Framework and Model for Automated
Interoperability Test
and Its Application to ROHC

Sarolta Dibuz and Péter Krémer

Ericsson Telecommunications Hungary
P.O. Box 107, H-1300, Budapest 3, Hungary
{Sarolta.Dibuz,Peter.Kremer}@eth.ericsson.se

Abstract. In IP world, interoperability testing is heavily used to check
the correctness of different implementations. Internet protocols have
growing importance in communicating systems. In our paper we show
an automatic interoperability test approach and also present its appli-
cation on an IP-based protocol, ROHC. The primary goal of our work
was to define an interoperability testing framework in TTCN-3 that can
be used in general. After giving an overview on the ROHC protocol, we
also describe the way we have conformance tested it. Then we present
MAIT (Model for Automated Interoperability Test) and give detailed
explanation on its components and their roles. At the end, we compare
the advantages and disadvantages of conventional conformance testing
and our interoperability testing model.

1 Introduction

OSI Conformance Testing Methodology [1] can be applied to Internet Protocols,
as it has been shown in several papers ([8], [9], [10]). Nevertheless it is not
spread in the Internet community. Interoperability testing checks if two different
implementations of the same protocol have the capability of inter-working. It is
used for testing prototypes built on RFCs and products implementing Internet
protocol standards. Interoperability testing is such a well accepted verification
method in IETF that a protocol draft can be an IETF standard only if there
exists at least two inter-operating implementations for it.

In the telecom world conformance testing is more applied. ETSI, ITU, 3GPP
and other standardization bodies develop conformance test suites. Vendors of
telecom equipments or operators — the customers — are used to apply these con-
formance test suites to show conformance of the products or for type approval.
Interoperability test is also done after the conformance tests. Its main function
is to check if a new network element can inter-operate with the other nodes of
the network on the main operation level.

Why is interoperability testing necessary if conformance testing is done or
vice-versa? If two IUTs passes the same conformance test suite they can very
likely inter-operate, as well. That is how conformance test is defined. But con-
formance test suites can not cover 100% of the protocol’s functionalities. It may

D. Hogrefe and A. Wiles (Eds.): TestCom 2003, LNCS 2644, pp. 243-257 2003.
© IFIP 2003

244 Sarolta Dibuz and Péter Krémer

happen that interoperability test of two IUTs fails even if the IUTs passed the
conformance test. Especially, if the conformance test suite is not a well proven
one. So it may happen if the conformance test suite is not a well proven one,
that interoperability test of two IUTs fails even if the IUTs passed the confor-
mance test. Protocol definitions contain optional elements. It may happen that
the two IUTs implement or don’t implement the optional features in a way that
in certain cases this leads to problems in interoperability.

If two IUTSs can inter-operate using a protocol it also may happen that one of
them or both fail on a conformance test. There can be erroneous situations that
were not tested during interoperability testing in which the IUTSs fail. Erroneous
situations can be triggered by conformance test but usually not with interop-
erability test. Another possibility for non-conforming IUTs, which can inter-
operate with each other is that the implementors misunderstood the protocol
standard in the same way. So, the two IUTs can inter-operate but conformance
test fails for both of them. In this case it is very likely that interoperability test
with other IUTs would also fail.

Among others, IETF, ETSI, Sun and the TAHI project used to organize in-
teroperability test events where developers can get together and perform interop-
erability tests. We have participated on several such events (like Connectathon,
IPv6 Bake-off or ROHC interop tests) during the last 3 years. Our experience
shows that every developer configures and starts his implementation manually.
Moreover, at the end of each interoperability test case the analysis of the logs
are also made by hand, which also implies that only the developer of the imple-
mentation can perform the interoperability test. We have seen a high need for a
method and a tool that can help to automate the testing process.

The aim of our work was to give a framework that automates the testing
process by using some parts of CTMF [I] and the flexibility of TTCN-3 [2]. This
paper presents a model for interoperability test of Internet Protocols, and also
gives an example of its application on ROHC protocol. We also compared the
advantages and disadvantages of conventinal conformance test and this model
of interoperability test in Section [6]

2 Related Work

Conformance testing methodology is well defined and has already proven its sta-
bility over the years. In contrary, interoperability testing has no such theoretical
base. Several papers have been published related to interoperability testing but
most of them deal with test suite generation or derivation [3], [4]. Others [5] per-
form monitoring and analyzing only, without triggering the IUTs for different
actions or testing them actively.

[6] takes into consideration the interoperability test architecture, as well. It
proposes three alternatives as possible architectures for interoperability tests.
Unfortunately, this article doesn’t address practical questions, which become
extremely important when somebody wants to perform interoperability tests. For
example, even the simplest architecture contains two Testers but the cooperation
and synchronization of these Testers are not presented.

Framework and Model for Automated Interoperability Test 245

Another important issue is the communication between Testers and IUTs.
These papers assume that interoperability test can be performed using the same
service provider all the way. That is, the Testers send and receive protocol (the
same protocol that is under test) messages through their standardized interfaces.
Although it can be applied for several protocols but not applicable in general. In
case of ROHC, three different interfaces are needed to perform interoperability
tests. One is used to provide the necessary input. The second helps to configure
the implementation, to trigger the tests and to check if the required action was
taken. The third one monitors the exchanged packets. Telecom protocols are very
well defined but the same can’t be said for Internet Protocols. They usually leave
a lot of questions open and the implementations have to make certain decisions
(e.g. when to perform a mode change in ROHC). These standards doesn’t specify
upper and lower interfaces, thus it is not possible to construct an appropriate
Upper Tester for these protocols.

Our approach differs in several ways. It gives not only a test architecture but
also defines test components, their roles and the communication between them.
It doesn’t require a standardized upper tester, which is impossible to produce for
Internet Protocols in most of the cases. This method also eliminates the problem
of testing the states that are not observable from outside. On the other hand,
our paper doesn’t deal with automatic test suite generation at all.

3 Overview of ROHC

Nowadays, it seems reasonable that IP technology will be the most popular
transfer mechanism. Moreover, Voice-over-IP solutions are getting improved and
become more and more important. It is possible that mobile networks and cellu-
lar phones will also use IP technology in the future. In these systems, the efficient
usage of radio bandwidth is crucial in order to serve as much subscribers as pos-
sible and to provide acceptable quality at the same time. The main problem with
IP when used over wireless links is the large overhead of lower layer protocols.
Assuming that RTP is used to transmit speech data, it requires 40 bytes in case
of IPv4 and 60 bytes in case of IPv6. (RTP packets are embedded in a UDP
packet, which is then carried by an IP packet.) Thus, the size of the payload
can be as low as 15-20 octets, depending on the applied speech coder and frame
sizes.

Reducing the headers’ size is inevitable to improve efficiency but the existing
methods ([T, [T2]) don’t perform well over wireless links ([13]). Basically, radio
channels have the following shortcomings:

— high bit error rate (1073...1072),
— long round trip time, high latency,
— low bandwidth.

An appropriate header compression scheme must be able to cope with these
drawbacks as well as packet loss before the compression point. Since bandwidth
is the most expensive resource, the compression ratio and the robustness have far

246 Sarolta Dibuz and Péter Krémer

S IP/UDP/RTP ROHC
Compressor

packets

ROHC
packets

ROHC IP/UDP/RTP
Decompressor packets

Fig. 1. A typical ROHC configuration

higher importance than the required processing capacity. It is important to note
that the redundancy between header field values within a packet and especially
between consecutive packets makes header compression possible.

ROHC (RObust Header Compression, [7]) is an IP header compression mech-
anism designed to perform well over wireless links. It classifies the header fields
based on their behavior regarding the correlation to other fields. The conclusion
is that most of the header fields never or seldom change. UDP Checksum (if
enabled) and RTP Sequence Number (SN) have to be transferred directly, while
the other three can be described as a function of SN and some other parameters.
That is, in ideal case only the value of two fields (or only one if UDP Checksum
is not enabled) have to be communicated explicitly. If a parameter of a function
from SN to another field changes (e.g. irregularity in the input RTP stream),
additional information is provided to update the necessary parameters of that
function.

Figure [[] presents a typical ROHC configuration. The role of the nodes are
the following:

— Source Node (S): it produces the input packet stream, which is sent
through the Compressor,

— ROHC Compressor: it compresses the incoming packets according to its
current profile, mode and state, and transmits the resulting ROHC packets,

— ROHC Decompressor: restores the original packets (or something similar
to the original) and forwards them to the Destination Node,

— Destination Node (D): it is usually a regular application that decodes the
original information from the output packet stream.

In ROHC, both the Compressor and the Decompressor has three states that
determine the level of compression. States of the Compressor are: Initialization
and Refresh (IR), First Order (FO) and Second Order (SO). In the beginning,
the Compressor always starts in the lowest compression state (IR) and transits
gradually to higher states if it “is sufficiently confident that the decompressor

Framework and Model for Automated Interoperability Test 247

has the information necessary to decompress a header compressed according to
that state.” [7]. The Compressor can decide the necessary compression state
based on the variations in packet headers, on feedback from the Decompressor
(positive or negative) or on timeout events. The Decompressor also starts in its
lowest compression state (No Context — NC) and transits gradually to higher
states: Static Context (SC) and Full Context (FC). Normally, the decompressor
never leaves the “Full Context” state once it has reached it. Fallback to lower
level states can occur on repeating decompression failures (due to packet loss or
bit errors).

Besides states, which determines the level of compression there are also dif-
ferent modes of operation. They control the logic of state transitions and what
actions to perform in each state. The current mode of operation can be changed
if the Decompressor indicates a mode change request using a Feedback channel.
ROHC uses the following modes:

— Unidirectional (U): Packets can be sent in one direction only (from Com-
pressor to Decompressor). Transitions between compressor states are per-
formed only because of timeout events or irregularities in the input stream.
Every Compressor and Decompressor start in this mode, mode transitions
can be performed if a Feedback channel is available.

— Bidirectional Optimistic (O): The difference to U-mode is that a Feed-
back channel (from Decompressor to Compressor) is used to send error recov-
ery requests and optional acknowledgments of significant context updates.
O-mode aims to maximize compression efficiency with the rare usage of
Feedback channel.

— Bidirectional Reliable (R): This mode uses the Feedback channel more
intensively and has a stricter logic that ensures more robust context syn-
chronization. R-mode aims to maximize robustness against loss and damage
propagation even at high residual bit error rates.

The optimal mode cannot be selected without knowing the characteristics of
the environment. The selection depends on the feedback abilities, error proba-
bilities and distributions, etc.

The ROHC RFC defines four different profiles, which can compress different
kinds of TP packets. These packet types are (numbers in parentheses denote the
number of the profiles): uncompressed packets (0x0000), IP/UDP/RTP packets
(0x0001), IP/UDP packets (0x0002), IP/ESP packets (0x0003). In this paper we
deal only with profile 0x0001, the same method can be applied to other profiles,
as well.

4 Conformance Test of ROHC

In this section we present the test configurations that we have used for the con-
formance test of ROHC in order to compare it with the interoperability test
configuration. A typical configuration (Figure[dl) consists of two ROHC imple-
mentations: a Compressor and a Decompressor. Since these nodes are working

248 Sarolta Dibuz and Péter Krémer

IP/UDP/RTP
packets ROHC
mpr r
ROHG Compresso
Decompressor packets

Fig. 2. Conformance test configuration for ROHC Compressor tests

separately and they are connected through a standardized interface, it is possible
to test them separately, as well. We have used two different configurations (and
test suites) to test Compressors and Decompressors. They are presented in the
following two subsections.

4.1 Compressor Tests

To check a particular functionality in the Compressor the writer of the test
suite must know how to compress certain RTP packets and how to decompress
ROHC packets. This process is defined in the protocol standard, which can be
very complicated in some cases. It is a nature of ROHC (and Internet Protocols
in general) that an implementation can choose from a high number of possible
actions in a certain state. In most of the cases, the RFC leaves it up to the
implementation to decide which way to follow. Unfortunately, the same is true
for the Decompressor, as well. These properties of the ROHC protocol make its
conformance testing more difficult.

The test configuration for Compressor tests can be seen in Figure 2 The
configuration consists of a Test System and a ROHC Compressor. The Test
System emulates two nodes:

— Source Node, which generates the input IP/UDP/RTP stream for the
Compressor
— ROHC Decompressor, which can process the compressed ROHC packets.

The two emulated nodes are using separate interfaces. Source Node needs an
IP interface in order to send RTP packets. The RTP stream sent by the Test Sys-
tem is similar to that of an ordinary application would generate. The emulated
Decompressor has a different kind of interface, since it needs to send and receive
ROHC packets. Nowadays, two methods are used to transmit ROHC packets:
ROHC-over-PPP and ROHC-over-UDP. Our Test System supports both kinds
of transmission techniques. It is the nature of the protocol that the compressor
can’t generate a ROHC packet until it receives an RTP packet. Thus, we need to
send an RTP packet through the IP interface, first. Then it will be compressed
and the Test System will receive it through its ROHC interface. All of our tests
follow this method and since the protocol assumes this sequential behavior, we
didn’t have to use parallel test components.

In some cases it is necessary to send a ROHC Feedback packet to the Com-
pressor. The Test System uses its ROHC interface to send such packets. For
example, to initiate a mode change the Decompressor has to send an appropri-
ate Feedback packet to the Compressor.

Framework and Model for Automated Interoperability Test 249

ROHC ROHC
Compressor packets ROHC
Decompressor
Test E} IP/UDP/RTP P
System packets

Fig. 3. Test configuration for ROHC Decompressor tests

Our test suite for ROHC Compressor tests consists of 100 TTCN-3 test cases
and can check the following functions: mode transitions, context downgrade,
changes in the incoming RTP stream, etc.

4.2 Decompressor Tests

Figure [3 shows the conformance test configuration for Decompressor tests. The
main difference to the Compressor tests is that in this case the Test System
emulates a ROHC Compressor and a Destination Node. The Test System sends
ROHC packets to the Decompressor and processes the reconstructed RTP pack-
ets.

Testing a ROHC Decompressor is a bit more difficult than the case of a Com-
pressor. The RFC doesn’t define an interface that can be used to remote control
a Decompressor. The lack of such an interface prevents us to install an upper
tester application. Thus, it is impossible to test mode transitions automatically
because the tester can’t initiate a mode change remotely.

The test suite for Decompressors contains about 100 TTCN-3 test cases
and verifies the correctness of mode transition, context downgrade, irregular
changes in the original RTP stream. Unfortunately, these tests can’t be executed
automatically because of the missing upper tester.

5 Model for Automated Interoperability Test

The Model for Automated Interoperability Test (MAIT) that we have con-
structed is based on the experience we have gained in interoperability testing of
Internet protocols (IPv6, Mobile IPv6, OSPF and ROHC). MAIT uses TTCN-3
[2] as a standardized test description language. This model gives a framework
for automated interoperability test suites.

Figure dl shows the architecture of MAIT. The configuration in this example
consists of IUT 1, IUT 2 and the Test System. IUT 1 and IUT 2 denote the two
implementations, which are under test. The Test System handles the following
tasks:

remote controlling of IUT 1(PTC R1),

— remote controlling of IUT 2(PTC R2),
monitoring the network (PTC M),

— sending protocol messages to IUTs (PTC P).

250 Sarolta Dibuz and Péter Krémer

IUT 1 IUT 2
Ca s
$ $
PTCR1| |PTCM| |PTCP| [PTCR Connection types:
O- O
—— protocol
[[telnet
foo—o | coordination
Test MTC
System

Fig. 4. Sample configuration of interop test

Since these tasks are independent from each other, they are implemented in
Parallel Test Components (PTC). The Main Test Component (MTC) is used to
coordinate the behavior of PTCs.

PTC R1 establishes a telnet connection between IUT 1 and the Test Sys-
tem, this connection is then used to remote control IUT 1. The test component
emulates an ordinary user: configures the IUT, starts an application or triggers
a special test by giving the appropriate input. These kind of inputs can’t be
given through the TUT’s standardized interfaces because most of the protocol
standards don’t specify the upper interface. Basically, it configures, starts and
makes everything that only an experienced developer of that particular imple-
mentation can do.

PTC R2 creates the same type of connection but its tasks are slightly dif-
ferent. It also has to start and configure the implementation but then it checks
if the test ran correctly and the necessary changes were made. It emulates the
user of the other implementation, who follows the tests at the console and sees
if everything is working correctly or not. It can be the establishment of a con-
nection, a new record in a database or something else which shows that the test
was successful. The messages that are sent on this type of connection are highly
depend on the implementations. In order to avoid the re-compilation of the test
suite, if a new implementation is tested, these messages are given as test suite
parameters.

PTC P can send protocol messages to the implementations. There are cases
when only a protocol message can trigger a certain action and it also gives
the possibility to test inopportune behavior. For example, we can send a mode
change request to IUT 1, which looks like as if it were sent by IUT 2. In this
case, IUT 1 follows the rules of mode transition and sends a packet according to
its new mode. This packet will confuse IUT 2 and gives the possibility to test
inopportune behavior.

Every tester likes to know what happens on the wire, thus they always mon-
itor the network that connects them to the other implementation. In general,

Framework and Model for Automated Interoperability Test 251

“tcpdump” (or a similar tool, e.g. ethereal) is used to record the packets. Syn-
chronization of starting and stopping the packet recorder tool and the analysis
of the log files are made manually in most of the cases. We have defined a
separate test component in our model to handle and to automate these tasks.
PTC M monitors the network, records and analyzes every protocol message
that the implementations or PTC' P send. We have separated the latter two test
components because their tasks are slightly different. PTC' M only receives and
analyzes packets, while PTC P sends protocol messages (but it can receive, as
well).

The function of MTC is to synchronize and to coordinate the behavior of
PTCs. Similarly to conformance testing, the execution of a test case is divided
into 3 phases (the names of the involved PTCs are shown in parentheses):

1. Configure the implementations for the test case (PTC R1, PTC R2).
2. Execute the test case (PTC R1, PTC R2, PTC P, PTC M).
3. Restore the original configuration (PTC R1, PTC R2).

The MTC creates all the PTCs, which start the configuration phase imme-
diately. It then waits until all the PTCs finish the first phase (the PTCs send a
“Ph_1End” signal to the MT'C when they are ready with the first phase). In the
next step, MTC starts the execution phase by sending a “Ph2_Start” signal to ev-
ery PTC. After the execution of the second phase every PTC send a “Ph2_End”
signal to the MTC. The signaling in third phase is similar to the second one. The
synchronization model can be easily extended with additional phases, if needed.
If an error occurs in a PTC at any phase, it sends a “Phn_Error” signal to the
MTC (where n denotes the phase number), which stops all the running PTCs
and the test ends immediately. Figure [Bllshows an example of the communication
between MTC, PTC R1 and IUT 1.

5.1 Modifications to ROHC

To perform interoperability test of ROHC one needs a source and a destination
node that can generate and receive RTP packets. In real life this RTP stream is
generated by an application but in case of testing we need a separate, flexible
and supervised RTP packet generator. Only such a generator can ensure that the
input RTP stream is syntactically and semantically correct and has controlled
behavior. The packet generator must be able to generate streams with regular
and irregular behavior, as well. Irregularity can be a jump in a monotonically
increasing value or simply a packet loss. A destination node is also required,
which must be able to check if the output RTP stream is syntactically and
semantically correct, and to compare input and output streams. Thus, both
nodes must be able to record RTP packets, destination node must be able to
read the records of the source node and it must be also able to check whether
the two streams are equivalent or not.

In order to provide a solution that better suits the need of ROHC, we have
modified the original model. We have added two more test components (PTC S,

252 Sarolta Dibuz and Péter Krémer

IUT 1 PTC R1 MTC

A

configuration of IUT 1 CREATE PTC Rt

Y

Ph1_End

Waiting for other PTCs to finish Phase 1

-

A

start testing Ph2_Start

Y

Ph2_End

Waiting for other PTCs to finish Phase 2

- — h Ph3_Start
restore original

configuration

Y

Ph3_End

Waiting for other PTCs to finish Phase 3

>k DONE PTC R1

A

Fig. 5. Synchronization of PTC R1 and MTC

PTC D) that are acting as a source and a destination node. The extended model
for ROHC can be seen in Figure[6l

PTC S generates the input RTP stream for the Compressor (just like a
packet generator would do) and PTC D receives the output RTP stream from
the Decompressor. PTC S and PTC D can be configured on a test case basis
and PTC D exactly knows the content of each packet that PTC S sent. The
comparison of the input and the output streams became quite trivial in this case.
This method eliminates the necessity of recording the packets on both sides and
also the need for manual checking of the files. Thus, the whole testing process
can be automated and fully controlled by using this method.

