Skip to main content

Dynamical Systems Generated by Rational Functions

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2643))

Abstract

We consider dynamical systems generated by iterations of rational functions over finite fields and residue class rings. We present a survey of recent developments and outline several open problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998.

    MATH  Google Scholar 

  2. G. Barat, T. Downarowicz and P. Liardet, Dynamiques associées à une échelle de numération, Acta Arith. 103, 41–78 (2002).

    MATH  MathSciNet  Google Scholar 

  3. V. Berthé and H. Nakada, On continued fraction expansions in positive characteristic: equivalence relations and some metric properties, Expositiones Math. 18, 257–284 (2000).

    MATH  Google Scholar 

  4. L. Blum, M. Blum and M. Shub, A simple unpredictable pseudo-random number generator, SIAM J. Computing 15, 364–383 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  5. T. Cochrane, Exponential sums modulo prime powers, Acta Arith. 101, 131–149 (2002).

    MATH  MathSciNet  Google Scholar 

  6. T. Cochrane, C. Li and Z.Y. Zheng, Upper bounds on character sums with rational function entries, Acta Math. Sinica (English Ser.) 19, 1–11 (2003).

    Article  Google Scholar 

  7. T. Cochrane and Z.Y. Zheng, Pure and mixed exponential sums, Acta Arith. 91, 249–278 (1999).

    MATH  MathSciNet  Google Scholar 

  8. T. Cochrane and Z.Y. Zheng, Exponential sums with rational function entries, Acta Arith. 95, 67–95 (2000).

    MATH  MathSciNet  Google Scholar 

  9. T. Cochrane and Z.Y. Zheng, On upper bounds of Chalk and Hua for exponential sums, Proc. Amer. Math. Soc. 129, 2505–2516 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  10. T. Cochrane and Z.Y. Zheng, A survey on pure and mixed exponential sums modulo prime powers, Number Theory for the Millennium (M.A. Bennett et al., eds.), vol. 1, pp. 271–300, A.K. Peters, Natick, MA, 2002.

    Google Scholar 

  11. S.D. Cohen, H. Niederreiter, I.E. Shparlinski and M. Zieve, Incomplete character sums and a special class of permutations, J. Théorie des Nombres Bordeaux 13, 53–63 (2001).

    MATH  MathSciNet  Google Scholar 

  12. R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer-Verlag, New York, 2001.

    Google Scholar 

  13. J. Eichenauer-Herrmann, E. Herrmann and S. Wegenkittl, A survey of quadratic and inversive congruential pseudorandom numbers, Monte Carlo and Quasi-Monte Carlo Methods 1996 (H. Niederreiter et al., eds.), Lect. Notes in Stat., vol. 127, pp. 66–97, Springer-Verlag, New York, 1998.

    Google Scholar 

  14. G. Everest and T. Ward, Heights of Polynomials and Entropy in Algebraic Dynamics, Springer-Verlag, London, 1999.

    MATH  Google Scholar 

  15. M. Flahive and H. Niederreiter, On inversive congruential generators for pseudorandom numbers, Finite Fields, Coding Theory, and Advances in Communications and Computing (G.L. Mullen and P.J.-S. Shiue, eds.), pp. 75–80, Marcel Dekker, New York, 1993.

    Google Scholar 

  16. P. Flajolet and A.M. Odlyzko, Random mapping statistics, Advances in Cryptology — EUROCRYPT’ 89 (J.-J. Quisquater and J. Vandewalle, eds.), Lect. Notes in Comp. Sci., vol. 434, pp. 329–354, Springer-Verlag, Berlin, 1990.

    Google Scholar 

  17. L. Flatto, Z-numbers and β-transformations, Symbolic Dynamics and Its Applications, Contemporary Math., vol. 135, pp. 181–201, Amer. Math. Soc., Providence, RI, 1992.

    Google Scholar 

  18. L. Flatto, J.C. Lagarias and B. Poonen, The zeta function of the beta transformation, Ergodic Theory Dynam. Systems 14, 237–266 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  19. J.B. Friedlander, J. Hansen and I.E. Shparlinski, Character sums with exponential functions, Mathematika 47, 75–85 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  20. J.B. Friedlander, J. Hansen, and I.E. Shparlinski, On the distribution of the power generator modulo a prime power, Proc. DIMACS Workshop on Unusual Applications of Number Theory 2000, Amer. Math. Soc., Providence, RI (to appear).

    Google Scholar 

  21. J.B. Friedlander, S.V. Konyagin and I.E. Shparlinski, Some doubly exponential sums over ℤm, Acta Arith. 105, 349–370 (2002).

    MATH  MathSciNet  Google Scholar 

  22. J.B. Friedlander, D. Lieman and I.E. Shparlinski, On the distribution of the RSA generator, Sequences and Their Applications (C. Ding, T. Helleseth and H. Niederreiter, eds.), pp. 205–212, Springer-Verlag, London, 1999.

    Google Scholar 

  23. J.B. Friedlander, C. Pomerance and I.E. Shparlinski, Period of the power generator and small values of Carmichael’s function, Math. Comp. 70, 1591–1605 (2001).

    Article  MathSciNet  Google Scholar 

  24. J.B. Friedlander and I.E. Shparlinski, On the distribution of the power generator, Math. Comp. 70, 1575–1589 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  25. S. Gao, Elements of provable high orders in finite fields, Proc. Amer. Math. Soc. 127, 1615–1623 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  26. F. Griffin, H. Niederreiter and I.E. Shparlinski, On the distribution of nonlinear recursive congruential pseudorandom numbers of higher orders, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (M. Fossorier et al., eds.), Lect. Notes in Comp. Sci., vol. 1719, pp. 87–93, Springer-Verlag, Berlin, 1999.

    Chapter  Google Scholar 

  27. J. Gutierrez and D. Gomez-Perez, Iterations of multivariate polynomials and discrepancy of pseudorandom numbers, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (S. Boztaş and I.E. Shparlinski, eds.), Lect. Notes in Comp. Sci., vol. 2227, pp. 192–199, Springer-Verlag, Berlin, 2001.

    Chapter  Google Scholar 

  28. J. Gutierrez, H. Niederreiter and I.E. Shparlinski, On the multidimensional distribution of inversive congruential pseudorandom numbers in parts of the period, Monatsh. Math. 129, 31–36 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  29. K. Huber, On the period length of generalized inversive pseudorandom number generators, Applicable Algebra Engrg. Comm. Comput. 5, 255–260 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  30. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, 1995.

    MATH  Google Scholar 

  31. A. Klapper, The distribution of points in orbits of PGL2(GF(q)) acting on GF(q n), Finite Fields, Coding Theory, and Advances in Communications and Computing (G.L. Mullen and P.J.-S. Shiue, eds.), pp. 430–431, Marcel Dekker, New York, 1993.

    Google Scholar 

  32. D.E. Knuth, The Art of Computer Programming, vol. 2, 3rd ed., Addison-Wesley, Reading, MA, 1998.

    Google Scholar 

  33. J.C. Lagarias, Pseudorandom number generators in cryptography and number theory, Cryptology and Computational Number Theory (C. Pomerance, ed.), Proc. Symp. in Appl. Math., vol. 42, pp. 115–143, Amer. Math. Soc., Providence, RI, 1990.

    Google Scholar 

  34. J.C. Lagarias, Number theory and dynamical systems, The Unreasonable Effectiveness of Number Theory, Proc. Symp. in Appl. Math., vol. 46, pp. 35–72, Amer. Math. Soc., Providence, RI, 1992.

    Google Scholar 

  35. J.C. Lagarias, H.A. Porta and K.B. Stolarsky, Asymmetric tent map expansions. I. Eventually periodic points, J. London Math. Soc. 47, 542–556 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  36. J.C. Lagarias, H.A. Porta and K.B. Stolarsky, Asymmetric tent map expansions. II. Purely periodic points, Illinois J. Math. 38, 574–588 (1994).

    MATH  MathSciNet  Google Scholar 

  37. R. Lidl, G.L. Mullen and G. Turnwald, Dickson Polynomials, Longman, Harlow, 1993.

    MATH  Google Scholar 

  38. R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  39. C.J. Moreno and O. Moreno, Exponential sums and Goppa codes: I, Proc. Amer. Math. Soc. 111, 523–531 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  40. P. Morton, Periods of maps on irreducible polynomials over finite fields, Finite Fields Appl. 3, 11–24 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  41. P. Morton, Arithmetic properties of periodic points of quadratic maps. II, Acta Arith. 87, 89–102 (1998).

    MATH  MathSciNet  Google Scholar 

  42. P. Morton and J.H. Silverman, Rational periodic points of rational functions, Internat. Math. Res. Notices 2, 97–110 (1994).

    Article  MathSciNet  Google Scholar 

  43. P. Morton and J.H. Silverman, Periodic points, multiplicities, and dynamical units, J. Reine Angew. Math. 461, 81–122 (1995).

    MATH  MathSciNet  Google Scholar 

  44. P. Morton and F. Vivaldi, Bifurcations and discriminants for polynomial maps, Nonlinearity 8, 571–584 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  45. W. Narkiewicz, Polynomial Mappings, Lect. Notes in Math., vol. 1600, Springer-Verlag, Berlin, 1995.

    MATH  Google Scholar 

  46. H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84, 957–1041 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  47. H. Niederreiter, The probabilistic theory of linear complexity, Advances in Cryptology — EUROCRYPT’ 88 (C.G. Günther, ed.), Lect. Notes in Comp. Sci., vol. 330, pp. 191–209, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  48. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992.

