Skip to main content

Feature Lines Reconstruction for Reverse Engineering

  • Conference paper
  • First Online:
Digital Earth Moving

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2181))

  • 346 Accesses

Abstract

This paper addresses the reconstruction of an object shape model from a set of digitized profiles, or scanlines. The reconstruction is approached in two main phases. Firstly, a hierarchical simplification of the original data set is performed which is aimed at discarding irrelevant data and at providing different levels of detail of the data set. Secondly, a shape signature is computed to characterize the shape of each profile and to reconstruct important feature lines. Feature lines can be used to delimitate meaningful surface patches on the reconstructed mesh (segmentation). Even if the proposed approach is presented in the specific context of Reverse Engineering, its application and usefulness is more general as it will be discussed for the geographical domain.

Acknowledgements

The authors would like to thank the Technimold S.r.l., Genoa-Italy for the fruitful co-operation during the Project “Definition of New Technologies for Reverse Engineering” and for the data provided for this work. Special thanks are given to Dr.Corrado Pizzi, IMA-CNR, for the valuable help and support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attene, M. Spagnuolo, M.: Automatic surface reconstruction from point sets in space, Computer Graphics Forum, (2000), 19(3)

    Google Scholar 

  2. Atteneave, F.: Some information aspects of visual perception. Psycological Review, Vol. 61, n. 3 (1954), 183–193.

    Article  Google Scholar 

  3. Ballard, D.H.: Strip-trees: A hierarchical representation for curves. Communication of the Association for Computing Machinery, 3 (1986), 2–14.

    Google Scholar 

  4. Buttenfield, B.P.: A rule for describing line feature geometry. In B.P. Buttenfield R. McMaster (eds) Map generalization, Chapter 3, (1997), 150–171.

    Google Scholar 

  5. Douglas, D.M., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. The Canadian Cartographer, 10/2, 1973, 112–122.

    Google Scholar 

  6. Eck, M., Hoppe, H.: Automatic reconstruction of B-spline surfaces of arbitrary topological type. Computer Graphics, SIGGRAPH’ 96, August 96, New Orleans, Louisiana, 99–108.

    Google Scholar 

  7. Falcidieno, B., Spagnuolo, M.: Shape abstraction tools for modeling complex objects. Proc. of the International Conference on Shape Modeling and Applications, 1997, IEEE Computer Society Press, Los Alamos, CA.

    Google Scholar 

  8. Fisher, A.: A multi-level for reverse engineering and rapid prototyping in remote CAD systems. Computer Aided Design 32 (2000), 27–38.

    Article  Google Scholar 

  9. Guo, B.: Surface reconstruction from point to splines. Computer-Aided Design, Vol. 29, n. 4, (1997), 269–277.

    Article  Google Scholar 

  10. Hershberger, V., Snoeyink, J.: Speeding up the Douglas Peucker line simplification algorithm. Proc. 5th Intl. Symp. on Spatial Data Handling, Vol.1, Charleston, SC, (1992), 134–143.

    Google Scholar 

  11. Hoffman, D., Richards, W.: Representing smooth plane curves for visual recognition. Proc. of American Association for Artificial Intelligence, Cambridge, MA: MIT Press (1982), 5–8.

    Google Scholar 

  12. Hoschek, J., Dietz, U., Wilke, W.: A geometric concept of reverse engineering of shape: approximation and feature lines. In: M. Daehlen, Lynche T. and Schumaker LL. (eds): Mathematical methods for curves and surfaces II, Vanderbilt University Press,(1998) Nashville.

    Google Scholar 

  13. Jiang, X.Y., Bunke, H.: Fast Segmentation of Range Images into Planar Regions by ScanLine Grouping. Machine Vision and Applications, Vol. 7, No. 2, 1994.

    Google Scholar 

  14. R. McMaster. A statistical analysis of mathematical measures for linear simplification. The American Cartographer 13, 2 (1986), 103–117.

    Article  Google Scholar 

  15. Patané, G., Pizzi, C., Spagnuolo, M.: Multiresolution compression ad feature lines reconstruction for Reverse Engineering. Proc. of the 5th Central European School on Computer Graphic, CESCG2001, April 2001, Bratislava 2001, 151–162. URI: http://www.isternet.sk/sccg/main_frames.html.

  16. Patrikalakis, N. M., Fortier, P.J., Ioannidis, Y., Nikdaon, C.N, Robinson, A. R., Rossignac, J. R., Vinacua, A., Abrams, S. L.: Distributed Information and Computation in Scientific and Engineering Enviroments. M.I.T 1998.

    Google Scholar 

  17. Plazanet, C.: Modelling Geometry for Linear Feature Generalization. In: M. Craglia, H. Coucleis (eds), Bridging the Atlantic, Taylor & Francis (1997), 264–279.

    Google Scholar 

  18. Plazanet, C., Spagnuolo, M.: Seafloor Valley Shape Modelling. Proc. of Spatial Data Handling, Vancouver, (1998).

    Google Scholar 

  19. Raviola, A., Spagnuolo, M.: Shape-based Surface Reconstruction from Profiles for Rapid/Virtual Prototyping. Proc. of Numerisation 3D, Paris 1999.

    Google Scholar 

  20. Spagnuolo, M.: Shape-based Reconstruction of Natural Surfaces: an Application to the Antarctic Sea-Floor. In M. Craglia, H. Coucleis (eds), Bridging the Antarctic, Taylor & Francis (1997).

    Google Scholar 

  21. Saux, E.: Lissage de courbes pur des B-splines, application á la compression et á la généralisation cartographique. PhD Thesis, Nantes University, France, January 1999.

    Google Scholar 

  22. Tang L.: Automatic Extraction of specific geomorphologic elements from contours. Proc. of Spatial Data Handling, Charleston, SC, USA (1992) 554–566

    Google Scholar 

  23. Varaday, T., Martin, R., Cox, J.: Reverse engineering of geometric models, an introduction. Computer Aided Design, Vol. 29, No. 4, (1997), 255–268.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raviola, A., Spagnuolo, M., Patané, G. (2001). Feature Lines Reconstruction for Reverse Engineering. In: Westort, C.Y. (eds) Digital Earth Moving. Lecture Notes in Computer Science, vol 2181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44818-7_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-44818-7_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42586-1

  • Online ISBN: 978-3-540-44818-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics