Skip to main content

RNA-Sequence-Structure Properties and Selenocysteine Insertion

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis (IDA 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2189))

Included in the following conference series:

  • 1131 Accesses

Abstract

Selenocysteine (Sec) is a recently discovered 21st amino acid. Selenocysteine is encoded by the nucleotide triplet UGA, which is usually interpreted as a STOP signal. The insertion of selenocysteine requires an additional signal in form of a SECIS-element (Selenocysteine Insertion Sequence). This is an mRNA-motif, which is defined by both sequencerelated and structure-related properties.

The bioinformatics problem of interest is to design new selenoproteins (i.e., proteins containing selenocysteine), since seleno variants of proteins are very useful in structure analysis. When designing new bacterial selenoproteins, one encounters the problem that the SECIS-element itself is translated (and therefore encodes a subsequence of the complete protein). Hence, changes on the level of mRNA made in order to generate a SECIS-element will also modify the amino acid sequence. Thus, one searches for an mRNA that is maximally similar to a SECIS-element, and for which the encoded amino acid sequence is maximally similar to the original amino acid sequence. In addition, it must satisfy the constraints imposed by the structure.

Though the problem is NP-complete if arbitrary structural constraints are allowed, it can be solved efficiently when we consider the structures as used in SECIS-elements. The remaining problem is to generate a description of the SECIS-element (and its diversity) based on the available data.

Partially supported by the DFG within the national program SPP 1087 “Selenoprotein - Biochemische Grundlagen und klinische Bedeutung”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rolf Backofen, N.S. Narayanaswamy, and Firas Swidan. On the complexity of protein similarity search under mRNA structure constraints. 2001. submitted.

    Google Scholar 

  2. Rolf Backofen, N.S. Narayanaswamy, and Firas Swidan. Protein similarity search under mRNA structural constraints: application to selenocysteine incorporation. 2001. submitted.

    Google Scholar 

  3. J. K. Baker. Trainable grammars for speech recognition. In Speech Communication Papers for the 97th Meeting of the Acoustical Society of America, pages 547–550, 1979.

    Google Scholar 

  4. A. Bck, K. Forchhammer, J. Heider, and C. Baron. Selenoprotein synthesis: an expansion of the genetic code. Trends Biochem Sci, 16(12):463–467, 1991.

    Article  Google Scholar 

  5. Michael P.S. Brown. Small subunit ribosomal RNA modeling using stochastic context-free grammars. In ISMB 2000, pages 57–66, 2000.

    Google Scholar 

  6. M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary change in proteins. In M. O. Dayhoff, editor, Atlas of Protein Sequence and Structure, volume 5, supplement 3, pages 345–352. National Biomedical Research Foundation, Washington, DC, 1978.

    Google Scholar 

  7. Mathews DH, Sabina J, Zuker M, and Turner DH. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol, 288(5):911-40, 1999.

    Article  Google Scholar 

  8. S. R. Eddy and R. Durbin R. RNA sequence analysis using covariance models. Nucleic Acids Research, 22(11):2079–2088, 1994.

    Article  Google Scholar 

  9. P. J. Farabaugh. Programmed translational frameshifting. Microbiology and Molecular Biology Reviews, 60(1):103–134, 1996

    Google Scholar 

  10. D. P. Giedroc, C. A. Theimer, and P. L. Nixon. Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting. Journal of Molecular Biology, 298(2):167–186, 2000.

    Article  Google Scholar 

  11. Leslie Grate. Automatic RNA secondary structure determination with stochastic context-free grammars. In Proc. of the 3th Int. Conf. on Intelligent Systems for Molecular Biology (ISMB’95), pages 136–144, Cambridge, England, 1995. AAAI Press.

    Google Scholar 

  12. Leslie Grate, Mark Herbster, Richard Hughey, David Haussler, Saira Mian, and Harry Noller. RNA modeling using gibbs sampling and stochastic context free grammars. In Proc. of the 2th Int. Conf. on Intelligent Systems for Molecular Biology (ISMB’94), pages 138–146, Stanford, California, 1994. AAAI Press.

    Google Scholar 

  13. Stephane Hazebrouck, Luc Camoin, Zehava Faltin, Arthur Donny Strosberg, and Yuval Eshdat. Substituting selenocysteine for catalytic cysteine 41 enhances enzymatic activity of plant phospholipid hydroperoxide glutathione peroxidase expressed in escherichia coli. Journal of Biological Chemistry, 275(37):28715–28721, 2000.

    Article  Google Scholar 

  14. I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, and P. Schuster. Fast folding and comparison of RNA secondary structures. Monatshefte f. Chemie, 125:167–188, 1994.

    Article  Google Scholar 

  15. Alexander Httenhofer and August Bck. RNA structures involved in selenoprotein synthesis. In R. W. Simons and M. Grunberg-Manago, editors, RNA Structure and Function, pages 903-639. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, 1998.

    Google Scholar 

  16. Gorodkin J, Heyer LJ, and Stormo GD. Finding the most significant common sequence and structure motifs in a set of RNA sequences. Nucleic Acids Res, 25(18):3724-32, 1997.

    Article  Google Scholar 

  17. Gorodkin J, Stricklin SL, and Stormo GD. Discovering common stem-loop motifs in unaligned RNA sequences. Nucleic Acids Res, 29(10):2135-44, 2001.

    Article  Google Scholar 

  18. Stefanie J. Klug, Alexander Httenhofer, and Michael Famulok. In vitro selection of RNA aptamers that bind special elongation factor SelB, a protein with multiple RNA-binding sites, reveals one major interaction domain at the carboxyl terminus. RNA, 5:1180–1190, 1999.

    Article  Google Scholar 

  19. Stefanie J. Klug, Alexander Httenhofer, Matthias Kraomayer, and Michael Famulok. In vitro and in vivo characterization of novel mRNA motifs that bind special elongation factor SelB. Proc. Natl. Acad. Sci. USA, 94(13):6676–6681, 1997.

    Article  Google Scholar 

  20. G. V. Kryukov, V. M. Kryukov, and V. N. Gladyshev. New mammalian selenocysteine-containing proteins identified with an algorithm that searches for selenocysteine insertion sequence elements. J Biol Chem, 274(48):33888–33897, 1999.

    Article  Google Scholar 

  21. K. Lari and S.J. Young. Applications of stochastic context-free grammars using the inside-outside algorithm. Computer Speech and Language, 5:237–257, 1991.

    Article  Google Scholar 

  22. Z. Liu, M. Reches, I. Groisman, and H. Engelberg-Kulka. The nature of the minimal’ selenocysteine insertion sequence’ (secis) in escherichia coli. Nucleic Acids Research, 26(4):896–902, 1998.

    Article  Google Scholar 

  23. Susan C. Low and Marla J. Berry. Knowing when not to stop: selenocysteine incorporation in eukaryotes. Trends in Biochemical Sciences, 21(6):203–208, 1996.

    Article  Google Scholar 

  24. Zuker M and Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res, 9(1):133-48, 1981.

    Article  Google Scholar 

  25. Ruth Nussinov, George Pieczenik, Jerrold R. Griggs, and Daniel J. Kleitman. Algorithms for loop matchings. SIAM Journal on Applied Mathematics, 35(1):68–82, July 1978.

    Article  MATH  MathSciNet  Google Scholar 

  26. Yasubumi Sakakibara, Michael Brown, Richard Hughey, I. Saira Mian, Kimmen Sjolander, Rebecca C. Underwood, and David Haussler. Recent methods for RNA modeling using stochastic context-free grammars. In Proc. 5th Symp. Combinatorical Pattern Matching, 1994.

    Google Scholar 

  27. Yasubumi Sakakibara, Michael Brown, Richard Hughey, I. Saira Mian, Kimmen Sjolander, Rebecca C. Underwood, and David Haussler. Stochastic context-free grammars for tRNA modeling. Nucleic Acids Research, 22(23):5112–5120, 1994.

    Article  Google Scholar 

  28. C. Tuerk and L. Gold. Systematic evolution of ligands by exponential enrichment-RNA ligands to bacteriophage-T4 DNA-polymerase. Science, 249(4968):505–510, 3 1990.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Backofen, R. (2001). RNA-Sequence-Structure Properties and Selenocysteine Insertion. In: Hoffmann, F., Hand, D.J., Adams, N., Fisher, D., Guimaraes, G. (eds) Advances in Intelligent Data Analysis. IDA 2001. Lecture Notes in Computer Science, vol 2189. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44816-0_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-44816-0_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42581-6

  • Online ISBN: 978-3-540-44816-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics