
D. Hogrefe and A. Wiles (Eds.): TestCom 2003, LNCS 2644, pp. 146–162, 2003.
© IFIP 2003

Generating Checking Sequences
for a Distributed Test Architecture

Hasan Ural and Craig Williams

School of Information Technology and Engineering
University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada

{ural,cwilliam}@site.uottawa.ca

Abstract. The objective of testing is to determine whether an implementation
under test conforms to its specification. In distributed test architectures involv-
ing multiple testers, this objective can be complicated by the fact that testers
may encounter problems relating to controllability and observability during the
application of tests. The controllability problem manifests itself when a tester is
required to send the current input and because it did not send the previous input
nor did it receive the previous output it cannot determine when to send the in-
put. The observability problem manifests itself when a tester is expecting an
output in response to either the previous input or the current input and because
it is not the sender of the current input, it cannot determine when to start and
stop waiting for the output. Based on a distinguishing sequence, a checking se-
quence construction method is proposed to yield a sequence that is free from
controllability and observability problems.

1 Introduction

Determining, under certain assumptions, whether a given “black box” implementation
N of a Finite State Machine (FSM) M is functioning correctly is referred to as a fault
detection (checking) experiment. Foundations of fault detection experiments can be
found in sequential circuit testing literature [4, 7]. This experiment is based on an
input sequence called a checking sequence, constructed from a given deterministic
and minimal FSM M with a designated initial state, that determines whether a given
FSM N is a correct or faulty implementation of M. The construction of a checking
sequence must deal with the “black box” nature of the given implementation N, which
allows only limited controllability and observability of N. The limited controllability
refers to not being able to directly transfer N to a designated state and the limited
observability refers to not being able to directly recognize the current state of N. To
overcome the restrictions imposed by the limited controllability and observability,
special input sequences must be utilized in the construction of a checking sequence
such that the output sequences produced by N in response to these input sequences
provide sufficient information to deduce that every state transition of M is imple-
mented correctly by N.

In order to verify the implementation of a transition from state a to b under input x,
1) N must be transferred to the state recognized as a, 2) the input x is applied and the
output produced in response by N must be as specified in M, and 3) the state reached
after the application of x must be recognized as state b. Hence, a crucial part of test-

Generating Checking Sequences for a Distributed Test Architecture 147

ing the correct implementation of each transition is recognizing the starting and ter-
minating states of the transition. The recognition of a state of an FSM M can be
achieved by a distinguishing sequence (DS) [7], a characterization set [7] or a unique
input-output (UIO) sequence [14]. It is known that a distinguishing sequence may not
exist for every minimal FSM [11], and that determining the existence of a distinguish-
ing sequence for an FSM is PSPACE-complete [12]. Nevertheless, based on distin-
guishing sequences, various methods have been proposed in the literature to test
FSMs [5, 7, 18, among others].

Testing an implementation N of an FSM M can be carried out as a fault detection
experiment in some specific test architectures. One such architecture is the distrib-
uted test architecture shown in Figure 1 [9] where the lower interface and the upper
interface of the implementation N may be controlled and observed indirectly by the
lower tester (L) and directly by the upper tester (U), respectively. A similar architec-
ture is given in [10].

Fig. 1. A Distributed Test Architecture

In this architecture, U and L are two remote testers that are required to coordinate

the application of a preset checking sequence. However, this requirement may lead to
controllability and observability problems, in addition to those that stem from the
black box nature of N. The controllability (synchronization) problem manifests itself
when L (or U) is expected to send an input to N after N responds to an input from U
(or L) with an output to U (or L), but L (or U) is unable to determine whether N sent
that output. It is therefore important to construct a synchronizable checking sequence
that causes no controllability problems during its application in the distributed test
architecture. For some FSMs, a checking sequence can be constructed such that no
two consecutive inputs will cause a controllability problem, and hence the coordina-
tion among testers is achieved indirectly through their interactions with N [6]. How-
ever, for some other FSMs, there may not exist a checking sequence in which the
testers can coordinate solely via their interactions with N [6]. In this case it is neces-
sary for testers to communicate directly by exchanging external coordination mes-
sages over a dedicated channel during the application of the checking sequence. An
external coordination message exchange relating to controllability is denoted
<-CL(U), +CU(L)>, where “-CL(U)” denotes the sending of an external coordination mes-

148 Hasan Ural and Craig Williams

sage to tester L(or U) from tester U(or L), and “+CU(L)” denotes the receipt of an exter-
nal coordination message from tester U(or L) by tester L(or U) [2].

During the application of even a synchronizable checking sequence in a distributed
test architecture, the observability problem manifests itself when L (or U) is expected
to receive an output from N in response to either the previous input or the current
input and because L (or U) is not the one to send the current input, L (or U) is unable
to determine when to start and stop waiting. Such observability problems hamper the
detectability of output shift faults in N i.e., an output associated with the current input
is generated by N in response to either the previous input or the next input. To ensure
the detectability of output shift faults in N the checking sequence needs to be aug-
mented either by additional input subsequences selected from FSM M or by external
coordination message exchanges between testers such that during the application of
the checking sequence testers can determine whether the output observed is received
in response to the correct input as specified in M. An external coordination message
exchange relating to observability is denoted <-OL(U), +OU(L)>, where “-OL(U)” denotes
the sending of an external coordination message to tester L(or U) from tester U(or L),
and “+OU(L)” denotes the receipt of an external coordination message from tester U(or
L) by tester L(or U) [2].

This paper proposes a method for constructing a checking sequence that does not
pose controllability and observability problems during its application in a distributed
test architecture. Earlier work on the controllability problem [1, 3, 15, 16, 17] and the
observability problem [2, 13, 19, 20] consider the construction of a test sequence
rather than a checking sequence, except [6, 8] which use UIO sequences for the con-
struction of a checking sequence. It is well known that the complete fault coverage of
a checking sequence cannot always be achieved by a test sequence where transition
verification is not necessarily based on state verification.

The rest of the paper is organized as follows: Related terminology is reviewed in
Section 2. In Section 3, the proposed method is presented along with an illustrative
example. Section 4 concludes with a summary and future research directions.

2 Preliminaries

2.1 FSM and Its Graphical Representation

For ease of presentation and readability, the proposed method will be presented using
a 2-port FSM. The generalization of the method to n-port (n ≥ 2) FSM is simply a
matter of adapting a different notation as the one given in [19]. A 2-port Finite State
Machine (2p-FSM) M = (S, �, �, �, �, s1) where
- S is a finite set of states of M,
- s1 ∈ S is the initial state of M,
- Σ = ΣU ∪ ΣL, where Σ U(L) is the input alphabet of port U (L), and ΣU ∩ ΣL = ∅. Let I

= ΣU ∪ ΣL ∪ {-}, where - means null input,
- Γ = ΓU ∪ ΓL, where ΓU(L) is the output alphabet of port U (L), and ΓU ∩ ΓL = ∅. Let

O = {<aU, aL>  ∃ aU(L) ∈ ΓU(L) ∪ {-} }, where - means null output,
- δ is the transition function that maps S × I to S, i.e., δ: S × I → S, and
- λ is the output function that maps S × I to O, i.e., λ: S × I → O.

Generating Checking Sequences for a Distributed Test Architecture 149

Henceforth, a 2p-FSM M or N will be called simply FSM M or N, respectively.
An FSM M is deterministic if, for each input x ∈ I, there is at most one transition

defined at each state of M. An FSM M is said to be minimal if none of its states are
equivalent (i.e., ∀ si, sj ∈ S, si ≠ sj, ∃ an input sequence X ∈ I* such that λ(si, X) ≠
λ(sj,X)). An FSM M is said to be completely specified if, for each input x ∈ I, there is
a transition defined at each state of M.

An FSM M can be represented by a directed graph G = (V, E) where a set of verti-
ces V represents the set S of states of M, and a set of directed edges E represents all
specified transitions of M. A transition of an FSM M is a triple tjk = (sj, sk; x/y), where
sj, sk ∈ S, x ∈ I, and y ∈ O such that δ(sj , x) = sk, λ(sj, x) = y, and x/y is known as an
input/output pair. Each edge ejk = (vj, vk; x/y) ∈ E represents a state transition from
state sj to state sk with input x and output y where the input/output pair x/y is the label
of ejk, denoted by label(ejk), vj is called the head of ejk, denoted by head(ejk), and vk is
called the tail of ejk, denoted by tail(ejk).

A path P = (v1, v2; x1/y1)(v2, v3; x2/y2)…(vk-1, vk; xk-1/yk-1), k>1, in G = (V, E) is a finite
sequence of adjacent (but not necessarily distinct) edges in G, where v1 and vk are
head(P) and tail(P), and x1/y1, x2/y2, …, xk-1/yk-1 is the label of P, denoted label(P). A
path P is represented by (v1, vk; X/Y) where label(P) = X/Y is the input/output sequence
(x1/y1)(x2/y2)…(xk-1/yk-1), input sequence X = (x1x2…xk-1) is the input portion of X/Y, and
output sequence Y = (y1y2…yk-1) is the output portion of X/Y. The cost or length of
each edge of G is equal to the number of input/output pairs in its label. The cost of a
path (or length of a path) P in G is the sum of the costs (or lengths) of edges included
in P and is denoted cost(P). The first transition (v1, v2; x1/y1) of path P is denoted
first(P) and the last transition last(P). The concatenation of a path A and a path B is
denoted A@B.

A sequence (i1 i2 … ik) is a subsequence of (x1 x2 … xm) if there exists a , 0 � � m-
k, such that for all j, 1 � j � k, ij = xj+ . A sequence (i1 i2 … ik) is a prefix of (x1 x2 … xm)
if ∀ j, 1 � j � k, ij = xj. An FSM M has a reset function if there exists an input r ∈ I
which takes M from any state si to the initial state s1 with a single transition (si, s1;
r/<-,->).

A digraph G = (V, E) is strongly connected if, for any pair of vertices vj and vk,
there exists a path from vj to vk. It is weakly connected if its underlying undirected
graph is connected. A tour of G is a path in G that starts and ends at the same vertex
of G. An Euler tour of G is a tour that contains every edge of E exactly once. A
postman tour (PT) of G is a tour that contains every edge in E at least once. A rural
postman tour (RPT) of G over a set EC ⊆ E is a tour traversing every edge in EC at
least once. A Chinese postman tour (CPT) is a minimum-cost PT. A rural Chinese
postman tour (RCPT) of G over a set EC ⊆ E is a minimum-cost RPT over EC. A rural
postman path (RPP) from vi to vj over EC ⊆ E is a path from vi to vj that includes every
edge in EC. A rural Chinese postman path (RCPP) from vi to vj over EC ⊆ E is a
minimum-cost RPP.

Given a vertex v ∈ V, in-degree(v), is defined as |{(u, v; x/y): (u, v; x/y) ∈ E}| and
out-degree(v), is defined as |{(v, w; x/y): (v, w; x/y) ∈ E}|.

Given an FSM M, an input sequence X is a distinguishing sequence (D) if the out-
put sequence Y produced by M in response to X is different for each state. DS(si)
denotes the transition sequence induced by the application of D at state si. A test seg-

150 Hasan Ural and Craig Williams

ment for a transition tij = (si, sj; x/y) is the transition sequence induced by the applica-
tion of xD at state si.

Given an FSM M, let (M) be the set of FSMs each of which has at most S
states and the same input and output sets as M. Let N be an FSM of (M). N is iso-
morphic to M if there is a one-to-one and onto function f on the state sets of M and N
such that for any state transition (si, sj; x/y) of M, (f(si), f(sj); x/y) is a transition of N.
A checking sequence of M is an input sequence starting at a specific state of M that
distinguishes M from any N of (M) that is not isomorphic to M. In the context of
testing, this means that in response to this input sequence, any faulty implementation
N will produce an output sequence different than the expected output, thereby indicat-
ing the presence of a fault(s).

2.2 Controllability (Synchronization) Problem

Given an FSM M and a global input/output sequence ω = x1/y1 x2/y2 … xm/ym of M,
where xi ∈ I and yi ∈ O, 1 ≤ i ≤ m, a controllability (synchronization) problem occurs
when, in the labels xj/yj and xj+1/yj+1 of any two consecutive transitions, there exists a
tester k that sends xj+1 that is neither the one sending xj nor one of those receiving an
output belonging to yj, 1 ≤ j ≤ m-1.

Given an FSM M and a global input/output sequence ω = x1/y1 x2/y2 … xm/ym of M,
where xi ∈ I and yi ∈ O, 1 ≤ i ≤ m, any two consecutive transitions tij and tjk whose
labels are xj/yj and xj+1/yj+1 form a synchronizable pair of transitions if tjk can follow tij
without causing a synchronization problem. For a transition tij = (vi, vj; xj/yj), each
transition tjk = (vj, vk; xk/yk) that forms a synchronizable pair of transitions with tij is
called an synchronizable successor of tij. Any (sub)sequence of transitions in which
every pair of transitions is synchronizable is called a synchronizable transition
(sub)sequence. A global input/output sequence is said to be synchronizable if it is the
label of a synchronizable transition sequence.

2.3 Observability Problem

Given an FSM M and a global input/output sequence ω = x1/y1 x2/y2 … xm/ym of M,
where xi ∈ I and yi ∈ O, 1 ≤ i ≤ m, a 1-shift output fault in an implementation N of M
exists when, in the labels xj/yj and xj+1/yj+1 of any two consecutive transitions, there
exists one aL(U)∈ ΓL(U) in yj of M which occurs in yj+1 in N (and not in yj in N) or there
exists one aL(U)∈ ΓL(U) in yj+1 of M which occurs in yj in N (and not in yj+1 in N), 1 ≤ j ≤
m-1. An instance of the observability problem manifests itself as an undetectable 1-
shift output fault if there is a 1-shift output fault related to aL(U)∈ ΓL(U) in any two con-
secutive transitions whose labels are xj/yj and xj+1/yj+1, such that tester L(U) satisfies the
condition (aL(U) is in yj XOR aL(U) is in yj+1) AND xj+1 ∉ ΣL(U). In this case, we say that
tester L(U) is involved in the shift, and would not be able to detect it.

Generating Checking Sequences for a Distributed Test Architecture 151

3 The Proposed Method

Let M = (S, Σ, Γ, δ, λ, s1) hereafter stand for a minimal, (in)completely specified FSM
which is represented by a strongly connected digraph G = (V, E) and has a distin-
guishing sequence D. Let |S| be n and s1 ∈ S be the initial state of M. It is assumed
that any implementation N of M correctly implements a reset function which takes M
from any state si to the initial state s1 with a single transition (si, s1; r/<-,->). The
construction of a synchronizable global checking sequence of M is based on the con-
struction of two sets which represent all potential controllability and observability
problems for M. A state cover and transition cover are generated, and an auxiliary
graph G′′ representing these sequences is constructed. A rural Chinese postman path
on G′′ yields a checking sequence which can be applied in a distributed test architec-
ture without encountering controllability or observability problems.

3.1 Identifying Controllability and Observability Problems

In the first phase of the proposed method, the set of all controllability problems, TC,
and the set of all observability problems, TO, are generated from the digraph G = (V,
E) of the given FSM M. The set TC is constructed as follows:

for each vertex vj ∈ V do
for each edge eij (say tij) = (vi, vj; xj/yj) entering vertex vj do

for each edge ejk (say tjk)= (vj, vk; xj+1/yj+1) leaving vertex vj do
if xj ∈ ΣU AND xj+1 ∈ ΣL AND aL = - in yj

then add (tij, tjk; <-CL, +CU>) to TC
else if xj ∈ ΣL AND xj+1 ∈ ΣU AND aU = - in yj

then add (tij, tjk; <-CU, +CL>) to TC
Each transition pair added to TC forms a controllability problem as the sender of xj+1

is not the sender of xj and does not receive an output in yj. Given a path P on G repre-
senting a sequence of transitions, the sequence can be made synchronizable as fol-
lows: For each pair of consecutive transitions tmn tno in P, if (tmn, tno; <-CU(L), +CL(U)>) ∈
TC then insert the external coordination message exchange <-CU(L), +CL(U)> relating to
controllability between tmn and tno in the label of P.

