
Testing SIP Call Flows
Using XML Protocol Templates

M. Ranganathan, Olivier Deruelle, and Doug Montgomery

Advanced Networking Technologies Division
National Institute of Standards and Technology

100 Bureau Drive, Gaithersburg, MD 20899, USA
{mranga,deruelle,dougm}@antd.nist.gov

http://w3.antd.nist.gov

Abstract. A Session Initiation Protocol (SIP) Call Flow is a causal
sequence of messages that is exchanged between interacting SIP entities.
We present a novel test system for SIP based on the notion of XML
Protocol Templates, of SIP call flows. These templates can be pattern
matched against incoming messages and augmented with general purpose
code to implement specific protocol responses. This architecture allows
test systems to be easily scripted, modified and composed. We describe
these techniques in the construction of a SIP web-based interoperability
tester (SIP-WIT) and comment on their potential more general use for
scripting SIP services.

1 Introduction

The Session Initiation Protocol (SIP) [8] is a signaling protocol for setting up and
terminating sessions for internet telephony, presence, conferencing and instant
messaging. The SIP specification has been through a series of changes since
the original RFC [9] was issued. Building comprehensive test tools and protocol
stacks that both maintain backward compatibility and incorporate the latest
specification is a challenging task. In this paper, we present a test system based
on an XML-based pattern of a SIP Call Flow which accomplishes the goal of
multi-level testing of SIP-enabled applications.

There are two types of components in a SIP-enabled network. Interior com-
ponents act as signaling relay points. Examples of interior components include
back-to-back user agents (B2BUA) and proxy servers. End components are sig-
naling termination points and this is where the end-user application logic usually
resides. Such applications include IP phone user agents (UA), chat clients, in-
stant messaging and presence clients and other SIP-enabled user software. Such
applications are usually built on a SIP protocol stack. Figure 1 shows a concep-
tual layering and heirarchical structure of a SIP stack and its relationship to a
SIP application.

The lowest layer of the protocol is the Message Layer which reads mes-
sages off the network and parses them to present to the higher layers. Certain
SIP applications, such as stateless Proxy Servers are built directly on top of

D. Hogrefe and A. Wiles (Eds.): TestCom 2003, LNCS 2644, pp. 33–48, 2003.
c© IFIP 2003

34 M. Ranganathan, Olivier Deruelle, and Doug Montgomery

T
R

A
N

SA
C

T
IO

N

T
R

A
N

SA
C

T
IO

N

TRANSACTION LAYER

DIALOG DIALOG

SIP STACK

Transaction

Requests

Message

Requests

NETWORK (RAW Messages)

Message Parser Message Encoder

DIALOG LAYER

R
esponse

R
esponse

R
esponse

R
equest

R
equest

R
equest

MESSAGE LAYER (Parsed Messages)Events

Message

T
R

A
N

SA
C

T
IO

N

Dialog
events

Dialog

Requests

Transaction

events

A
PPL

IC
A

T
IO

N
 (T

ransaction U
ser)

Fig. 1. A SIP application typically consists of the a Transaction User (TU) part where
the application logic resides and Transaction and Dialog Layers which are implemented
by a SIP Stack. The SIP Stack interacts with the application using a call/event inter-
face.

the Message Layer. However, most SIP applications rely on the presence of a
Transaction Layer which conceptually resides on top of the Message Layer. The
SIP specification defines a SIP Transaction as a SIP Request, the provisional
Responses generated by the Request followed by a final Response. The Mes-
sage Layer presents the Transaction Layer with a stream of parsed messages.
These messages can be SIP Requests or SIP Responses. The Transaction Layer
is responsible for correlating outgoing Requests with incoming Responses and
performing retransmissions of Requests as needed. A SIP Transaction is created
as a result of an incoming SIP Request (Server Transaction) or as a result of an
outgoing SIP Request (Client Transaction). A Client Transaction is completed
when a final Response to a Request is received and a Server Transaction is com-
pleted when the final Response to the Server Transaction is sent out. A given SIP
message is part of exactly one Transaction. SIP can run over both relaible and
unreliable transports. The Transaction Layer is responsible for re-transmitting
SIP Messages as needed.

Some applications such as stateful proxy servers and user agents rely on the
establishment of Dialogs. A SIP Dialog is a peer to peer association between
communicating SIP applications and is established by particular Dialog initiat-
ing Transactions. For example, a successful INVITE Transaction results in the
creation of a SIP Dialog. Conceptually, the Dialog layer resides on top of the
Transaction Layer and a given Transaction is part of exactly one Dialog.

Finally at the highest layer we have the notion of a SIP Call, which is iden-
tified by a globally unique Call-ID. A SIP call can consist of multiple Dialogs.
All the Dialogs of the Call have the same Call-ID.

Testing SIP Call Flows Using XML Protocol Templates 35

In a correctly functioning SIP application and stack, given a SIP message, the
stack can identify to which Call, Transaction and Dialog it belongs to without
needing to maintain connection state. Thus although applications and stacks
may maintain persistent data structures associated with these abstractions, SIP
is often called a stateless protocol.

SIP extensions are under development in a variety of different application
domains (for example, instant messaging and networked appliance control), with
different Request methods, headers and associated semantics. Still, the concepts
of Message, Transaction, Dialog and Call are common to all the domains in
which SIP is applied. In all these domains, a SIP application can be envisioned
as a state machine that is transitioned on the arrival of messages, creation and
completion of Transactions and creation and destruction of Dialogs.

2 Testing the SIP Protocol

Testing a SIP application can be decomposed in roughly the same fashion as
the protocol itself. That is, an application may be tested at the Message Layer,
Transaction Layer or Dialog Layer. We examine the issues of testing at the
various layers in this section.

2.1 Testing at the Message Layer

The most obvious protocol errors are caused by incorrectly formatted SIP mes-
sages that do not conform to the specified grammar for URLs and protocol
headers or by improperly functioning message parsers. These errors are easily
discovered by using a parser that conforms to the specification. While construct-
ing an ad-hoc parser for SIP headers is not difficult, there are pitfalls. The SIP
grammar incorporates rules from from various RFCs that define specifications
for mail, internet host names, URLs and HTTP. The resultant composite gram-
mar is quite large, context sensitive and easily leads to parser implementation
errors. For example, spaces are generally not relevant except in certain cases (for
example the Request-Line, Status-Line and URI grammar definitions) where the
RFC specifies strictly how many spaces are expected. Another common source
of errors which is also an artifact of grammar composition arises from the fact
that different sets of characters are legal in different portions of a message. The
evolution of the protocol specification through the various revisions has also lead
to some issues. For example, SIP URL addresses can appear in SIP messages
in various headers. SIP URL addresses appearing in such headers are generally
enclosed between pair of <> delimiters except the early RFC did not require
this. There were also some early drafts that had context-sensitive disambiguating
rules about whether to associate a parameter with a SIP URL or header.

A tool that tests for correct header parsing and formatting must itself be
correct in parsing and formatting headers and conform to the SIP RFCs. A good
way to achieve this is to use a parser generator. We elaborate on the techniques
we have adopted in Section 5.

36 M. Ranganathan, Olivier Deruelle, and Doug Montgomery

2.2 Testing at the Transaction Layer

Testing at the Transaction layer can be accomplished by generating messages
that will establish and terminate Transactions. The latest SIP RFC (RFC 3261)
specifies a robust way of Transaction identification but the earlier RFC (RFC
2543) had some ambiguities. Since interoperability with legacy equipment is
often important, a test system must be able to generate both legacy and non-
legacy scenarios.

Transaction timeout can be tested by delaying the SIP Response for a Trans-
action. Transaction matching can be tested by generating a spurious Response,
or Responses, with fields left out or mis-specified at various points in the pro-
tocol operation. A test system should also be able to generate stray messages
that do not correspond to a Transaction and are expected to be rejected by the
receiving, stack.

Such tests are, for the most part straightforward but there are a few tricky
cases. For example, most Transactions are just Request, Response sequences and
do not make sense to abort while in progress. However, long running Transactions
such as an INVITE Transaction may be aborted by sending the Server side of the
Transaction a CANCEL message while the Transaction is in progress. However,
the CANCEL only be processed at a certain point in the protocol operation
and further operations that reference the canceled Transaction should result in
a TRANSACTION NOT FOUND error. A test system must thus be able to
generate such messages at specific points in the protocol operation to generate
such erroneous conditions.

2.3 Testing at the Dialog Layer

Testing at the Dialog layer can be accomplished by setting up and terminating
Dialogs. Crucial to the identification of the Dialog is the tag parameters of the
SIP Message. The From header tag parameter identifies one end (the Client side)
of the peer to peer association and the To header tag parameter identifies the
other end of the peer association (the Server side). Tags are assigned in a pseudo-
random fashion within the context of a Call. Tags were not mandatory in the
earlier SIP specification. For legacy support, however, applications may support
mechanism defined in the older RFC which specified another algorithm for Dialog
identification. To test a stack at the Dialog layer, a test system should be able to
generate Requests and Responses for established and spurious Dialogs both for
legacy and current systems. Our experience with SIP implementations indicates
that some common errors include incorrect assignment of tag parameters in the
headers that identify Dialogs. Testing at the Dialog layer should also include
testing for Dialog termination, which is accomplished by sending a BYE message,
which can be issued by either side of the Dialog.

2.4 Call Flow Testing

Testing at the level of a SIP Call requires testing the causal sequence of SIP
messages, transactions and Dialogs required to establish and release calls. Such

Testing SIP Call Flows Using XML Protocol Templates 37

sequences of exchanges are described as SIP Call Flows. Clearly call flow test-
ing includes all the other layers outlined above, since a Call cannot be set up
and terminated without correctly parsing and formatting messages or correctly
establishing and terminating Transactions or Dialogs. Thus a test tool that can
test at the level of a Call Flow needs to have facilities to test at the other levels
as well.

Our approach to test at this level centers around defining XML tags and
attributes to define the causal, event-driven behavior of a SIP end point partici-
pating in a Call Flow. We call this XML definition a Protocol Template. We then
construct an event-driven state machine that interprets the Protcol Template to
implement the Call Flow. A customizable User Agent which we call a Responder
takes the Protocol Template as input and and generates the state machine and
necessary synchronization actions for running the Call Flow. In the sections that
follow, we further detail the design and use of these XML protocol templates as
a basis for scripting a web-based SIP Call Flow tester.

3 SIP Testing with Protocol Templates

Our design goal was define a set of XML tags that can be used to represent
a Call Flow as a finite state machine. The reason for choosing this approach
was twofold. First, a popular way to debug SIP components is to participate in
interoperability test events where the predominant mode of testing involves cre-
ation of simple signaling scenarios between components under development. We
sought to duplicate this approach to testing in our automated test environment.
Second we observe that there is currently no standardized way of expressing Call
Flows. SIP-related Internet Drafts and RFCs specify Call Flows using sequence
diagrams which are informal and subject to errors in interpretation. By choos-
ing an XML representation for Call Flows and by widespread adoption of the
conventions we propose, we hope to reduce interpretation errors in the future.

Figure 2 shows the overall conceptual view of our test system. It consists of
a scripting layer (Event Engine) built on top of our NIST-SIP stack [12]. The
Event Engine constructs one or more state machines after reading an XML file
(Protocol Template) representing one or more call flows. The Protocol Template
may be customized by adding code (Service Script) whose functions are invoked
at specific points in the state machine operation. The Service Script can be
inserted directly into the Protocol Template or specified externally as a JAVA 1 2

class. We elaborate further on this scheme in section 4.

1 The identification of specific software / hardware products or trademarked names
in this paper is done soley for the purpose of adequately describing our work. Such
identification is not intended to imply recommendation or endorsement by the Na-
tional Institute of Standards and Technology, nor imply that the products or names
idetentified are necessarily the best avialable for the purpose.

2 JAVA and JAIN are trademarks of SUN Micro Systems.

38 M. Ranganathan, Olivier Deruelle, and Doug Montgomery

SIP Messages

UDP Packets

Events

Network

Service
function
invocation

(JAVA service
class or imbedded
Jython Script)

Service Script

Service Container

Event Engine (Responder)

NIST�SIP Stack

Call Flow XML Protocol Template

Fig. 2. Scripting Architecture: The Event Engine takes a Protocol Template as an
input and constructs a state machine from it. The Protocol Template can invoke Service
Script functions at specific transition points in its execution.

4 Protocol Template Programming Model

In this section we elaborate further on the XML representation for defining
Protcol Templates. The hierarchy of XML tags that define a Protocol Template
shown in Figure 3. Our programming model closely mirrors the layering of the
SIP protocol. A CALL FLOW corresponds to a SIP Call Flow and consists
of a set of DIALOGs. A DIALOG is a specification for a finite state machine
(FSM) which is represented by a set of XML tags and attributes. This state ma-
chine is instantiated when the corresponding SIP Dialog is created and defines
the signaling behavior of a SIP-enabled end point. All messages within a Dialog
have the same call identifier (Call-Id). Once the Dialog is established, the mes-
sages must also have the same From and To tags. A Dialog and its associated
instantiation of the state machine defined by the DIALOG tag is created when
a SIP Request with a previously unseen Call-Id or tag parameter arrives or is
sent out by the system. Subsequently, all matching of messages occurs in the
context of the created DIALOG so there is a one to one correspondence be-
tween an established SIP Dialog and the state machine defined by the matching
DIALOG that is created as a consequence of the SIP Dialog being established.
Because there is a single SIP Dialog for a given SIP message, an outgoing or
incoming message can be uniquely associated with at most one instance of State
Machine.