    MATH  Google Scholar 

  49. H. Niederreiter, New developments in uniform pseudorandom number and vector generation, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (H. Niederreiter and P.J.-S. Shiue, eds.), Lect. Notes in Stat., vol. 106, pp. 87–120, Springer-Verlag, New York, 1995.

    Google Scholar 

  50. H. Niederreiter, Design and analysis of nonlinear pseudorandom number generators, Monte Carlo Simulation (G.I. Schuëller and P.D. Spanos, eds.), pp. 3–9, A.A. Balkema Publishers, Rotterdam, 2001.

    Google Scholar 

  51. H. Niederreiter and I.E. Shparlinski, On the distribution and lattice structure of nonlinear congruential pseudorandom numbers, Finite Fields Appl. 5, 246–253 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  52. H. Niederreiter and I.E. Shparlinski, On the distribution of pseudorandom numbers and vectors generated by inversive methods, Applicable Algebra Engrg. Comm. Comput. 10, 189–202 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  53. H. Niederreiter and I.E. Shparlinski, Exponential sums and the distribution of inversive congruential pseudorandom numbers with prime-power modulus, Acta Arith. 92, 89–98 (2000).

    MATH  MathSciNet  Google Scholar 

  54. H. Niederreiter and I.E. Shparlinski, On the distribution of inversive congruential pseudorandom numbers in parts of the period, Math. Comp. 70, 1569–1574 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  55. H. Niederreiter and I.E. Shparlinski, Recent advances in the theory of nonlinear pseudorandom number generators, Monte Carlo and Quasi-Monte Carlo Methods 2000 (K.-T. Fang, F.J. Hickernell and H. Niederreiter, eds.), pp. 86–102, Springer-Verlag, Berlin, 2002.

    Google Scholar 

  56. H. Niederreiter and I.E. Shparlinski, On the average distribution of inversive pseudorandom numbers, Finite Fields Appl. 8, 491–503 (2002).

    MATH  MathSciNet  Google Scholar 

  57. H. Niederreiter and I.E. Shparlinski, On the distribution of power residues and primitive elements in some nonlinear recurring sequences, Bull. Lond. Math. Soc. (to appear).

    Google Scholar 

  58. H. Niederreiter and A. Winterhof, Incomplete exponential sums over finite fields and their applications to new inversive pseudorandom number generators, Acta Arith. 93, 387–399 (2000).

    MATH  MathSciNet  Google Scholar 

  59. H. Niederreiter and A. Winterhof, On the distribution of compound inversive congruential pseudorandom numbers, Monatsh. Math. 132, 35–48 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  60. H. Niederreiter and A. Winterhof, On the lattice structure of pseudorandom numbers generated over arbitrary finite fields, Applicable Algebra Engrg. Comm. Comput. 12, 265–272 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  61. H. Niederreiter and A. Winterhof, On a new class of inversive pseudorandom numbers for parallelized simulation methods, Periodica Math. Hungarica 42, 77–87 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  62. H. Niederreiter and A. Winterhof, On the distribution of points in orbits of PGL(2, q) acting on GF(q n), preprint, 2002.

    Google Scholar 

  63. A.G. Postnikov, Ergodic Problems in the Theory of Congruences and of Diophantine Approximations, Proc. Steklov Inst. Math., vol. 82, Amer. Math. Soc., Providence, RI, 1967.

    Google Scholar 

  64. C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, CRC Press, Boca Raton, FL, 1999.

    MATH  Google Scholar 

  65. J. Schmeling, Symbolic dynamics for β-shifts and self-normal numbers, Ergodic Theory Dynam. Systems 17, 675–694 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  66. K. Schmidt, Dynamical Systems of Algebraic Origin, Progress in Math., vol. 128, Birkhäuser Verlag, Basel, 1995.

    MATH  Google Scholar 

  67. I.E. Shparlinski, Exponential sums in coding theory, cryptology and algorithms, Coding Theory and Cryptology (H. Niederreiter, ed.), pp. 323–383, World Scientific Publ., Singapore, 2002.

    Google Scholar 

  68. J.H. Silverman, The field of definition for dynamical systems on ℙ1, Compositio Math. 98, 269–304 (1995).

    MATH  MathSciNet  Google Scholar 

  69. J.H. Silverman, The space of rational maps on ℙ1, Duke Math. J. 94, 41–77 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  70. S.B. Stečkin, An estimate of a complete rational trigonometric sum (Russian), Trudy Mat. Inst. Steklov. 143, 188–207 (1977).

    MathSciNet  Google Scholar 

  71. G.J. Wirsching, The Dynamical System Generated by the 3n + 1 Function, Lect. Notes in Math., vol. 1681, Springer-Verlag, Berlin, 1998.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Niederreiter, H., Shparlinski, I.E. (2003). Dynamical Systems Generated by Rational Functions. In: Fossorier, M., Høholdt, T., Poli, A. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2003. Lecture Notes in Computer Science, vol 2643. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44828-4_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-44828-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40111-7

  • Online ISBN: 978-3-540-44828-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics