brings us to three open issues that are subject of this paper: (1) How to
acquire and develop maintenance knowledge systematically. Our approach
derives operational maintenance knowledge from artifacts and information
gained during EB buildup and from a knowledge/experience life-cycle model.
(2) After the maintenance and quality knowledge has been developed, it has to
be integrated into the operational EB system. (3) Such systematic maintenance
and quality knowledge acquisition must be integrated into a buildup method.

The development of the required maintenance and quality knowledge during
EB buildup ensures that the maintenance and evaluation needs are considered
during the development of the EB. This aims at avoiding more expensive future
changes due to maintenance needs identified later than possible.

The paper is structured as follows. Section 2 states some assumptions about
the EB buildup and evaluation, and gives a glimpse on our in-house experience
factory COIN. Section 3 presents our approach to systematically developing
maintenance knowledge and illustrates this with examples from COIN and
industrial projects. Section 4 describes how to integrate this maintenance and
quality knowledge into an EB system using currently available CBR tools such
as Orenge from tec:inno/empolis and how to integrate evaluation into the
usage of the EB. Section 5 discusses how to integrate the method into an EB
buildup methodology. Finally, some conclusions are drawn (Section 6).

1 DISER is a methodology for designing and implementing software engineering repositories

Assumption about EB Buildup

Copyright © Fraunhofer IESE 2001 4

2 Assumption about EB Buildup

During buildup, the following artifacts and information are developed:
Objectives (including high-level success criteria) and subject areas of the EB
need to be identified. For these, detailed experience reuse and record scenarios
are developed. Based on the scenarios, the conceptual model underlying the
experience packages is developed. Processes/methods for recording and
utilizing experience are defined/selected. A knowledge collection plan describes
when which artifact has to be collected how by whom. Finally, the actual
technical and non-technical infrastructure must be implemented according to
the organization’s needs. All these parts and intermediate artifacts/ information
should be developed using some methodology such as INRECA or DISER (see
[45] for an industrial-strength case study and a detailed description). Usually,
these parts are not developed from scratch. Instead, they are tailored from
similar parts used in other organizations.

The result of the initial acquisition of quality knowledge (i.e., of the planning
phase of an evaluation program) are (1) a measurement plan that describes
which measurement data is collected when, how, by whom, and who validates
and stores the data; and (2) an evaluation plan that defines when to conduct
analyses of the collected measurement data and when to involve users in the
interpretation of the analysed data. This should be developed in a systematic
manner, e.g., with the goal-oriented Goal-Question-Metric (GQM) method for
the measurement plan (see [33, 34] for details). With GQM, the evaluation can
be linked to business goals, e.g., from the learning-and- growth part of a
balanced scorecard [17, 22]. To jump-start evaluation, GQM allows to reuse
and validate existing quality models [33, 9] and quality measures [37]. Still,
there are open issues: integration into usage and the integration of lessons
learned from the evaluation program into the EB (e.g., guideline/rule about
relationships between variation and quality factors). These issues will be
addressed in Section 4.

Our in-house experience factory COIN (Corporate Information Network) was
launched -due to the rapid growth of the IESE- to (a) provide the less
experienced people with default processes and guidelines to jump-start them
and (b) to facilitate experience sharing among them to build up their expertise
more quickly [45, 32]. Since the size of our institute does not allow to talk to
all people on a weekly basis, experience sharing on a personal basis does not
work. The experience base was developed using the DISER method.

Assumption about EB Buildup

Copyright © Fraunhofer IESE 2001 5

Figure 1 Excerpt of COIN experience base (8 experience packages)

Figure 1 shows an excerpt of COIN’s experience base, which will be used in
examples in the remainder of this paper. The focus in the excerpt is on lessons
learned in the form of guidelines, observations, and problems. The guidelines
act as solutions or mitigation strategies for the problems. An observation
describes either the results of an application of a guideline or something
interesting that has been observed without related experiences.

A Method for Engineering
Maintenance Knowledge

Copyright © Fraunhofer IESE 2001 6

3 A Method for Engineering Maintenance Knowledge

The principle of engineering maintenance knowledge during buildup (Fig. 2) is
to derive operational maintenance knowledge from three major sources: (1) a
knowledge/experience life-cycle model, (2) artifacts and information gained
during EB buildup, and (3) the measurement plan for the evaluation. From
these sources, we derive rather informal maintenance policies and more formal
maintenance guidelines. The maintenance policies are further formalized as
maintenance guidelines. The maintenance guidelines can be automated using
EMSIG’s maintenance decision support components (i.e., maintenance
assistance and maintenance management component [32]).

Knowledge
Life-Cycle

Model

Objectives Scenarios

Schema
Knowledge
Collection

Plan

Maintenance
Policies

Maintenance Decision
Support System

Buildup (DISER, INRECA)

Evaluation (e.g., GQM)

formalize
automate

Measurement Plan
EMSIGEvaluation Plan

Maintenance
Guidelines

Subject Areas

Figure 2 Systematically developing maintenance knowledge and support during EB buildup.

The following sections describe the definition of a knowledge life-cycle model
and the deriving of maintenance policies in detail and illustrate this with
examples from our in-house experience factory COIN and from industrial
projects. Furthermore, the formalization of the maintenance policies into
maintenance guidelines and the automation using EMSIG’s tools are
summarized.

3.1 Defining a Knowledge Life-Cycle Model

A knowledge/experience life-cycle model describes the basic idea of how to
maintain and improve knowledge and experience over time. Thus, it is the
basis of any further refinement of the maintenance process, in particular, with
respect to the EB content. The life-cycle model also addresses issues such as
validity and degree of maturity of the knowledge and experience stored. All

A Method for Engineering
Maintenance Knowledge

Copyright © Fraunhofer IESE 2001 7

this is the starting point for a systematic maintenance and improvement of the
knowledge and experience.

A generic knowledge life-cycle model is depicted in Fig. 3 [7]. This model has
been used for COIN and industrial projects. Explicitly documented knowledge is
developed and matured over time: In the beginning, very context-dependent
experiences are collected, e.g., from measurement data analyses or expert
interviews. Examples for such experiences on very specific issues are the
observations, guidelines, and problems in COIN (Fig. 1). By reuse in similar
contexts, these experiences are more and more validated. Furthermore, more
experiences are collected that are on similar or related issues like the
experiences already stored. In addition, these experiences are further aggregat-
ed and generalized. When these experiences cover a sufficiently wide area and
are mature enough, they can be combine in order to derive a comprehensive
best-practice description (e.g., a business process description as in COIN - see
Fig. 1).2 Such a best- practice description is enriched with further experiences,
which are integrated into the best-practice description from time to time. This
closes the loop.

Figure 3 Generic knowledge life-cycle model. [7]

In parallel or triggered by the evolution of the knowledge, the conceptual
model of the knowledge is also improved: Knowledge and experience can be
more formalized. This leads to defining more attributes and extending existing
attribute types.

While the form/type of the knowledge in the life-cycle model (i.e., first sample,
lesson learned, best practice) deals with the maturity of the knowledge, more
in-depth issues address validity.

Validity describes how general an experience is and how much one can trust
the experience to be successfully reused in its anticipated application context.
To integrate validity issues into the life-cycle model, an operational definition of
validity is required. This definition can be in a qualitative [30] or quantitative
manner (COIN).

2 When tacit best practice is available (e.g., knowledge about a business process that has not been made

explicit), best-practice descriptions are also elicited directly using suitable knowledge acquisition methods
(e.g., business process elicitation & modelling [20]).

A Method for Engineering
Maintenance Knowledge

Copyright © Fraunhofer IESE 2001 8

If the reuse of experiences can be measured, a quantitative validity can be de-
fined using the number of successful and failed reuse attempts. The validity in-
creases after successful reuse and decreases after failed reuse - at least tempo-
rarily until the experience is maintained respectively. Such a quantitative defini-
tion is particularly suitable for “new” experiences, i.e., experiences that are re-
corded directly in the EB when becoming known.

For already known experiences that are entered into the EB later, a purely
quantitative definition of validity obviously cannot be complete because the
number of applications before the recording in the EB cannot be determined.
Instead, a qualitative definition of validity is appropriate.

Based on the ideas made explicit in the knowledge life-cycle model, the main-
tenance can be defined in more detail.

3.2 Deriving Maintenance Policies

The objective of deriving maintenance policies is to describe –in an informal
manner– when, why, and how to do maintenance on an EB system.

This is done by deriving so-called “maintenance policies”. For our purposes, we
extend the definition of [24]:3 Maintenance policies determine when, why, and
how maintenance is performed for an EB system. The “why” addresses not
only the reason of maintenance but also the expected benefits of the mainte-
nance operation, which should be related to the objectives of the EB system or
to the general goal of maintenance (i.e., to preserve and improve the EB’s
value [32, 31]).

When DISER is used, the action refers to one task or a combination of tasks
from DISER. Relevant tasks are record/update/forget experience package and
restructure EB as well as their respective sub-tasks.

Maintenance policies can be derived from various sources (Fig. 2): the knowl-
edge/ experience life-cycle model; artifacts and information gained during
EB buildup; and the measurement plan for the evaluation. In addition, generic,
well-tested maintenance policies from CBR research and practice should be re-
used for general aspects (see [24] for an overview). In the following, we de-
scribe how to derive maintenance policies from these sources and illustrate this
with examples from COIN or industrial projects. For reasons of space, some
maintenance policies are only outlined.

3 The original definition of [24] is as follows: “Maintenance policies determine when and how a CBR system

performs case base maintenance. Maintenance policies are described in terms of how they gather data
relevant to maintenance, how they decide when to trigger maintenance, the types of maintenance opera-
tions available, and how selected maintenance operations are executed.”

A Method for Engineering
Maintenance Knowledge

Copyright © Fraunhofer IESE 2001 9

Deriving maintenance policies from the knowledge life-cycle model

There are two major issues in the knowledge life-cycle model that are refined
using maintenance policies:

1.) The transformation of experience of one type into another is performed
under specific conditions and for certain reasons. These conditions and
reasons have to be identified and related actions are outlined. Together
reason and related action form a maintenance policy. Fig. 4 shows an
example of such a maintenance policy for transforming partially tested
knowledge such as lessons learned into best practice.

Trigger: Number of lessons learned attached to a best practice de-
scription is more than X

Actions: Aggregate best practice description with (some of the)
lessons learned.

Expected benefits: The description is more comprehensive and easier to un-
derstand.

Figure 4 Example maintenance policy for transforming experience from one type into another.

1.) The ways of dealing with failed reuse attempts have to be defined. This
is defined by a combination of monitoring the quality/validity of the
knowledge in the EB and proposing respective actions. These mainte-
nance policies mainly refer to corrective actions and fix problems that
were encountered during reuse of an experience.
For example, an experience was misunderstood and applied incorrectly
several times, which requires two actions: rephrasing and checking if the
recording is unreliable or inaccurate (see Fig. 5).

Trigger: validity ratio < X% and
number of related observations "phrasing not compre-
hensible or misunderstood" > N

Actions: (a) The experience package has to be rephrased and
tested regarding its understandability. The observations
that are considered during rephrasing are deleted. The
latter implies an increase of the validity ratio of the ex-
perience package.
(b) The quality criteria for recording the knowledge have
to be checked regarding their effectiveness for ensuring
the comprehensibility of the recorded experiences.

Expected benefits: The description is easier to comprehend.

Figure 5 Example of a maintenance policy derived from the knowledge life-cycle model.

A Method for Engineering
Maintenance Knowledge

Copyright © Fraunhofer IESE 2001 10

For another example, the application context was too different from the
contexts where the experience was gained and applied so far. Then the ex-
perience has to be split, i.e., rewritten and newly recorded for the context
where it failed.

Although adding negative observations about the application of an experience
decreases the validity ratio of the applied experience, this does not decrease
the overall competence of the experience base in every case: The knowledge
about a context where an experience is not applicable is useful to avoid mak-
ing the same mistake twice and, thus, contributes to the EB’s overall compe-
tence and value.

The content-triggered maintenance policies (e.g., Fig. 4 and Fig. 5) benefit in
particular from the learning about maintenance. After an initial good guess for
the trigger regarding X%, N, etc., these policies can be improved and validated
based on the evaluation [32].

Deriving maintenance policies from conceptual model and scenarios

From the scenarios and the conceptual model, maintenance policies are de-
rived that analyse if the different types of experience are used as intended and
not “abused.” Abuse is mainly possible for experience types or subject areas
where users can enter items that are published without further reviewing by
the EF staff.

For example: The EF allows every user to add comments to experience pack-
ages in order to make the EB more interactive. These comments should only
deal with minor problems such as typos, misunderstandings, etc. A respective
maintenance policy is as follows: A larger average number of larger comments
indicates that the commenting feature might be abused to store actual experi-
ence without further reviews. Thus, the comments are checked. If abuse has
happened, the respective comments are rewritten as experience packages and
the commenting feature is deactivated. Furthermore, a more “in-time” re-
cording of experiences could be considered because such an abuse can dem-
onstrate the need for such a change.

Deriving maintenance policies from evaluation, user feedback, and scenarios

Maintenance policies can be stated for the different types of user feedback [9].
For example, if users do not select any experience in the query results as useful
in more then X% of the queries, then the coverage could be too low or the EB
might focus on the wrong subject area. Thus, the users should be interviewed
respectively and the respective measure should be taken (i.e., record more ex-
periences or change focus of EB).

A Method for Engineering
Maintenance Knowledge

Copyright © Fraunhofer IESE 2001 11

For each of the reuse scenarios, the expected usage is estimated by the num-
ber of times the scenario will happen. This serves as a baseline for an evalua-
tion of the usage of the EB.

Using strategies from CBR research and practice

Besides the tailored and more EB-specific maintenance policies that were ad-
dressed so far, maintenance strategies from CBR research and practice should
be considered. Before using these, their application constraints must be
checked and analysed carefully. For example, a competence-preserving ap-
proach to case deletion has been tested for planning tasks [26]. This could we
reused for EB/CBR systems with a similar task.

The impact of EB objectives on the maintenance policies

The “expected benefits” section of the maintenance policies should be related
to the EB’s objectives or the general goal of maintenance. Since these objec-
tives are typically very high-level, it is not very meaningful to address the EB ob-
jectives directly. Instead, we use a refinement of the objectives: the quality cri-
teria from the evaluation program or the recording methods (e.g., see Fig. 4
and Fig. 5).

3.3 Formalizing Maintenance Policies

The maintenance policies are formalized as maintenance guidelines [32, 31].
Because maintenance guidelines still describe a typical task or pattern of main-
tenance activities, they usually refer to classes/groups of experience packages
and not directly to experience packages. These maintenance guidelines are
used for generating change requests for the experience packages that require
maintenance. For this purpose, the following changes and extensions are made
with respect to maintenance policies:

For the automatic generation of change requests, a partial or complete formal-
ization of the “trigger” is required to allow an automatic tool-based checking
of the trigger. The formalized parts of the trigger can refer to EB’s conceptual
model and contents as well as evaluation results. The part of the trigger than
cannot be formalized is included in the maintenance guideline for manual
checks by the responsible role. In case the actual trigger cannot be formalized
at all, then the respective guideline can be triggered periodically as a reminder
and the actual condition check is done manually by an EF staff member.

