A Guided Method
for Testing Timed Input Output Automata

Abdeslam En-Nouaary and Rachida Dssouli

Department of Electrical and Computer Engineering
Concordia University, 1455 de Maisonneuve W., Montréal
Québec H3G 1M8, Canada
{ennouaar,dssouli}@ece.concordia.ca

Abstract. Real-time systems are those systems whose behaviors are
time dependent. Reliability is one of the characteristics of such systems
and testing is one of the techniques that can be used to ensure reliable
real-time systems. This paper presents a method for testing real-time sys-
tems specified by Timed Input Output Automata (TIOA). Our method
is based on the concept of test purposes. The use of test purposes helps
reduce the number of test cases generated since an exhaustive testing of a
TIOA causes the well-known state explosion problem. The approach we
present in this paper consists of three main steps. First, a synchronous
product of the specification and test purpose is computed. Then, a sub-
automaton (called Grid Automata) representing a subset of the state
space of this product is derived. Finally, test cases are generated from
the resulting grid automata. The test cases generated by our method
are executable and can easily be represented in TTCN (Tabular Tree
Combined Notation).

Keywords: Real-Time Systems, Timed Input Output Automata, Test-
ing, Test Purposes.

1 Introduction

Testing plays a key role in software life cycles. It consists of executing a physical
implementation of a computer system with the intention of finding and discov-
ering errors. This is done by submitting a set of test cases (also called test suite)
to the implementation and observing its reactions. If the outputs of the imple-
mentation for a test case do not match those derived from the specification, the
implementation is said faulty (i.e., a fault is detected). A test case is a sequence
of input actions allowed by the environment. The test cases we apply to the
implementation of a system are systematically generated from the formal speci-
fication of that system. A test cases generation algorithm should be practical in
the sense that it must derive few test cases while ensuring good fault coverage.
The term fault coverage refers to the ability of a test cases generation method
to detect the potential faults in the implementation under test.

Over the last three decades, many algorithms have been developed for test-
ing untimed specification models such as Finite State Machines (FSMs) and
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Extended FSMs (EFSMs). However, testing real-time systems is still a new re-
search field since researchers have started investigating the issue only at the
mid-nineties. Even some algorithms have been devised for testing real-time
systems (see for example [ENDKE98,SVD01,MMM95,CL97,COGI8 KADT00,
KENDAO00], [FAUDOO/SPEOTIKLCIO8IHNTCI9INSISIENDKO02IEN02/Hog01]),
most of these methods suffer from the state space explosion problem and gen-
erate a great number of test cases. So, the necessity for the development of new
techniques that are practical and with good fault coverage still exists.

In this paper, we present a framework for testing real-time systems using test
purposes. A test purpose is a precise representation of the functionality to be
tested. Thus, test purposes allow us to reduce the number of test cases gener-
ated and incrementally carry out the testing process. The formal model we use
to describe both the specification and test purposes is Timed Input Qutput Au-
tomaton (TIOA) [AD94NSY92LA92]. To generate test cases from TIOA, our
approach proceeds in three steps. First, a synchronous product of the specifica-
tion and test purpose is computed. Then, an automaton representing a subset
of the state space of this product is constructed. Finally, test cases are derived
from the resulting grid automata.

The remainder of this paper is structured as follows. Section 2 introduces
the TIOA model and the test purpose concept as well as the theoretical results
needed for the rest of the paper. Section 3 presents our approach for timed test
cases generation. Section 4 discusses the results and concludes the paper.

2 Backgrounds

This section presents the TIOA model and the test purpose concept as well as the
theoretical ingredients we need for the subsequent sections. All these concepts
and results are illustrated with simple examples so that the reader later later
understands each step of our approach.

Definition 1. Timed Input Output Automaton
A TIOA A is a tuple (Ia,04,La,1%,Ca,Ta), where:

— 14 is a finite set of input actions. Each input action begins with “?”.

— Oy is a finite set of output actions. Fach output action begins with “!”.
L4 is a finite set of locations.

— 1Y% € L, is the initial location.

— Ca is a finite set of clocks all initialized to zero in 9.
—TaACLax(IaU04) x P(Cy) x 294 x Ly is the set of transitions.

?,1}a,G,A .
A transition in a TIOA, denoted by [ {7l a ', consists of a source loca-

tion I, an input or output action {?,!}a, a clock guard G, which should hold to
execute the transition, a set of clocks A to be reset when the transition is fired,
and a target location I’. We assume that the transitions are instantaneous and
the clock guards over C4 are conjunctions of formulas of the form x op m, where:
x € Cy, op € {<,<,=,>,>} and m is a natural. Moreover, we suppose that
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Fig. 1. An Example of TIOA.

each clock x € Cy4 has a bounded domain [0, B,] U {oco} [SV96], where B, is the
largest integer constraint appearing in the constraints over z in the automaton.
This means that each clock x is relevant only under the integer constant B,,
and all the values of = greater than B, are represented by oc.

Ezample 1. Figure [l shows an TIOA with one clock. It is a specification of an
hypothetical telephone system somewhat similar to that presented in [CLI7].
The task of the telephone system is to issue an output C'onnect whenever a user
hangs off (input Hangof f on the Figure) and composes two digits (Digitl and
Digit2 on the Figure) forming the number to be called. After the connection
is established, the user hangs on and the system goes back to its idle state
and starts waiting for another connection request. The behavior of the system
should respect the following time constraints. First, the user should type the
first digit within 1 time-unit after having hanged off. Moreover, the amounts of
time separating Digitl and Digit2 must be no more than 1 time-unit. Finally,
the system must respond with Connect within 2 time-units after the last digit
has been typed. Whenever an input’s time constraint is not respected by the
user, the system times out, issues Error and goes back to its idle state.

The TIOA introduced so far is an abstract model because it doesn’t explicit
all the possible executions. Such executions, called the operational semantics,
can informally stated as follows. The TIOA starts at its initial location with all
clocks initialized to zero. Then, the values of clocks increase synchronously and

measure the amount of time elapsed since the last initialization or reset. At any

?,1}a,G A .
time, the TIOA can make a transition [ {7 " provided that the current

location is I and the values of clocks satisfy the clock guard G. In this case, all
the clocks in A are reset and the TIOA changes its location to I’. To formalize
the operational semantics of TIOA, we need the following definitions.

Definition 2. Clock valuation
Let A = (I4,04,La,1%,Ca,Ta) be a n—clocks TIOA (i.e., a TIOA with n
clocks).



214 Abdeslam En-Nouaary and Rachida Dssouli

— A clock valuation of A (or over C4) is an application v : Cy — [RU {o0}]™,
which assigns a non-negative real number or oo to each clock x € Cy. We
represent a clock valuation by a vector (Vg ,Vgy,.., Vs, ) and denote the set
of all clock valuations by V(Cy).

— For any clock valuation v € V(Cy4) and any non-negative real number d,
v+d is also a clock valuation that assigns the value v(x) 4+ d to each clock
x € Ca. v+d is the clock valuation reached from v by letting time elapses
by d time units.

— For any clock valuation v € V(C4) and any subset of clocks X € Cya, [X :=
Olv is also a clock valuation that assigns the value 0 to each clock x € X and
agrees with v on the rest of clocks. [X := 0]v is the clock valuation obtained
from v by resetting clocks X .

— A clock valuation v € V(C4) satisfies a clock guard G, denoted by v = G, if
and only if G holds under v.

Definition 3. States of TIOA
Let A= (IA,OA7LA,Z?4,CA7TA) be a TIOA.

— A state of A is a pair (I,v) consisting of a location | € La and a clock
valuation v € V(Cy).

— The initial state of A is the pair (19,v0), where vo(x) = 0 for each clock
x € Ca. We denote the set of states of A by S(A).

The operational semantics of a TIOA A is formally given by a timed labeled
transition system, called the regions graph. The latter is constructed using the
equivalence relation ~ [AD94] on the set of clock valuations V(Cjy).

Definition 4. Equivalence between Clock Valuations
Let A= (I14,04,LA,1%,Ca,Ta) be a TIOA, and v and v' € V(Cy4). We say v
and v' are equivalent, written v ~ v', iff:

— Vz € Cy, |v(x)] = |V (z)]

— Vx,y € Ca such that ((v(x) # 00) A (v(y) # 0)), (fract(v(z)) < fract(v(y))
< fract(v'(z)) < fract(v'(y)))

— Vz € Cy such that v(z) # oo, (fract(v(z)) =0 < fract(v'(z)) =0)
Here, |t] and fract(t) denote the integer and fractional parts of t respec-
tively.

Definition 5. Clock region

Let A= (I4,04,L,1%,C4,Ta) be a TIOA. A clock region of A (or over Cy) is
an equivalence class generated by the relation ~ given in definition[f} We denote
the clock region of a clock valuation v by [v] and the set of all clock regions of A

by Reg(A).

Example 2. The set of regions for the TIOA of Figure[lis given in Figure[2 For
instance, the clock valuations v, = % and vy = 1—10 have the same behaviors when
time progresses and so are equivalent (i.e., they belong to the same region). This
means that if a state (I, v3) accepts a trace then the state (I,v1) also does.
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Fig. 2. An Example of Clock Regions.

Table 1. Number of Clock Regions in TIOA.

Formula|1-clock|2-clocks|3-clocks|4-clocks
[AD94] |8 128 3072 98304
[EEN9S] |4 13 88 474

An upper bound of the number of regions in a n—clocks TIOA A has been
given in [AD94]. However, the exact number of these regions is given in [EEN9S].
Table [I] gives the number of regions resulting from applying both formulas to
three TIOAs with different numbers of clocks having all the same domain [0, 1]U
{o0}.

An important property of clock valuations is that each clock valuation can
be represented by an equivalent one with all coordinates having the form n%_l,
where m is a non-negative integer and n is the number of clocks in TIOA. The
following proposition formalizes this property.

Proposition 1. Relationships between Clock Valuations
Let A= (14,04, L4,1%,Ca,Ta) be a n—clock TIOA.
For all v € V(C4), there exists non-negative integers, mi, ma,..,my, and v’ €

V(Ca) such that v' = (755, 754, -+ ) and v ~v.

Proof. For the sake of space, the proof is given in the technical report of this
paper.

The following proposition generalizes the result of proposition [ to clock
regions in a TIOA.

Proposition 2. Characterization of Clock Regions
Let A= (14,04,L4,1%,Ca,Ta) be a n—clock TIOA.

For every R € Reg(A), there exists at least one clock valuation v = (
my

mi ma
east D gl o
am) (ma,ma,..,my, are non-negative integers) that characterizes R (i.e.,

[v] = R).

Proof. For the sake of space, the proof is given in the technical report of this
paper.

Definition 6. Regions Graph
Let A = (I4,04,L,1%,Ca,Ta) be a TIOA. The regions graph of A is an
automaton RG = (Xra, Sra, Shas Tra) where:

— ZRG = IA UOA UR>O;
~ Sna = {{LI]) |1 € La Av e VCa},
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— %o = (19, [vo]), where vo(z) =0 for all z € Ca,

— RG has a transition s 23 s', from s = (I, [v]) to s" = (I',[v]) on action

{?,1}a iff there is a transition {?’MG’AA I such that v = G and v’ = [\ :=
0]v.

— RG has a delay transition s —= s, from s = {1, [v]) to 8" = (I,[v']) on time
increment d > 0, iff [v'] = [v+d].

Since the regions graph can be seen as a timed reachability analysis graph
of TTIOA, it is heavily used for the verification and testing of timed dependant
systems. Moreover, it is clear from the definition [6] above that each state of the
regions graph has a delay transition labeled with the symbol d. Here, the value
of d is in the interval ]0, 1[. The delay transitions on d greater than or equal to 1

are obtained using the following rule: if s; G, S9 and so LN s3 then s htd S3.

As the symbol d in the definition Bl takes an infinite number of values between
0 and 1, we can use propositions [[land [Z to instantiate the delay transitions with
the same value and obtain a finite sub-automaton of the regions graph. This op-
eration is termed sampling the regions graph and the resulting sub-automaton is
called Grid Automaton (GA)[LY93JENDKEOS|SVDOIIENDKO(2]. The following
proposition formalizes the result.

Proposition 3. Sampling the Region Graph

Let A= (14,04, La,1%,Ca,Ta) be a n—clock TIOA.

There exists a sub-automaton of the regions graph of A with all delay transitions
labeled with the same delay %—H

Proof. For the sake of space, the proof is given in the technical report of this
paper.

After introducing the TIOA model and all theoretical results we need for sub-
sequent sections, we now define the concept of test purpose [[SO91|[Tre92|KL.CI8],
[KCOOJGHNIIBGRSOTISPEQNT] that plays a key role in our contribution.

Definition 7. Timed Test Purpose
A timed test purpose TP is an acyclic TIOA (ITp,OTp,LTp,l%P,CTp,TTp)
with a special set of accepting locations.

Informally, the test purpose represents the property we want to verify. For a
real-time system implementation, this property is a set of interactions with the
environment as well as the time constraints of these interactions. For example,
a test purpose may consist of checking whether a sequence of interactions is
permitted by an implementation of a real-time system within a certain time
interval. The accepting locations of a test purpose represent the locations where
the test verdict should be “Pass”.

Ezample 3. To illustrate the concept of test purpose, consider again the tele-
phone system of Figure [Il. Figure B shows an example of test purposes, which
consists of checking whether the implementation accepts Digitl within 1-time
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Fig. 3. An Example of Test Purpose.

unit and Digit2 1-time unit after the user has hanged off, and responds with
Connect at the latest 1-time unit after Digit2 is dialed. Here, instead of gener-
ating test cases for the whole system, the user needs just some of them to verify
whether or not the implementation permits his/her test purpose. The advan-
tage of using test purposes is therefore the saving of time and money needed for
testing implementations.

To test an implementation against a test purpose, the implementation must,
at the same time, respect the specification and satisfy the test purpose. There-
fore, we should compute a special composition [Kan95](called synchronous prod-
uct in [KLCO98]) of the specification and test purpose before generating test cases.

Definition 8. Synchronous Product

Let Let A = (Ia,04,L4,1%,Ca,Ta) be a specification and TP = (Irp,Orp,
Lrp,1%p,Crp, Trp) be a timed test purpose. The synchronous product of A and
TP is the TIOA SP = (ISPaOSP;LSPaZOSPacsvaSP) such that:

— Isp=I4UIrp and Ogp = O4 U Orp.

— Lgp C La X Lrp.

- lgP = (lgbl%P)'

— Cgp=CAoUCrp.

— Lgp and Tsp are the smallest relations defined by the following two rules:

{(2}aM,G1 {7.}a,30,G2

0(11712)611513/\[1 — A ll €TaNnl — Al ¢ Trp =
(lll, lg) € Lsp A (117 lg) {?’!}a—’)\l’GlA (lll, 12) e€Tsp.
(Li,ls) € Lep Ay UHEAG e py pgy VRO e —
(

. l2)

?2,1}a,A\1UN2,G1 &G
1 1) € Lp A (ly, 1) UHONRRGEE L iy e T,
Exzample 4. Figure Hlshows the synchronous product of the specification in Fig-
ure [[land the test purpose in Figure B. As we can see from this figure, some exe-
cutions of the specification are not allowed by the synchronous product because
the time constraints of a transition in the specification and its corresponding one
in the test purpose might not be simultaneously satisfied. For example, the exe-
cution 7HangOff.%.?Digitl.%.?Digit2.!00nnect is allowed by the specification
but not by the synchronous product.

3 Test Cases Generation

This section is devoted to test cases generation from a TIOA using the definitions
and results of the previous section. Our approach is based on test purposes to
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HangOff, x=0y:=0 Digitl, x<l&y<l, k=0 Digidx<ly=L,x=0y= IConnect, x<=2&y<=1
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Fig. 4. Synchronous Product of Figures [l and 81

test only the critical parts of the system and therefore minimize the number of
test cases generated. The proposed method consists of three main steps:

— The construction of a synchronous product.
— The sampling of the regions graph of the synchronous product.
— The traversal of the resulting sub-automaton.

In what follows, we will explain each of these steps and illustrate it using
Figures [ and Bl

3.1 Construction of a Synchronous Product

Since our approach is based on test purposes, the goal of this step is to construct
a synchronous product of the specification of the system to be tested and the
test purpose to be verified. This construction is based on the definition B] which
is transformed into the algorithm presented in Figure [Bl

The algorithm takes a specification and a test purpose as inputs and returns
their synchronous product as output. The synchronous product is a TIOA repre-
senting somehow an intersection between the TIOA of the specification and that
of test purpose. This is needed because when we want to test an implementation
using test purposes, we would like to check whether or not the implementation
satisfies both the specification and test purpose. The test verdict is given based
on the following three rules. If the implementation satisfies both the specifica-
tion and test purpose, the verdict is “Pass”. However, if the implementation
respects the specification but does not satisfy the test purpose, the verdict is
“Inconclusive”. Finally, if the implementation does not respect the specification,
the verdict is “Fail”.

To construct the synchronous product, the algorithm first creates the initial
location of the TIOA by concatenating the initial location of the specification
and that of the test purpose. Then, the algorithm incrementally constructs the
transitions of the synchronous product and adds the resulting states to the set
of states. The transitions and states of the synchronous product are created
according to the three rules stated in definition [{l.



A Guided Method for Testing Timed Input Output Automata 219

INPUT: - A specification’s TIOA S = (Is,Os, Ls,1%,Cs, Ts).
- A test purpose TIOA TP = (ITP7OTP,LTP,l%p7CTP,TTP).
OUTPUT: - A synchronous product SP = (Isp,Osp, Lsp, lOSP7 Csp,Tsp).
lOSP - (lgv Z%P)-
Add 1%p to Lsp.
Csp — (Cs UCrp).
RL — %5 // the set of reachable locations.
HL < () // the set of handled locations.
While (RL\HL # 0) do
Get a location I = (I1,12) from RL\HL.
Add ! to HL.

1t 1, NG e Ty and 1o
Add (I, 15) to RL.
Add (I, 1) g

EndIf

1e 0, e e T and 1
Add (I}, 14) to RL.

Add (i1, 1) {7.10,G1&G2 AU

EndIf

EndWhile

{7.1}a,G2,2
—

TP l/2 € Trp then

SP ( ,1,l2) to Tsp.

?21}a,Ga, A
{ }a—>2 2TP llg € Trp then

sp (11,13) to Tsp.

Fig. 5. Synchronous Product’s Construction Algorithm.

The complexity of the algorithm is 8((|Ls| % |Lrp|) X |Ts|). Indeed, the loop
while in step3 of the algorithm executes for each reachable location. At the
worst case, the number of locations in the synchronous product is (|Lg| X |Lrp|)
(see definition ). For each iteration of the loop while, we have to traverse all
the transitions of both the specification and test purpose to see if there is any
transition leaving from [y and [s respectively. The complexity of this traversal is
0(|Ts| + |Trpe|), which is equivalent to 6(|Ts|) since |Trp| is less than |Tg|.

3.2 Sampling the Regions Graph of the Synchronous Product

Since the synchronous product obtained in the previous step is a TIOA, its op-
erational semantics is given by its regions graph. However, as one can see from
the definition [, each state in the regions graph consists of an infinite number
of clock valuations and has a delay transition labeled with the generic symbol
d. To generate test cases from the regions graph of the synchronous product,
we have to choose a set of representatives for each state and accordingly in-
stantiate the delay transition d. The objective of this step of our approach is
to construct a sub-automaton of the regions graph of the synchronous prod-
uct according to proposition [3. This operation is called the sampling of the
regions graph and the resulting sub-automaton is called the Grid Automata
(GA) [LY93JENDKEOSSISVDOIENDK02)]. Figure [6l shows the algorithm used to
construct such sub-automaton.
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INPUT : - A synchronous product SP = (Isp,Osp, Lsp,1%p,Csp,Tsp).
OUTPUT A sub-automaton GA of the regions graph of SP.
(lSP7 )
granularlty — ﬁ
STEP3: Initialize the sets to be used
RS « 1%p // the set of reachable states.
HS — (0 // the set of handled states.
While RS\HS # 0 do
Get a state s = (I,v) from RS\Hg
Add s to HS

For each transition l !’ in TIOA do

If v = G then Add (I,v) — lke (', [X :==0]v) to GA if it does not exist
Add (I',[A := 0]v) to RS if it does not exist
EndIf

EndFor

Add (I, v) granulgrity (I,v + granularity) to GA if it does not exist.
Add (I,v + granularity) to RS if does not exist
EndWhile

}aG)\

Fig. 6. Sampling Algorithm.