Consider the FSM M1 shown in Figure 2. Applying the above procedure results in
a set consisting of 1 non-synchronizable transition pair, i.e., TC = {(t3, t10, <-CU,
+CL>)}.

The set TO of all triples corresponding to transition pairs with a potential undetect-
able 1-shift output fault is generated next. The set TO is constructed from G = (V, E)
as follows:
for each vertex vj ∈ V do

for each edge eij (say tij) = (vi, vj; xj/yj) entering vertex vj do
for each edge ejk (say tjk)= (vj, vk; xj+1/yj+1) leaving vertex vj do

if for output aL(U) ∈ Γ L(U), aL(U) is in yj XOR aL(U) is in yj+1 AND xj+1∉Σ L(U)

AND (tij, tjk; <-CU(L), +CL(U)>) ∉ TC
then add (tij, tjk, <-OL(U), +OU(L)>) to TO,

where U(L) is the tester sending the input xj+1 in tjk and L(U) is the tester involved in
the shift.

152 Hasan Ural and Craig Williams

Fig. 2. Digraph G = (V, E) of 2p-FSM M1

The set TO identifies only the necessary subset of all potential undetectable 1-shift
output faults in G as defined in Section 2.3. Specifically, the if-statement in the algo-
rithm limits TO to only those transition pairs that form a synchronizable pair of transi-
tions in G. Given the input and output alphabets shown in Figure 2, consider a pair of
consecutive transitions tij = (si, sj; a/<-,2>) and tjk = (sj, sk; b/<0,->). This transition
pair forms a potential undetectable forward shift fault of the output ‘2’, i.e. L cannot
determine whether ‘2’ is output by a correctly implemented tij, or by faulty implemen-
tations of both tij and tjk, i.e., tij = (si, sj; a/<-,->) and tjk = (sj, sk; b/<0,2>). However,
note that any instance of tij followed by tjk would not form a synchronizable pair of
transitions and hence would require the insertion of an external coordination message
exchange <-CU,+CL> relating to controllability. If we justifiably assume that L waits
to receive the ‘2’ from tij before sending the external coordination message –CU relat-
ing to controllability to U, the observability problem is resolved; i.e. if L waits and
does not receive ‘2’ before it sends –CU, we conclude that the implementation of tij is
faulty. A similar argument and intuitive treatment does not apply in any case of
backward shifts if the output <-,-> is not allowed for any transition, other than the
reset transitions.

Applying the above procedure to FSM M1 produces a set of 5 potential undetect-
able 1-shift output faults, i.e.: TO = {(t1, t3, <-OU, +OL>), (t3, t9, <-OU, +OL>),
(t4, t3, <-OU, +OL>), (t5, t3, <-OU, +OL>), (t7, t3, <-OU, +OL>)}.

Generating Checking Sequences for a Distributed Test Architecture 153

3.2 Construction of Test Segments

The second phase of the proposed method generates a test segment test(tij) = tij@DS(sj)
for each transition tij, where DS(si) is the transition sequence induced by D on G at vi.
Observability and controllability problems within DS(si) and between tij and
first(DS(si)) are resolved by inserting the corresponding external coordination mes-
sage from TO or TC, respectively. Formally, this phase consists of two steps:

Step 1. For each state si, find the transition sequence DS(si) induced by D on G at vi.
For each pair of consecutive transitions tmn tno in DS(si):

- If (tmn, tno, <-OU(L), +OL(U)>) ∈ TO then insert the external coordination message ex-
change <-OU(L), +OL(U)> between tmn and tno in label(DS(si)) and remove (tmn, tno,
<-OU(L), +OL(U)>) from TO.

- If (tmn, tno, <-CU(L), +CL(U)>) ∈ TC then insert the external coordination message ex-
change <-CU(L), +CL(U)> between tmn and tno in label(DS(si)).

Step 2. For each transition tij = (vi, vj; xj/yj):

- Construct test(tij) = tij@DS(sj).
- If there is a triple (tmn, tno, <-OU(L), +OL(U)>) ∈ TO where tmn = tij and tno = first(DS(sj))

then insert the external coordination message exchange <-OU(L), +OL(U)> between tij
and DS(sj) in label(test(tij)) and remove (tmn, tno, <-OU(L), +OL(U)>) from TO.

- If there is a triple (tmn, tno, <-CU(L), +CL(U)>) ∈ TC where tmn = tij and tno = first(DS(sj))
then insert the external coordination message exchange <-CU(L), +CL(U)> between tij
and DS(sj) in label(test(tij)).

The distinguishing sequence D for FSM M1is ab. The transition sequences in-
duced by this D at each state are shown in Table 1, and the test segments generated in
step 2 are shown in Table 2. Note that Step 2 removes triple (t3, t9, <-OU, +OL>)
from TO as each potential 1-shift output fault needs only be handled once. Removing
triples ensures that the remaining phases of the proposed method do not unnecessarily
avoid transition pairs whose potential 1-shift output fault is already handled in some
test(tij).

Table 1. label(DS(s
i
)) for 2p-FSM M1

State s
i
 label(DS(s

i
))

s
1
 t1 t2

s
2
 t4 t2

s
3
 t6 t10

s
4
 t9 t5

3.3 Selection of Preambles

This phase of the proposed method generates a preamble for each state si, which is a
transition sequence that transfers M from the initial state s1 to state si. In choosing a
preamble for state si, denoted preamble(si), three goals must be considered:

154 Hasan Ural and Craig Williams

1) Minimize observability and controllability problems in preamble(si)
2) Minimizing observability and controllability problems between the last transi-

tion of preamble(si) and transitions starting at si.
3) Minimize the length of preamble(si)

These goals may conflict; the preamble for si that requires the fewest external co-
ordination message exchanges may end with a transition which causes significant
problems when followed by the transitions starting at si. As our goal is to minimize
the number of external coordination message exchanges introduced by the use of
preamble(si), goals 1 and 2 are given precedence and both these goals are considered
in choosing preamble(si). This is accomplished by first calculating a cost for a transi-
tion tij based on the number of controllability and observability problems that will be
introduced if a transition sequence ending with transition tij is chosen as preamble(sj).
Using these costs, preambles for each state sj � s1 are found by first constructing a
graph G = (V , E). Edges in E are assigned a cost based on the controllability and
observability problems caused by transition pairs represented by adjacent edges. For
each state sj, a graph Gj is created from G . An RCPT over a selected edge in Gj se-
lects the preamble for state sj that causes the fewest controllability and observability
problems in the resulting state cover and transition cover sequences. Formally, this
phase proceeds as follows:

Step 1. The sum of the external coordination message exchange costs for each transi-
tion tij (that may be the last transition in a preamble for state sj) followed by
any of its adjacent transitions is calculated as follows:
for each vertex vj ∈ V, vj � v1, do

for each edge eij (say tij) = (vi, vj; xj/yj) entering vertex vj where vi � vj do
let sum_cost(tij) = 0
for each edge ejk (say tjk)= (vj, vk; xj+1/yj+1) leaving vertex vj do

if (tij, tjk, <-CU(L), +CL(U)>) ∈ TC then
if tjk = first(DS(sj))

Table 2. label(test(t
ij
)) for 2p-FSM M1

Transition t
ij
 label(test(t

ij
))

t1 t1 t1 t2

t2 t2 t6 t10

t3 t3 <-O
U
, +O

L
> t9 t5

t4 t4 t1 t2

t5 t5 t1 t2

t6 t6 t9 t5

t7 t7 t1 t2

t8 t8 t6 t10

t9 t9 t4 t2

t10 t10 t6 t10

Generating Checking Sequences for a Distributed Test Architecture 155

then sum_cost(tij) = sum_cost(tij) +2w (as the pair tij tjk will
occur twice, once in verifying sj and once to verify tjk)
else sum_cost(tij) = sum_cost(tij) + w

if (tij, tjk, <-OU(L), +OL(U)>) ∈ TO
then sum_cost(tij) = sum_cost(tij) + w

Step 2. Construct the graph G = (V , E) from G= (V, E) by the following steps:
create a vertex v1 in V
for each edge e1k (say t1k) = (v1, vk; xk/yk) leaving vertex v1∈V where vk�v1 do

create a vertex labelled “v1-t1k-vk” in V
add an edge from v1 to “v1-t1k-vk” labelled t1k, i.e., (v1, v1-t1k-vk; t1k)
let cost(t1k) = 1

for each vertex vj ∈ V, vj � v1
for each edge eij (say tij) = (vi, vj; xj/yj) entering vertex vj∈V, head(eij)�vj:

for each edge ejk (say tjk) = (vj, vk; xk/yk) leaving vertex vj ∈ V,
tail(ejk) � vj, tail(ejk) � v1:
create a vertex labelled “vi-tij-vj” in V if it doesn’t exist already
create a vertex labelled “vj-tjk-vk” in V if it doesn’t exist already
add an edge e jk = (vi-tij-vj, vj-tjk-vk; tjk) in E
if ∃ a triple (tij, tjk, <-OU(L), +OL(U)>) ∈ TO then cost(e jk) = 1 + w
if ∃ a triple (tij, tjk, <-CU(L), +CL(U)>) ∈ TC

then cost(e jk) = 1 + w*(m + 1)
else cost(e jk) = 1

Step 3. For each state sj � s1, create a graph Gj = (Vj, Ej) from G = (V , E) as follows:
Initially, Gj = G
create a vertex v in Vj and add an edge Z = (v , v1; “Z”) to Ej
for each vertex labelled “vi-tij-vj” in V

add a dashed edge e ij = (vi-tij-vj, v ; -) to Ej
let cost(e ij) = sum_cost(tij) (as calculated in step 1)

Step 4. For each state sj � s1: Find an RCPT P of Gj, starting at v1, over the single edge
Z. Let preamble(sj) = label(P) where P is the subpath of P from v1 to vi-tij-vj.

For each pair of consecutive transitions tmn tno in preamble(sj):
- if (tmn, tno, <-CU(L), +CL(U)>) ∈ TC then insert the external coordination mes-

sage exchange <-CU(L), +CL(U)> between tmn and tno in label(preamble(sj)).
- if (tmn, tno, <-OU(L), +OL(U)>) ∈ TO then insert the external coordination mes-

sage exchange <-OU(L), +OL(U)> between tmn and tno in label(preamble(sj)).

In Step 2, the cost of each edge leaving v1 is 1. The cost of every remaining edge
e jk in E depends on whether the transition pair (vi, vj; xj/yj) (vj, vk; xk/yk) appears in TO
or TC. The variable w represents a high cost to be associated with external coordina-
tion message exchanges. The cost of w*(m + 1) for a controllability problem is based
on the following: The purpose of G is to aid in choosing preambles which minimize
the number of external coordination message exchanges required in the resulting
sequences forming the state cover and transition cover. Each preamble will be used
once to form a state cover sequence for state si, and m times to verify each of the m
transitions starting at si. Therefore if a transition pair in a preamble contains a con-
trollability problem, the resulting number of external coordination message exchanges

156 Hasan Ural and Craig Williams

introduced is (m + 1), so the cost assigned in E is w*(m + 1). When constructing the
graph Gj, the outdegree of node vj in G is then substituted for m. In contrast, ob-
servability problems result in a cost of w as each potential 1-shift output fault need
only be checked once. If the pair (vi, vj; xj/yj) (vj, vk; xk/yk) does not appear in a triple in
TO or TC, the cost of edge e jk is 1.

For FSM M1, Step 1 calculates the costs shown in Table 3. Note that the transi-
tions not included are those entering state s1, as s1 does not require a preamble, and
those that start and end at the same state.

Applying Step 2 to FSM M1 generates the graph G = (V , E) shown in Figure 3,
with the cost of each edge shown in parentheses. Based on graphs G2, G3, and G4,
preambles selected for states s2, s3, s4, of FSM M1 are t3 t9, t2, and t2 t6, respectively.
As an example, the Digraph G3 = (V3, E3) created for s3 is shown in Figure 4.

3.4 Generating the Checking Sequence

The final phase of the proposed method first generates sequences that form the state
cover and transition cover, using the preambles found in the previous phase. Follow-
ing prefix elimination, an RCPP on an auxiliary graph G′′ yields a synchronizable
ordering of the remaining sequences. The input portion of the transition sequence

Table 3. sum_cost(t
ij
) for transition t

ij

Transition t
ij
 sum_cost(t

ij
)

t2 0

t6 0

t10 0

t3 w

t9 0

Fig. 3. Digraph G = (V , E) of 2p-FSM M1

Generating Checking Sequences for a Distributed Test Architecture 157

represented by the label of this path is a synchronizable checking sequence with no
potential undetectable 1-shift output faults for FSM M. This phase proceeds as fol-
lows:

Step 1. For each state sj:
- Let state_cover(sj) = preamble(sj)@DS(sj)
- If ∃ a triple (tmn, tno, <-CU(L), +CL(U)>) ∈ TC where tmn = last(preamble(sj)) and

tno = first(DS(sj)) then insert the external coordination message exchange
<-CU(L), +CL(U)> between tmn and tno in label(state_cover(sj)).

- If ∃ a triple (tmn, tno, <-OU(L), +OL(U)>) ∈ TO where tmn = last(preamble(sj)) and
tno = first(DS(sj)) then insert the external coordination message exchange
<-OU(L), +OL(U)> between tmn and tno in label(state_cover(sj)).

Step 2. For each transition tjk = (sj, sk; x/y):
- Let trans_cover(tjk) = preamble(sj)@test(tjk)
- If ∃ a triple (tmn, tno, <-CU(L), +CL(U)>) ∈ TC where tmn = last(preamble(sj)) and

tno = tjk then insert the external coordination message exchange
<-CU(L), +CL(U)> between tmn and tno in label(trans_cover(tjk)).

- If ∃ a triple (tmn, tno, <-OU(L), +OL(U)>) ∈ TO where tmn = last(preamble(sj)) and
tno = tjk then insert the external coordination message exchange
<-OU(L), +OL(U)> between tmn and tno in label(trans_cover(tjk)).

Step 3. Let C be the set of all transition sequences in the state and transition covers.
For every transition sequence cp ∈ C, if cp is a prefix of some cq, cq ∈ C, cp � cq,
then for any external coordination message exchange <-OU(L), +OL(U) > relating
to observability between transitions tmn and tno in label(cp), insert this ob-
servability message between tmn and tno in label(cq). Then eliminate cp.

Fig. 4. Digraph G
3
 = (V

3
, E

3
) of 2p-FSM M1

158 Hasan Ural and Craig Williams

Step 4. For the m sequences c1, …, cm remaining in C, let li = label(ci), 1 � i � m.

For every subsequence label(tmn) <-OU(L), +OL(U)> label(tno) in any li, remove
<-OU(L), +OL(U)> from any subsequent occurrence of this subsequence in any lj.

In the following steps, h is the tester sending the last input of D, and h′ is the other
tester.

Step 5. Create four vertices in V′′ labelled 1U , 1L, TB, and Th.

Step 6. For each sequence ci ∈ C, a solid edge is added to E′′ as follows:
- (1U, Th; li), if sender of x in first(ci) is U, and last(ci) sends output only to h,
- (1U, TB; li), if sender of x in first(ci) is U, and last(ci) sends output to h′,
- (1L, Th; li), if sender of x in first(ci) is L, and last(ci) sends output only to h,
- (1L, TB; li), if sender of x in first(ci) is L, and last(ci) sends output to h′.

Step 7. Add the following dashed edges to E′′ representing reset transitions:
- (TB, 1U; “rfU/-”) and (TB, 1L; “rfL/-”)
- (Th, 1h; “rfh/-”)

Step 8. Add a dashed edge (1h, 1h′; <-Ch′, +Ch>) to E′′.
After this step is complete, the resulting digraph will be known as G′′ = (V′′, E′′).

Step 9. Beginning at 1h′, find a rural Chinese postman path (RCPP) over the solid
edges in E′′. The input portion of the label of this path represents a checking
sequence for FSM M.

Step 10. Eliminate any external coordination message exchanges in the resulting
checking sequence that relate to potential 1-shift output faults that can be ren-
dered detectable by some subsequence in the checking sequence, as in [13].

The first two steps of this phase generate the state and transition covers, respec-
tively. In the prefix elimination in Step 3, a transition sequence cp is eliminated if it is
a prefix (without considering external coordination message exchanges) of some other
sequence cq. However, if label(cp) contains external coordination messages relating to
observability, these messages are first copied into label(cq) to ensure that all potential
undetectable output shift faults remain detectable. Redundant external coordination
message exchanges relating to observability are removed in Step 4.

In Step 5, vertices 1L and 1U are created as all sequences in C begin at the initial
state with input from U or L. Step 6 adds solid edges representing sequences c1, …,
cm. Edges that terminate at TB can be followed by a reset input from either tester. If
the last transition of ci sends output only to h, the edge terminates at Th and may only
be followed by a reset input from h. In Step 7, dashed edges representing these reset
inputs from U and L are added to E′′ as ‘rfU/-’ and ‘rfL/-’ respectively. The dashed
edge (1h, 1h′; <-Ch′, +Ch>) added in Step 8 represents an external coordination mes-
sage exchange relating to controllability that may be used during the construction of
the rural Chinese postman path over the set of solid edges in E′′.

Applying steps 1 and 2 to the example FSM M1 yield the state and transition cov-
ers shown in Table 4 and Table 5, respectively.

Generating Checking Sequences for a Distributed Test Architecture 159

Table 4. State cover for 2p-FSM M1

State s
i
 label(state_cover(s

i
))

s
1
 t1 t2

s
2
 t3 t9 t4 t2

s
3
 t2 t6 t10

s
4
 t2 t6 t9 t5

Table 5. Transition cover for 2p-FSM M1

Transition t
ij
 label(trans_cover(t

ij
))

t1 t1 t1 t2

t2 t2 t6 t10

t3 t3 <-O
U
, +O

L
> t9 t5

t4 t3 t9 t4 t1 t2

t5 t3 t9 t5 t1 t2

t6 t2 t6 t9 t5

t7 t2 t7 t1 t2

t8 t2 t8 t6 t10

t9 t2 t6 t9 t4 t2

t10 t2 t6 t10 t6 t10

Table 6. Sequences eliminated in Step 3 for 2p-FSM M1

Sequence Eliminated Prefix of

state_cover(s
3
) trans_cover(t10)

state_cover(s
4
) trans_cover(t6)

trans_cover(t2) trans_cover(t10)

trans_cover(t3) trans_cover(t5)

In Step 3, 4 sequences are eliminated as shown in Table 6. The set of 10 remaining

sequences is shown in Table 7; note that the observability message in the label of the
eliminated sequence trans_cover(t3) has been copied into l5 in Step 4.

Figure 5 shows the digraph G′′ for M1 obtained by Step 5 to Step 8. A rural Chi-
nese postman path over the solid edges obtained in Step 9 yields a synchronizable
checking sequence, with no potential undetectable 1-shift output faults, represented
on G′′ by the input portion of the path represented by the label sequence:

rfL/- l1 rfL/- l2 rfL/- l3 rfL/- l4 rfL/- l5 rfU/- l6 rfU/- l7 rfU/- l8 rfU/- l9 rfU/- l10

The input portion of the path represented by this label sequence on G′′ corresponds
to a checking sequence composed of 10 reset inputs, 41 non-reset inputs, 1 external
coordination message exchange relating to observability, and no external coordination
message exchanges relating to controllability.

160 Hasan Ural and Craig Williams

Table 7. Checking sequence subsequences for 2p-FSM M1

Label Corresponding Sequence Verifies

l
1
 t1 t2 s

1

l
2
 t3 t9 t4 t2 s

2

l
3
 t1 t1 t2 t1

l
4
 t3 t9 t4 t1 t2 t4

l
5
 t3 <-O

U
, +O

L
> t9 t5 t1 t2 t3, t5

l
6
 t2 t6 t9 t5 s

4
, t6

l
7
 t2 t7 t1 t2 t7

l
8
 t2 t8 t6 t10 t8

l
9
 t2 t6 t9 t4 t2 t9

l
10
 t2 t6 t10 t6 t10 s

3
, t2, t10

Fig. 5. Digraph G′′ = (V′′, E′′) for 2p-FSM M1

In Step 10, the subsequence t6 t9 t5 in the checking sequence above is found to be
sufficient to detect the potential backward shift of ‘1’ in t3 t9, thus rendering the ex-
ternal coordination message exchange <-OU, +OL> between t3 and t9 unnecessary.
As a result, the checking sequence generated by our method for FSM M1 requires no
external coordination message exchanges relating to controllability and observability.

Generating Checking Sequences for a Distributed Test Architecture 161

4 Concluding Remarks

A method for constructing a checking sequence of a given 2p-FSM M using a distin-
guishing sequence has been proposed. The resulting checking sequence does not pose
controllability and observability problems during its application in a distributed test
architecture. The method can easily be generalized to np-FSMs, n ≥ 2, by adapting a
different notation as the one given in [19].

One alternative approach is to first generate a checking sequence using the D-
method [18] and then identify controllability and observability problems and insert
external coordination message exchanges relating to controllability and observability.
In the D-method, the shortest path from s1 to sj is chosen as preamble(sj). However,
this may introduce controllability and/or observability problems that are avoided by
our proposed method. For example, applying the D-method to the example FSM M1
yields a checking sequence composed of 10 reset inputs, 38 non-reset inputs, 1 exter-
nal coordination message exchange relating to observability, and 1 external coordina-
tion message exchange relating to controllability. As a result of the controllability
problem, this checking sequence requires a test architecture which supports direct
communication among testers, while the checking sequence generated by our method
for this same FSM does not. In general, for a given FSM and a given distinguishing
sequence, if there exists a set of checking sequences that do not require any external
coordination message exchanges relating to controllability or observability, then one
such checking sequence will be selected by the proposed method.

Our method would tie the D-method in terms of the number of non-reset inputs for
FSM M1 if triples in TO were not removed during the construction of test segments in
Section 3.2. In that case, the preamble t2 t6 t9 would be chosen for s2 instead of t3 t9;
while this is a longer preamble, prefix elimination results in a checking sequence of
only 38 non-reset inputs and no external coordination message exchanges relating to
controllability and observability. Unfortunately, considering the effect of prefix
elimination during the selection of preambles would be computationally expensive.
The same remark applies to the D-method as there may be numerous shortest paths to
some states. Another computationally expensive issue stems from the possible exis-
tence of more than one distinguishing sequence for a given FSM. It is therefore rec-
ognized that our heuristic approach may not yield the shortest synchronizable check-
ing sequence for a given FSM.

A given implementation N may not implement the reset function correctly. A
method for generating checking sequences for a distributed test architecture that does
not assume the correct implementation of the reset function is part of our current
research.

Acknowledgments

This work is supported in part by the Natural Sciences and Engineering Research
Council of Canada under grant OGP00000976 and Post Graduate Studies Scholarship
Program.

162 Hasan Ural and Craig Williams

References

1. S. Boyd and H. Ural, “The synchronization problem in protocol testing and its complex-
ity,” Information Processing Letters, vol. 40, pp. 131-136, 1991.

2. L. Cacciari and O. Rafiq, “Controllability and observability in distributed testing,”
Information and Software Technology, vol. 41, pp. 767-780, 1999.

3. W. Chen and H. Ural, “Synchronizable checking sequences based on multiple UIO se-
quences,” IEEE/ACM Transactions on Networking, vol 3, pp. 152-157, 1995.

4. A. Gill, Intro. to the Theory of Finite-State Machines, New York: McGraw-Hill, 1962.
5. G. Gonenc, “A method for the design of fault detection experiments”, IEEE Trans. on

Computers, vol. 19, pp. 551-558, 1970.
6. S. Guyot and H. Ural, “Synchronizable checking sequences based on UIO sequences,”

Proc. IFIP IWPTS’95, Evry, France, 395-407, Sept. 1995.
7. F.C. Hennie, "Fault detecting experiments for sequential circuits", Proc. Fifth Ann. Symp.

Switching Circuit Theory and Logical Design, pp. 95-110, Princeton, N.J., 1964.
8. R.M. Hierons and H. Ural, “UIO sequence based checking sequences for distributed test

architectures”, Accepted for publication in JIST.
9. ISO/IEC Information technology – Opens Systems Interconnection – Conformance testing

methodology and framework, 9646-1, Part 1: General Concepts, 1995.
10. ISO/IEC Open Distributed Processing, Reference Model, 10748, Parts 1-4, 1995.
11. Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill, Inc.: New York, N.Y.
12. D. Lee and M. Yannakakis, “Testing finite state machines: State identification and verifi-

cation,” IEEE Transactions on Computers, vol. 43, pp. 306-320, 1994.
13. G. Luo, R. Dssouli, G. v. Bochmann, P. Venkataram and A. Ghedamsi, “Test generation

with respect to distributed interfaces,” Computer Standards and Interfaces, vol. 16, pp.
119-132, 1994.

14. K.K. Sabnani and A.T. Dahbura, “A protocol test generation procedure,” Computer Net-
works, vol. 15, pp. 285-297, 1988.

15. B. Sarikaya and G. v. Bochmann, “Synchronization and specification issues in protocol
testing,” IEEE Transactions on Communications, vol. 32, pp. 389-395, Apr. 1984.

16. K.C. Tai and Y.C. Young, “Synchronizable test sequences of finite state machines,” Com-
puter Networks, vol. 13, pp. 1111-1134, 1998.

17. H. Ural and Z. Wang, “Synchronizable test sequence generation using UIO sequences,”
Computer Communications, vol.16, pp. 653-661, 1993.

18. H.Ural, X. Wu and F. Zhang, “On minimizing the lengths of checking sequences,” IEEE
Transactions on Computers, vol. 46, pp. 93-99, 1997.

19. D. Whittier, “Solutions to Controllability and Observability Problems in Distributed Test-
ing,” Master’s thesis, University of Ottawa, Canada, 2001.

20. Y.C. Young and K.C. Tai, “Observation inaccuracy in conformance testing with multiple
testers,” Proc. IEEE WASET, 80-85, 1998.

	1 Introduction
	2 Preliminaries
	2.1 FSM and Its Graphical Representation
	2.2 Controllability (Synchronization) Problem
	2.3 Observability Problem

	3 The Proposed Method
	3.1 Identifying Controllability and Observability Problems
	3.2 Construction of Test Segments
	3.3 Selection of Preambles
	3.4 Generating the Checking Sequence

	4 Concluding Remarks
	References