The “actions” now refer to the existing descriptions of “standard” mainte-
nance activities as modules (if the required description already exists). EMSIG
provides these modules with its maintenance primitive component. Simple text
is used as glue among the modules or for the remaining parts that are not
“standard.”

A Method for Engineering
Maintenance Knowledge

Copyright © Fraunhofer IESE 2001 12

The “expected benefits” help justify the instantiation of the guideline as
change request (e.g., by cost-benefit issues, quality improvements, the impor-
tance of a scenario) and provide – at least hints – for assigning a priority or im-
portance level to the change request. In addition, the related record and reuse
scenarios are stated to support the estimation of the expected benefits.

The responsible role is stated, to increase flexibility instead of a fixed assign-
ment of experience package changes to the experience engineer and changes
of the conceptual model to the experience manager. If different roles are re-
sponsible for a maintenance policy, this has to be split into several dependent
maintenance guidelines to allow the assignment of the task to several persons.

Since maintenance guidelines usually refer to generic items from the EB (e.g.,
“process descriptions”) or to a generic configuration of items. Therefore, it is
necessary to generate a separate change request for each single experience
package or configuration that is affected.

3.4 Tool Support for Maintenance Policies

To allow the automatic generation of change requests, tool support is essential
for the maintenance guidelines. For this purpose, the maintenance assistance
component of the EB maintenance and evaluation framework EMSIG [32, 31]
can be used. Fig. 6 shows an example of a formalized maintenance guideline
from which a change request has been generated. The reader is referred to
[32] for details on the EMSIG framework and its components.

Maintenance Guideline “Merging Project Process Descriptions with Lessons Learned”
Trigger: cardinality(relationship(Project Process, Lesson Learned)) > 20

Actions: - Decide which of the lessons learned should be integrated ...
[...]
- Aggregate process description(s) and lessons learned.

Expected benefits: [...]
Generated Change Requests: { }

Sub-Concepts of “Experience Case”

Instances of “Experience Case”

Lesson
Learned

Project
Process

Instances of “Maintenance Primitive”

Technique “Decision ...”
Description: [...]

Technique “Aggregate ...”
Description: [...]

Change Request “Merging ...”
Affected: { , , ..., }
Priority:
- Importance: medium
- Deadline: not applicable
Status: new

Project Process
“Execute Project”
Description: ...

Lesson Learned
“...”

Lesson Learned
“...”

- Actions:
- Decide which ...
[...]
- Aggregate ...

Assigned to: Mr. X

in
st

an
ce

in
st

an
ce

1 n

Responsible role:
Experience
Engineer

Figure 6 Example maintenance guideline (for the maintenance policy from Fig. 4) with generated change request -
represented in the integrated conceptual model (Section 4.2).

Integrating Evaluation and
Maintenance for the EB System

Copyright © Fraunhofer IESE 2001 13

4 Integrating Evaluation and Maintenance for the EB System

The maintenance and quality knowledge engineering leads to additional con-
ceptual knowledge and cases that have to be harmonized and integrated with
the conceptual model, the knowledge collection plan, and the evaluation pro-
gram before the EB system is implemented.

Section 4.1 describes the integration of the conceptual model, knowledge col-
lection plan, measurement program, and evaluation plan. Section 4.2 describes
how to integrate the conceptual maintenance and quality knowledge into a
more comprehensive conceptual model. Section 4.3 describes exemplary how
to embed measurement data collection for evaluation into the usage on an EB
system.

4.1 Harmonize & Integrate Conceptual Knowledge, Knowledge Collection Plan, and
Evaluation Program

The task of harmonizing conceptual knowledge, maintenance knowledge, and
quality knowledge has the objective of integrating maintenance and quality
knowledge into the EB system (i.e., into conceptual model and case base).

The integration of the knowledge collection plan and of the evaluation plan is
quite simple. The knowledge collection plan defines when which artifact has to
be collected how by whom [45]. Thus, each entry can be represented as a
maintenance guideline: “when” and “which artifact” describe the condition,
“how to collect” the action, and “by whom” the responsible role. For exam-
ple, if “project[X].end < ‘today’” then “notify experience engineer about task
‘record project experience’ for project[X]”.

The evaluation plan describes when which evaluation of the collected meas-
urement data is performed how and by whom (e.g., when to analyse the col-
lected data using a certain statistical method and when to hold a feedback ses-
sion on the data analysis results with representatives of the users). Thus, the
evaluation plan’s structure is very similar to the knowledge collection plan’s
and it can be represented in the same way.

The measurement plan defines quality metrics as well as manual and automatic
data collection procedures. These metrics and data collection procedures have
to be integrated into conceptual model as well as usage and record scenarios
(e.g., see Section 4.3). The measurement plan itself is not stored in the EB.
There are two reasons: (1) The measurement plan might be kept in a separate

Integrating Evaluation and
Maintenance for the EB System

Copyright © Fraunhofer IESE 2001 14

evaluation tool (e.g., a GQM tool). (2) The measurement plan also refers to EB
aspects that are not part of the conceptual model or case base (e.g., user inter-
face).

In the evaluation, general knowledge is identified about relationships between
variation factors and quality factors. Such knowledge is attached as lessons
learned to the respective parts of the record process/method description. Thus,
the experience engineers are informed about these lessons when they perform
the respective recording.