The algorithm takes a synchronous product as input and constructs a grid
automaton of its regions graph. The algorithm proceeds in many steps. Given the
TTIOA of the synchronous product, we first calculate the granularity of sampling.
This granularity is equal to ﬁ, where k is the number of clocks in the TIOA. In
a second step, we create the initial state formed with the initial location of the
TTOA and a clock valuation that sets all clocks to zero. In a third step, we create
all reachable states from the initial state with repetitive k%rl delay transitions.

Then, for each reachable state (I,v), we create a transition (I,v) == lle U, [\:=

ta
0]v) for each transition [ G2 1 i1 TIOA such that v satisfies G. Afterwards,
we repeat the same process starting with state (I, [A := 0]v).

Ezxample 5. The granularity used to sample the regions graph of the synchronous
product of Figure[d is % The resulting grid automata containing only the execu-
tions, which lead to a verdict “Pass” is shown in Figure[7l Notice that each state
of this automata has an outgoing delay transition labeled with the same delay
% (the transition between (Ip3,(0,0)) and (Ip3,(1,1)) on delay 1 is the sum of
three consecutive transitions on delay %)

The complexity of the algorithm is exponential on the number of clocks of
TIOA. Indeed, the outer loop while of the algorithm executes for each reachable
state. At the worst case, the number of states in a n—clocks TIOA is exponential
on the number of clocks n(see [EEN9g|). For each iteration of the loop while, we
have to traverse all the transitions of the TIOA leaving from ! (I is the location
of the state we choose in the current iteration). The complexity of this traversal
is 0(|Ts])-
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Fig. 7. Grid Automata of Figure

3.3 Traversal of the Sub-automaton

This step of our approach consists of traversing the automaton derived during
the previous step to obtain test cases for the system being tested. The algorithm
used here depends on the data structure adopted to represent the sub-automaton.
An important representation of the sub-automaton is to use a graph. Therefore,
timed test cases can be derived from the graph using a depth traversal. So,
each traversal represents a test case that starts at the initial state of the grid
automaton and finishes when a leaf is reached. Figure Bl shows the algorithm
used to generate test cases.

The algorithm takes the sub-automaton extracted during the second step
of our approach as input and produces test cases as outputs. The algorithm
proceeds as follows. After initializing all the variables to be used (V'S and T'C),
we traverse all the states of GA, one by one, starting from the initial state and
we add the chosen state to the set V.S to indicate that it has been visited. Then,
we add all the neighbors of the chosen state to the set NS and we recursively
handle them all before going back to choose another state from the set of previous
states.

Ezample 6. The test cases resulting from applying step3 on Figure[q] are given
in Table[2. To lessen the length of test cases, we have summed up all consecu-
tive delays in each of them. Here, the test case THangOf f.?7Digitl.1.7 Digit2.1
means that when testing the implementation, the tester should apply the input
?HangOf f followed by the input ?Digitl, waits 1 time unit, applies the input
?Digit2 and observes the output !Connect within 1 time unit.

The complexity of the algorithm is 8(max(a,n), where a and n are respec-
tively the number of transitions and the number of states in GA. Indeed, the
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INPUT : - A sub-automaton of the regions graph of SP.
OUTPUT: - A set of timed test cases.
VS « (. (the set of visited states)
TC — (. (a test case)
While (Ssp\VS # 0) do
Choose a state s from Sgp\V'S (the first time, the initial state is chosen).
Add s to VS.
NS < all the neighbors of s. (the set of neighbor states)
While (NS # () do
{

Choose and remove a state s; from NS such that s ?—'};1 s1 €Tga.
Concatenate {7,!}a with TC.
Add all the neighbors of s; to NS.
If s1 has no outgoing transition then
Print TC.
TC — TC\{?,!}a.
EndIf
EndWhile
EndWhile

Fig. 8. Timed Test Cases Generation Algorithm.

Table 2. Timed Test Cases Generated.

?HangOf f.?Digit1.1.7? Digit2.1.1Connect

1 2HangOff.?7Digitl.1.? Digit2.1.|Connect
5. 7THangOf f.7Digit1.1.? Digit2.1.!Connect
1.2HangO f f.?Digit1.1.7? Digit2.1.!Connect
%.?HangOff.?Digitl.1.?Digit2.1.!Connect
2.7HangO f f.?Digit1.1.? Digit2.1.1Connect
2.7HangOf f.?Digit1.1.? Digit2.1.1Connect

I ?HangOff.?7Digitl.1.? Digit2.1.|Connect
%.?HangOff.?Digitl.1.?Digit2.1.!Connect
?HangOff.%.?Digitl.%.?Digitll.!Connect

L 2HangOff.1.7Digitl.2.?Digit2.1.!Connect
%.?HangOff.g.?Digitl. .?Digit2.1.\Connect
1.?HangOff.%.?Digit1. .?Digit2.1.\Connect
%.7HangOff.1‘?Digitl. .?Digit2.1.!Connect
2.7HangOf f.5.?Digit1.5 .7 Digit2.1.\Connect
2.?HangOff.%.?Digit1. .?Digit2.1.\Connect
T 2HangOff.£.7Digitl.2.7Digit2.1.1Connect
%?HangOff.g.?Digitl. .?Digit2.1.\Connect

[

18905 | noce | o 1N

oo 1hoce | @

traversal of all the states of GA (i.e., the outer while loop) takes a time of (n)
and for each state the inner while loop executes a number of times equal to the
number of transitions outgoing from that state. By summing up all the transi-
tions outgoing from all states, one can easily see that the complexity of the inner
while loop is 6(a).
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4 Conclusion and Discussion

We presented a timed test cases generation method based on test purposes and
using TIOA model. Our approach consists of three steps. First, we construct a
synchronous product of the specification and test purpose. Then, we sample the
regions graph of the synchronous product in order to construct an automaton
(Grid Automata) easily testable in the sense that each of its state has an out-
going delay transition labeled with the same delay. Finally, we traverse the grid
automaton to extract test cases for the system.

Our method generates few test cases even for huge specification. Moreover,
the test cases derived by our approach are executable in that the predicate of
each transition traversed by each test case is satisfied. To study in much more
details the scalability and the test coverage of our method, we are currently
implementing it in order to apply it on different examples with different sizes.

Comparing our approach to timed test purpose based methods we are aware
of [KLC98ISPF01], we point out the following similarities and differences. Cas-
tanet et al. [KLLC9§| construct a synchronous product of the specification and
test purpose, as defined in this paper, for tests generation. However, the au-
thors use Timed Input Output Machine (TTOM) model to describe both the
specification and test purpose. TIOM is different from TIOA in that the time
constraints of the transitions in TIOM are given as intervals and so the number
of clocks used is just one. Moreover, the testing of TIOM consists of calculating
two types of intervals for each transition: the final potential interval and the
success interval. The former defines the lower and upper bounds for the execu-
tion of the transition with respect to the beginning of the test (i.e., the initial
state). The latter narrows the final potential interval by taking into account the
minimum and maximum delays between the transition and the preceding one.
The test verdict is fail whenever a transition is executed outside its final po-
tential interval; it is Pass when all transitions are executed within their success
intervals; and it is inconclusive if a transition is fired within its final potential
interval but outside its success interval.

On the other hand, Fauchal et al. [SPEQI] use timed automata (T'A), as in
our approach, to describe the specification and test purposes. However, timed
test cases are generated based on a synchronous product of the regions graphs
of the specification and test purpose rather than their T'As. This is done in
three steps. First, the set of specification transitions sequences containing the
same actions and in the same order as the test purpose are extracted. Then,
the regions graph of each of these sequences and that of the test purpose are
constructed. Finally, the regions graph of each sequence is synchronized with
that of test purpose to generate test cases. For each transition in the resulting
synchronous product, the authors generate two test cases to cover the borders
of each clock region.
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