6 Advantages and Disadvantages of MAIT

In this section we describe the advantages and disadvantages of MAIT compared
to ordinary conformance testing. First, let’s consider the process of preparing a
test suite. To write a conformance test suite, a stable description of the protocol is
needed. In this sense, stable means that it doesn’t change frequently, the changes
doesn’t affect the elementary parts of the protocol (i.e. connection establishment
method or new fields in a message), etc. Then comes the development of the test
purposes and the test cases. Writing test purposes usually requires the creation of
some kind of a state machine with appropriate inputs, outputs and transitions.

Framework and Model for Automated Interoperability Test 253

ROHC ROHC .
Compressor Decompressor
AN K
\\M r‘/,

5 S
PTC R1 PTC M PTC P PTC R2
”””””””” ”{PTCS% MTC {PTCD%”)‘”””””””

Test
System

Fig. 6. Extended model of interoperability test

Test cases can be produced for the states that has definite behavior, clearly
defined and reachable with the available input sequences. The exact definition
of the messages (and the value of their parameters) that the test cases are sending
and receiving is one of the most difficult parts of test suite writing. Finally, the
test system needs to be adapted to the protocol, as well. Once the conformance
test suite is ready, it can be executed against any implementation.

Naturally, a protocol description is also required in case of interoperability
test, but it doesn’t have to be so mature. The changes of the protocol doesn’t
necessarily cause trouble during the tests, because both parties’ behavior is up-
dated (since we are testing the interoperability of two different implementations
of the same protocol). Let’s change the packet formats in ROHC! We don’t have
to alter the input stream, the task of the protocol haven’t changed, thus the out-
put stream must be the same, as well. Moreover, we doesn’t have to change the
configuration commands. The only things that has to be updated are the type
and template definitions of the protocol. It only affects PTC M and PTC P pro-
cesses. To write test purposes one has to take into consideration all the possible
scenarios and input sequences, just like in conformance test. Instead of creating
a state machine, only the input sequences are needed in this case. This input
sequence differs from the one used in conformance test. For ROHC it is a set of
RTP streams, where each stream differs from the others and invokes a different
action of the IUT. In other cases it can be a set of commands that establishes a
connection but it is important to note that this input sequence doesn’t consist
of protocol messages. This nature of interoperability test make the writing of a
test suite much more easier and faster.

Each test case represents a different interoperability scenario. These scenarios
concentrate on the most important functionalities of the protocol. This means

254 Sarolta Dibuz and Péter Krémer

that the interoperability test suite is not covering all aspects of a protocol as
a conformance test suite. Since MAIT defines the structure of the test cases
and the implementation specific commands can be set as parameter, it provides
easy-to-understand and well-structured tests. These tests describe the protocol
functionalities in a clearer way than the text of the RFC. With the interoper-
ability test the logics of the protocol is also verified.

6.1 Test Execution

If we take a look at the execution of tests, we see that Conformance testing is
executed automatically. If the test suite doesn’t change between two executions
(which is the normal case) it produces repeatable test results. Based on these
results, we can compare two implementations regarding their functionalities.
Ordinary interoperability testing is usually done manually. Therefore it lacks the
ability to repeat the same tests and to compare implementations based on the
test results. Having the MAIT model used these disadvantages can be avoided.
MAIT uses predefined test cases in the same way as conformance test uses.
It also gives the possibility to automatically execute interoperability test cases
and eliminates the need for human interaction (e.g. finding out if the test was
successful or not, bug tracking, etc.). Since the test cases are defined in a test
suite, the tests become repeatable and the results reproducible and comparable,
as well.

The number of performed conformance tests grow linearly with the number
of the implementations, as a test suite have to be executed on an implementation
once. The reason is that a conformance test suite can also be seen as a reference
implementation, by definition. In case of interoperability test, the number of
test executions grow quadratically with the number of implementations because
we don’t have such a reference. However, we don’t have a reference implemen-
tation by definition, we can appoint one or more implementations as reference
if they fulfill certain requirementsﬂ. One requirement can be the successful in-
teroperability test with a given number of other implementations. Others can
be set easily upon common agreement of the implementors. The number of test
executions decreases drastically if appointed reference implementations exist.

6.2 The Role of Testing in Protocol Design

Both conformance and interoperability testing is used to prove that products ful-
fill the requirements stated in the standard. Conformance testing is used usually
when we have the protocol definition available as a standard. Hence, conformance
testing is not part of protocol design, when the protocol itself is created but it is
heavily used if the standard has a mature version and numerous implementations
are available on the market.

! The authors don’t intend to solve the problem in this paper. They just recommend
some possible solution without giving further explanations, arguments or proofs.

Framework and Model for Automated Interoperability Test 255

In IETF the process of protocol design is iterative in this sense. Vendors im-
plement prototypes of the protocol written in the RFC. The protocol is designed
further in the IETF working-group based on the experiments of the prototyping.
It is usual to find errors and ambiguities in the protocol and in its specification
during interoperability test. They will be corrected, clarified in the next version
of the specification or added as a separate document [14]. Either way, the speci-
fication evolves as interoperability tests are executed more and more times. It is
easier to modify the interoperability test suite in case the protocol is modified,
as it is smaller in size and it has a stronger dependency on the inputs than on
the protocol’s logic and messages. Thus, we can say that interoperability testing
is an integral part of the protocol design.

6.3 Implementation Dependency and Reuse of Tests

Conformance test is implementation independent, since it uses only the stan-
dardized interfaces of implementations. This attribute makes it possible to use
the same test suite for different implementations. Interoperability tests are usu-
ally performed for Internet Protocols and these protocols don’t have such a
detailed specification. It implies that it cannot be guaranteed that these tests
will be implementation independent. We have shown in case of ROHC that im-
plementation specific messages are used to configure the implementations, to
trigger tests and to check if the required action was taken. This dependency is
inevitable if we want to check all the possible interoperability test scenarios. In
case of using MAIT, these implementation dependent messages can be given as
parameters, so it is not necessary to recompile the Executable Test Suite. Re-
compilation may need tools and equipments that are usually not available at the
site where interoperability testing takes place.

Nowadays, TTCN is a common language for writing conformance test suites.
Its latest version [2] is general and flexible enough to describe interoperability
test suites, as well. If the two different types of test suites are written in the
same language (and MAIT is written in TTCN-3) then some parts of it can be
reused. This situation becomes more and more likely as TTCN-3 based test tools
get used widespread. The interoperability test is part of the protocol design (at
least in IETF), protocol specification, implementations and tests are developed
together. It also means that an interoperability test suite is written before the
conformance test suite and both use the same description language. That is,
results, experiences and parts of the TTCN-3 source code of the interoperability
tests can be reused in conformance tests. These parts are the definitions of the
protocol’s data types and messages, templates and timers.

The test environment also have to be adapted to the particular protocol.
This is mainly done by a software module that can transmit and transform
protocol messages between the test tool and the underlying service provider.
This adaptation module is reusable, too. Our experience shows that the reusable
parts (data type and template definitions, adaptation module, etc.) takes 20-40%
of the work needed to create an executable conformance test suite. Moreover,
it is also possible to record packets during interoperability test and save their

256 Sarolta Dibuz and Péter Krémer

contents in order to use in conformance testing. We have already shown that
the content of the protocol messages is very important in conformance testing
and creation of them is one of the most difficult tasks. Storing the packets for
later use can also save reasonable amount of time. In other words, writing an
executable conformance test suite could take as high as 50% less time.

7 Conclusion

This paper presented the MAIT model for automated interoperability test and
also defined a framework that uses this model. We gave detailed explanation on
the components of the model and the role of each component. We showed the
advantages and disadvantages of this model and compared it to the properties
of conformance testing.

Using our method it is much more easier and faster to derive an interoper-
ability test suite than a conformance test suite from a textual description of a
protocol. It is not necessary to create a state machine, to figure out the order
and the content of messages to be able to write a test case. The writer of the
test suite only has to know what the IUT should do (i.e. set up a connection) in
that test case and ask for the configuration commands from the implementors.
It is the implementor who knows every detail about the implementation and
can give the necessary information. These commands are handled as test suite
parameters, so the test suite writer doesn’t have to know them at all.

Unlike in case of ordinary interoperability test, the MAIT model stores the
interoperability test scenarios in a form of TTCN-3 test cases. Thus, it gives
the possibility to rerun the same tests on the same implementation at a dif-
ferent time. It ensures the ability to repeat the same test and to compare the
implementations based on the interoperability test results.

Although the model uses implementation specific configuration commands,
it doesn’t depend on the IUT or on the protocol. It is because these commands
are passed as parameters (executable conformance test suites also use similar
parameters). That is, a change in these commands doesn’t require the change of
the test suite. In other words, an implementation can alter in a way that affects
its configuration commands but the MAIT test suite can remain the very same.
It also means that testing an implementation of another vendor only needs the
configuration commands of that implementation.

With the MAIT method it is easier to change the interoperability test cases
if the protocol specification change. This situation happens quite often during in
the design phase of a protocol. Waiting for a stable specification is not feasible
in practice, because interoperability testing is also used to verify the protocol
itself (IETF requires two independent inter-operating implementations to accept
a protocol specification as a Proposed Standard).

Table [shows the needed testing types in different phases of a protocol.
During protocol design phase, no stable specification is available, it can change
day by day. So, it requires a testing type where it is possible to quickly adapt
to changes. Protocol life-cycle phase presumes a mature standard and it gives
the possibility to develop a product that is an implementation of that particular

Framework and Model for Automated Interoperability Test 257

Table 1. Testing needs in different phases of a protocol

Protocol prototype Interoperability
design Test

Protocol product Conformance

life-cycle | (protocol implemenetation) Test

protocol. It can be seen that the need for an interoperability test suite precedes
the need for a conformance test suite. But when the protocol definition reaches a
stable state as a standard, conformance testing should be applied first to test the
correctness and conformance of the products implementing the protocol. That
is why it is important that parts of a MAIT-based interoperability test suite can
be reused in a conformance test suite.

References

1. OSI - Open System Interconnection, Conformance testing methodology and frame-
work, ISO/IEC 9646, 1997.

2. ETSI, The Testing and Test Control Notation version 3, ETSI ES 201 873, v2.2.0,
May 2002.

3. S. Kang, J. Shin and M. Kim: Interoperability test suite derivation for communi-
cation protocols, The International Journal of Computer and Telecommunications
Networking, Vol. 22, Num. 3, pp. 347-364, March 200.

4. N. Griffeth, R. Hao, D. Lee, R.K. Sinha: Integrated System Interoperability Testing

=

10.

11.

12.

13.

14.

with Applications to VoIP, Formal Methods for Distributed System Development
(FORTE/PSTV 2000), Pisa, Italy, October 2000.

T. Kato, T. Ogishi, H. Shinbo, Y. Miyake, A. Idoue and K. Suzuki: Interoper-
ability Testing System of TCP/IP Based Communication Systems in Operational
Environment, Testing of Communicating Systems, Ottawa, Canada, September
2000.

J. Shin and S. Kang: Interoperability Test Suite Derivation for the ATM/B-ISDN
Signaling Protocol, Testing of Communicating Systems, Tomsk, Russia, September
1998.

C. Bormann (ed.): RObust Header Compression (ROHC), RFC 3095, July 2001
R. Gecse: Conformance testing methodology of Internet protocols, Testing of Com-
municating Systems, Tomsk, Russia, September 1998.

R. Gecse, P. Krémer: Automated test of TCP congestion control algorithms, Test-
ing of Communicating Systems, Budapest, Hungary, September 1999.

T. Csondes, S. Dibuz, P. Krémer: Experiments on IPv6 testing, Testing of Com-
municating Systems, Ottawa, Canada, September 2000.

M. Degermark, B. Nordgren and S. Pink: IP Header Compression, RFC 2507,
February 1999

S. Casner and V. Jacobson: Compressing IP/UDP/RTP Headers for Low-Speed
Serial Links, RFC 2508, February 1999.

M. Degermark, H. Hannu, L.E. Jonsson, K. Svanbro: Evaluation of CRTP Perfor-
mance over Cellular Radio Networks, IEEE Personal Communication Magazine,
Volume 7, number 4, pp. 20-25, August 2000.

P. Krémer, L. E. Jonsson: Implementer’s Guide, May 2002,
http://standards.ericsson.net /kremer/draft-ietf-rohc-rtp-impguide-01.txt.

	1 Introduction
	2 Related Work
	3 Overview of ROHC
	4 Conformance Test of ROHC
	4.1 Compressor Tests
	4.2 Decompressor Tests

	5 Model for Automated Interoperability Test
	5.1 Modifications to ROHC

	6 Advantages and Disadvantages of MAIT
	6.1 Test Execution
	6.2 The Role of Testing in Protocol Design
	6.3 Implementation Dependency and Reuse of Tests

	7 Conclusion
	References