4.2 Integrating Maintenance and Quality Knowledge into the Conceptual Model

The integrated conceptual model (Fig. 7) integrates experience packages with
maintenance and quality knowledge at the conceptual level. The integrated
conceptual model has been implemented for COIN using the commercial CBR
tool CBR-Works from empolis/tec:inno GmbH (The transition to Orenge, the
successor of CBR-Works, is planned for the first half of 2001).

For each of the different types of maintenance and quality knowledge, a new
top- level case concept is added. With CBR-Works, all top-level case concepts
are sub-concepts of a root concept “Case.” Fig. 7 depicts the types of cases at
the top level, the relationships among the new concepts, and the relationships
to the experience package concepts (i.e., conceptual model of actual experi-
ences) and their respective instances (i.e., actual experience packages). The re-
lationships reflect the structure of the maintenance guidelines and change re-
quests from the EMSIG framework [32, 31]. In addition, the model includes the
relation of a change request to the maintenance guideline it was generated
from, which is necessary for tracking, regardless of whether a change request
has been generated or not.

Measurement Data

Maintenance Guideline

Change RequestMaintenance Primitive

Experience Case

concepts or instances

concepts

concepts or instances
or relationships

trigger

trigger

generation

action
mn

n

1n

m

m

n

actioninstances

Knowledge
Collection Guideline

Evaluation Plan
Guideline

is a

is a

Figure 7 Framework for an integrated conceptual model of an EB including maintenance and quality knowledge
(extended version of the integrated conceptual model from [32]).

The top-level case concepts can be refined and inherited as necessary. For ex-
ample, all the concepts from Fig. 1 (“business process”, “guideline”, “prob-

Integrating Evaluation and
Maintenance for the EB System

Copyright © Fraunhofer IESE 2001 15

lem”, “observation”, “project”, “customer”, etc.) are sub-concepts of “ex-
perience package.” The concept “measurement data” is usually refined to
“measurement data on query results” (e.g., textual feedback on the whole
query result) and “measurement data on cases in query results” (e.g., textual
feedback on the whole query result and perceived usefulness of a retrieved
case [33]). The concept “maintenance guideline” has “knowledge collection
guideline” as sub-concept. These are all the maintenance guidelines that form
the knowledge collection plan. The EF staff can retrieve the knowledge collec-
tion plan from the case base using a simple retrieval on all cases of the
“knowledge collection guideline” concept. Fig. 6 shows -by examples- how
maintenance knowledge is represented using the integrated conceptual model.

4.3 Embedding Evaluation into Usage

Practice has shown that the users’ motivation for entering measurement data
during usage is rather low. A reason for that is certainly that it is not practically
possible to involve all users in the development/definition of the measurement
program.

This means that (a) if possible, measurement data should be collected auto-
matically (i.e., without further user interaction), and (b) the collection of meas-
urement data that can only be collected manually has to be combined with
useful add-on features according to the principle “we want measurement data
from the user, we offer him something.”

An opportunity to smartly combine the collection of measurement data as
feedback with the usage process is to establish a so-called “feedback loop”
(Fig. 8). In the presented example, the collection of feedback is integrated into
the project process in a simple manner. It is part of the project planning, in the
beginning of the project, to identify the existing, relevant experiences in COIN.
This is done using similarity-based retrieval over IESE’s intranet. The project
manager receives as an answer to his query a list of 30 similar experiences,
which he can classify as useful or not useful. With a click, he composes a
checklist of these useful experience for his project. This checklist can be printed
or emailed.

While this classification collects feedback on the estimated/expected usefulness
before the application of the experiences, the project analysis interview is used
for asking about the actual usefulness of the respective experiences. The
analysis of usage and usefulness of the experience packages delivers
information that is used for (1) empirically validating the experience packages
and (2) maintaining the EB.

Integrating Evaluation and
Maintenance for the EB System

Copyright © Fraunhofer IESE 2001 16

Figure 8 Embedding the collection of measurement data in the usage process (example).

Discussion: Engineering
Maintenance and Quality
Knowledge during EB Buildup

Copyright © Fraunhofer IESE 2001 17

5 Discussion: Engineering Maintenance and Quality Knowledge
during EB Buildup

This section discusses how to integrate the method into an EB buildup
methodology (namely DISER [45] and INCREA [15]). This allows to
systematically develop the required maintenance and quality knowledge during
EB buildup. On the one hand, this ensures that the maintenance and quality
knowledge is acquired as early as possible and that the maintenance and
quality needs are considered during the development of the EB in order to
avoid future changes due to maintenance needs identified later than possible.
On the other hand, we observed that the conceptualization usually is not
stable during buildup and prototypical usage [33]. Thus, evaluation and
maintenance should be addressed with low-effort solutions, i.e., generic or
standard components should be used for maintenance and evaluation where
possible and feasible.

Since the development of the EB itself is iterative and does not follow a
waterfall approach, it is not very useful to link the definition and elicitation of
maintenance and quality knowledge too strictly to the EB development
process. In addition, mixing everything can lead to a “cognitive overload” for
the experts involved because they have to make too many decisions with
different background (experience itself, maintenance, evaluation/quality).
Therefore, the development information and artifacts are grouped into three
levels:4 high-level information dealing with the objectives, success criteria, and
subject areas; mid-level information dealing with detailed scenarios, conceptual
model, and record methods; and low-level information dealing with the
technical implementation including the design of the user interface.

The knowledge life-cycle model is considered as high-level information. In
particular, it should be discussed and defined after the subject areas and
before the detailed scenarios because the life-cycle model defines together
with the subject areas –at an abstract level– which types of knowledge and
experience are in the focus of the EB and, thus, have to be addressed by the
detailed scenarios.

The maintenance policies (related to the knowledge life-cycle model or to the
scenarios and conceptual model) are conceptual information. Obviously, they
require that the conceptual model of the actual experience is settled.
Therefore, they should be derived after the definition of the conceptual model
for the actual experience.

4 The terminology is taken from DISER. However, the terms in INRECA are almost the same.

Discussion: Engineering
Maintenance and Quality
Knowledge during EB Buildup

Copyright © Fraunhofer IESE 2001 18

The formalization of the maintenance policies into maintenance guidelines and
the automation is part of the technical implementation of the EB system.

A feedback loop -as presented in Section 4.3- obviously has an impact on the
design of the EB’s user interface and on the knowledge collection. Thus, a
decision on a feedback loop should be made before addressing the latter two
issues.

The measurement plan must be completed before doing the harmonizing task
from Section 4.1 because it is input for this task. For the reasons mentioned
above, a generic standard measurement plan should be used. Such a
measurement program was outlined in [32]. It uses two indicators for the EB
value: sustained usage of the EB and perceived usefulness of the retrieved
cases. Together with the feedback loop from Section 4.3, it has been
implemented for COIN.

A measurement program also includes the definition of a baseline or an
estimation of the quality criteria under focus. For the usage, the expected
number can be determined after defining the scenarios. This also helps to
decide on scenarios that are not relevant due to a low number of expected
uses.

Conclusion

Copyright © Fraunhofer IESE 2001 19

6 Conclusion

In [32, 31], we presented an evaluation and maintenance methodology for
experience bases (EBs). This methodology is based on two ideas: (1) EB
maintenance is driven by systematically conducting and exploiting evaluation.
(2) EB maintenance itself is performed systematically by recording and using
experience gained during maintenance in the form of special maintenance
guidelines.

This paper extends this maintenance and evaluation methodology with a
method for the systematic development of maintenance and evaluation
knowledge during EB buildup. Operational maintenance knowledge is
systematically derived from various sources such as artifacts and information
gained during EB buildup, a knowledge/ experience life-cycle model, and the
evaluation program for the EB. In addition, generic, well-tested maintenance
policies from CBR research and practice should be reused for general aspects
(see [24] for an overview). The maintenance knowledge is formalized further to
enable automated support. For the implementation, the maintenance and
quality knowledge is integrated into the EB. The collection of
quality/measurement data is embedded into the usage to increase the
motivation of the users for providing quality/ measurement data. The
systematic development has the benefit that the maintenance knowledge can
be traced to its roots and that a detailed operational maintenance plan/
strategy is developed. This explicit relation of the maintenance policies and
guidelines to the EF/EB’s objectives and quality criteria ensures that the
maintenance knowledge addresses relevant issues of maintenance. The fine-
tuning of the maintenance knowledge for an EB is an issue of learning about
EB maintenance [32].

We used the presented method for systematically developing maintenance
knowledge for COIN and an industrial EF project in the telecommunication
section. Here we could also transfer maintenance knowledge (in form of
maintenance policies) from one EB to another. This transfer and reuse was
simplified by the similarity of knowledge life-cycle model and conceptual model
(at a coarse-grained level).

We also used the GQM method for developing quality knowledge and
transferring this quality knowledge across EFs. We used our experience gained
in [33, 34] to set up evaluation programs for COIN and industrial projects faster
and cheaper. The standard set of metrics allows better comparison of
evaluation results across EFs.

Acknowledgements

Copyright © Fraunhofer IESE 2001 20

As a next step, the proposed integration of the maintenance and quality
engineering methods into the buildup method DISER will be tested.
Furthermore, future work will deal with a systematic analysis of maintenance
reasons and respective actions in a generic knowledge life-cycle model for all
kinds of knowledge and experience (i.e., set of generic maintenance policies
related to the life-cycle model) considering existing maintenance knowledge
and its dimensions [39, 24, 44]. A collection of such knowledge will jump-start
the definition of maintenance policies related to the knowledge life-cycle
model of EBs.

Acknowledgements

The COIN project has been funded as an internal project at IESE since January
2000.

References

Copyright © Fraunhofer IESE 2001 21

References

[1] Aamodt, A. Towards robust expert systems that learn from experience - an architectural
framework. In Boose, J., Gaines, B., and Ganascia, J.-G., editors, Proceedings of the Third
European Workshop on Knowledge Acquisition for Knowledge Based Systems, pages
311– 326, 1989.

[2] Abecker, A., Decker, S., and Kühn, O. Organizational memory (in German). Informatik-
Spektrum, 21(4):213–214, Aug. 1998.

[3] Aha, D., and Weber, R., editors. Proceedings of the Workshop on Intelligent Lessons
Learned Systems at 17th Na¦tional Conference on AI (AAAI-00), 2000.

[4] Aha, D. W. The AAAI-99 KM/CBR workshop: Summary of contributions. In Proceedings of
the ICCBR 99 Workshops, pages II–37–II–44. Department of Computer Sci¦ence, University
of Kaiserslautern: Centre for Learning Systems and Applications, 1999. Technical Report,
LSA-99-03E.

[5] Althoff, K.-D. Case-based reasoning. In Chang, S. K., editor, Handbook of Software Engi-
neering and Knowledge Engineering, volume 1. World Scientific, 2001. (to appear).

[6] Althoff, K.-D., Birk, A., Hartkopf, S., Müller, W., Nick, M., Surmann, D., and Tautz, C.
Systematic population, utilization, and maintenance of a repository for comprehensive re-
use. In Ruhe, G., and Bomarius, F., editors, Learning Software Organizations - Methodol-
ogy and Applications, number 1756 in Lecture Notes in Computer Science, pages 25–50.
Springer Verlag, Heidelberg, Germany, 2000.

[7] Althoff, K.-D., Bomarius, F., and Tautz, C. Using case-based reasoning technology to
build learning organizations. In Proceedings of the the Workshop on Organizational
Memories at the European Conference on Artificial Intelligence ’98, Brighton, England,
Aug. 1998.

[8] Althoff, K.-D., Kockskämper, S., Maurer, F., Stadler, M., and Wess, S. Ein system zur fall-
basierten wissensverarbeitung in technischen diagnosesituationen. In Retti, J., and Leidl-
meier, K., editors, 5th Austrian Artificial-Intelligence-Conference, pages 65–70. Springer
Verlag, 1989.

[9] Althoff, K.-D., Nick, M., and Tautz, C. Improving organizational memories through user
feedback. In Workshop on Learning Software Organisations at SEKE’99, Kaiserslautern,
Germany, June 1999.

[10] Althoff, K.-D., and Wess, S. Case-based reasoning and expert system development. In
Schmalhofer, F., Strube, G., and Wetter, T., editors, Contemporary Knowledge Engineer-
ing and Cognition, pages 146–158. Springer Verlag, 1992.

[11] Bartsch-Spörl, B. Ansätze zur Behandlung von fallorientiertem Erfahrungswissen in Ex-
pertensystemen. Künstliche Intelligenz, 4:32–36, 1987.

[12] Basili, V. R., Caldiera, G., and Rombach, H. D. Experience Factory. In Marciniak, J. J.,
editor, Encyclopedia of Software Engineering, volume 1, pages 469–476. John Wiley &
Sons, 1994.

[13] Basili, V. R., and Rombach, H. D. The TAME Project: Towards improvement–oriented
software environments. IEEE Transactions on Software Engineering, SE-14(6):758–773,
June 1988.

References

Copyright © Fraunhofer IESE 2001 22

[14] Bergmann, R. Experience management - foundations, development methodology, and in-
ternet-based applications. Postdoctoral thesis (submitted), Department of Computer Sci-
ence, University of Kaiserslautern, 2001.

[15] Bergmann, R., Breen, S., Göker, M., Manago, M., and Wess, S. Developing Industrial
Case-Based Reasoning Applications – The INRECA Methodology. Springer Verlag, 1999.

[16] Birk, A., and Tautz, C. Knowledge management of software engineering lessons learned.
In Proceedings of the Tenth Conference on Software Engineering and Knowledge Engi-
neering, San Francisco Bay, CA, USA, June 1998. Knowledge Systems Institute, Skokie,
Illinois, USA.

[17] Buglione, L., and Abran, A. Balanced scorecards and GQM: What are the differences? In
Proceedings of the Third European Software Measurement Conference (FESMA-AEMES
2000), Madrid, Spain, Oct. 2000.

[18] Davenport, T. H., and Prusak, L. Working Knowledge. How Organizations Manage What
They Know. Harvard Business School Press, Boston, USA, 1998.

[19] Goodall, A. Survey of knowledge management tools - part i & ii. Intelligence in Industry,
8, January/February 1999.

[20] Hammer, M., and Champy, J. Reengineering the Corporation. Nicolas Brealey Publishing,
London, 1993.

[21] Johansson, C., Hall, P., and Coquard, M. "talk to paula and peter - they are experienced"
- the experience engine in a nutshell. In Ruhe, G., and Bomarius, F., editors, Learning
Software Organi¦zations - Methodology and Applications, number 1756 in Lecture Notes
in Computer Science, pages 171–185. Springer Verlag, 2000.

[22] Kaplan, R. S., and Norton, D. P. The Balanced Scorecard. Translating Strategy into Action.
Harvard Business School Press, Boston, 1996.

[23] Leake, D. B., Smyth, B., Wilson, D. C., and Yang, Q., editors. Computational Intelligence
special is¦sue on maintaining CBR systems, 2001. (to appear).

[24] Leake, D. B., and Wilson, D. C. Categorizing case-base maintenance: Dimensions and di-
rections. In Smyth, B., and Cunningham, P., editors, Advances in Case-Based Reason-
ing:Proceedings of the Fourth European Workshop on Case-Based Reasoning, pages 196–
207, Berlin, Germany, Sept. 1998. Springer-Verlag.

[25] Lehner, F. Organisational Memory - Konzepte und Systeme für das organisatorische
Lernen und das Wissensmanagement. Carl Hanser Verlag, 2000.

[26] McKenna, E., and Smyth, B. Competence-guided editing methods for lazy learning. In
Horn, W., editor, Proceedings of the 14th European Conference on Artificial Intelligence.
IOS Press, Berlin, Germany, 2000.

[27] Menzies, T. "knowledge maintenance: The state of the art". "The Knowledge Engineering
Review", 1998.

[28] Minor, M., Funk, P., Roth-Berghofer, T., and Wilson, D., editors. Proceedings of the
Workshop on Flexible Strategies for Maintaining Knowledge Containers at the 14th Euro-
pean Conference on Artificial Intelligence (ECAI 2000), Aug. 2000.

[29] Minor, M., and Hanft, A. Corporate knowledge editing with a life cycle model. In
Proceedings of the Eighth German Workshop on Case-Based Reasoning, Laemmerbuckel,
Germany, 2000.

[30] Müller, M. Interestingness during the discovery of knowledge in databases (in German).
Künstliche Intelligenz, pages 40–42, Sept. 1999.

References

Copyright © Fraunhofer IESE 2001 23

[31] Nick, M., and Althoff, K.-D. Systematic evaluation and maintenance of experience bases.
In Minor, M., editor, ECAI Workshop Notes: Flexible Strategies for Maintaining Knowl-
edge Containers, Berlin, Germany, 2000.

[32] Nick, M., Althoff, K.-D., and Tautz, C. Systematic maintenance of corporate experience
repositories. Computational Intelligence special issue on maintaining CBR systems, 2000.
(accepted).

[33] Nick, M., and Feldmann, R. Guidelines for evaluation and improvement of reuse and ex-
perience repository systems through measurement programs. In FESMA-AEMES 2000,
Madrid, Spain, Oct. 2000.

[34] Nick, M., and Tautz, C. Practical evaluation of an organizational memory using the goal-
question-metric technique. In XPS’99: Knowledge-Based Systems - Survey and Future Di-
rections. Springer Verlag, Würzburg, Germany, Mar. 1999. LNAI Nr. 1570.

[35] Nonaka, I. The knowledge-creating company. Harvard Business Review, 69(6):96–104,
No¦vember/December 1991.

[36] Plaza, E., and de Mantaras, R. L. A case-based apprentice that learns from fuzzy ex-
am¦ples. In Ras, Zemankova, E., editor, Methodologies for Intelligent Systems, volume 5,
pages 420–427. North Holland, 1990.

[37] Reinartz, T., Iglezakis, I., and Roth-Berghofer, T. On quality measures for case base main-
tenance. In Blanzieri, E., and Portinale, L., editors, Advances in Case-Based Reason-
ing:Proceedings of the Fifth European Workshop on Case-Based Reasoning, pages 247–
259. Springer-Verlag, 2000.

[38] Richter, M. M. Introduction. In Lenz, M., Bartsch-Spörl, B., Burkhard, H.-D., and Wess, S.,
editors, Case-Based Reasoning Technologies: From Foundations to Applications, number
1400 in Lecture Notes in Artificial Intelligence, chapter 1, pages 1–15. Springer- Verlag,
Berlin, Germany, 1998.

[39] Rombach, H. D. Keynote: Maintenance of software development/maintenance know-
how. In Proceedings of the International Conference on Software Maintenance, 1995.

[40] Romhardt, K. Die Organisation aus der Wissensperspektive - Möglichkeiten und Grenzen
der Intervention. Gabler Verlag, Wiesbaden, 1998.

[41] Ruhe, G. Learning software organisations. In Chang, S. K., editor, Handbook of Software
Engineering and Knowledge Engineering, volume 1. World Scientific, 2001. (to appear).

[42] Sary, C. Recall prototype lessons learned writing guide. Technical Report 504-SET-95/
003, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, Dec. 1995.

[43] Schank, R. C. Dynamic Memory: A Theory of Learning in Computers and People. Cam-
bridge University Press, 1982.

[44] Swanson, E. B. The dimensions of maintenance. In Proceedings of the Second Internation-
al Conference on Software Engineering, pages 492–497, 1976.

[45] Tautz, C. Customizing Software Engineering Experience Management Systems to Organ-
izational Needs. PhD thesis, University of Kaiserslautern, Germany, 2000.

[46] Tautz, C., Althoff, K.-D., and Nick, M. A case-based reasoning approach for managing
qualitative experience. In AAAI-00 Workshop on Intelligent Lessons Learned Systems,
2000.

[47] van Heijst, G., van der Speck, R., and Kruizinga, E. Organizing corporate memories. In
Proceedings of the Tenth Banff Knowledge Acquisition for Knowledge-Based Systems
Workshop, 1996. URL http://ksi.cpsc.ucalgary.ca/KAW/KAW96/vanheijst/HTMLDOC.html.

Document Information

Copyright 2001, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means includ-
ing, without limitation, photocopying, recording,
or otherwise, without the prior written permission
of the publisher. Written permission is not needed
if this publication is distributed for non-commercial
purposes.

Title: Engineering Experience
Base Maintenance Knowl-
edge

Date: March 17, 2001
Report: IESE-01.01/E
Status: Final
Distribution: Public