Each node of FSM is represented by an TRANSITION tag. Each TRAN-
SITION tag consists of an optional nested TRIGGER MESSAGE tag and
an optional set of GENERATE tags. A TRANSITION tag can be nested in-
side of a CLIENT TRANSACTION or SERVER TRANSACTION tag
(henceforth referred to generically as a TRANSACTION). The TRANSI-
TION tags are nodes in the protocol state machine that can be triggered by
message arrivals that match the nested TRIGGER MESSAGE and are ac-
tivated by a boolean combination of events specified in the enablingEvent at-

Testing SIP Call Flows Using XML Protocol Templates 39

CALL_FLOW

DIALOG JYTHON_CODE

TRIGGER_MESSAGEGENERATE

TIMER

*

* * +

?+

+

*

Message tags + Denotes 1 or more occurances
* Denotes 0 or more occurances

? Denotes 0 or 1 occurances

?

GENERATE
TRIGGER_MESSAGE?

*

Message Tags Match Tags

Match Tags

* *

generateEventOnTrigger
delay
type

executeOnTransactionTimeout
executeOnDialogNotFound
executeOnTransactionNotFound
globalEvents

executeOnTransactionCompletion
generateEventsOnTransactionCompletion

CLIENT_TRANSACTION

executeOnNoMatch
dialogs

events
id

armTimer
disarmTimer

TIMER

DIALOG

CALL_FLOW

TRANSITION

TRANSITION

TRANSITION

generatedEvents
consumedEvents
exeuteOnTrigger
triggerEvent

TRANSACTION can be SERVER
or CLIENT TRANSACTION

XML Tags Partial List of Attributes

TRANSACTION
CLIENT / SERVER

Fig. 3. Hierarchical Arrangement of Tags corresponds to the hierarchy of the SIP
protocol. A partial listing of attributes for the XML tags is shown on the right (see
text for explanation). The complete DTD is available from [12].

tribute. An event is a globally scoped or locally scoped counter (explained below)
that is initialized to 0. If an TRANSITION node is nested in a TRANSAC-
TION tag, then the messages that trigger it must also be part of the enclosing
TRANSACTION. This provides a way of catching protocol errors related to
unmatched Transactions. Note that this is not a static textual match specifica-
tion because a transaction matching in SIP depends on dynamically generated
header parameters. Once a Transaction is created it is associated with an in-
stance of TRANSACTION node and TRANSITION tags within this node
are used to generate state machine transitions in the associated DIALOG state
machine. When an TRANSITION node is activated, it can generate events,
activate timers, disable timers or call a Service Script function and optionally
generate outgoing messages from the incoming message. The function to be
invoked on TRANSITION node activation or Transaction completion is spec-
ified by the executeOnTrigger attribute and executionOnTransactionCompletion
attributes respectively. The new message to be generated is represented by an
optional GENERATE tag. The GENERATE tag can specify a list of edit-
ing rules to be used when generating an outgoing message from the incoming
message (assuming that there is one). The TRIGGER MESSAGE is a tem-
plate that matches incoming messages and can fire the TRANSITION node
if it is activated. If the node is not yet activated because the enablingEvent has
not yet been satisfied, the fact that the trigger has been seen is noted. If the
enabling condition occurs in the future, the node is activated at that time so
the order of enabling conditon and trigger message arrival is not relevant. The
TRANSITION node can be activated by any boolean event expression spec-
ified by its enablingEvent attribute. If no enablingEvent is specified, then the

40 M. Ranganathan, Olivier Deruelle, and Doug Montgomery

TRANSITION node is assumed to be always enabled and may be triggered by
an optionally specified TRIGGER MESSAGE. Initial nodes are specified by
the absence of a TRIGGER MESSAGE and the absence of an enablingEvent
attribute. Initial nodes may be used to start the interaction as soon as the state
machine is initialized.

The Figure 3 also shows a partial list of additional attributes. The generate∗
attributes specifies a list of events to be generated. The execute∗ attributes
specifies functions to be executed when specified events occur. The consume∗
attributes specify a list of events to be consumed when the specified event occurs.
The enablingEvent attribute is a boolean expression on the event state variables.
Events can be scoped either locally (visible only to a DIALOG state machine)
or globally (visible across the entire CALL FLOW). Global events can enable
TRANSITION nodes in other DIALOGs. Local events are scoped within the
DIALOG where they occur. The functions invoked from the attributes run the
context of a separate class (either a JAVA class or an instance of a Jython [6]
interpreter) which we call the Service Class. The same instance of this class is
used for each service call within a Dialog.

Figure 4 shows an TRANSITION node expectOK from a UAC Call flow.
This node is is enabled by the event INVITEsent. When the node is activated
by this event, an incoming SIP RESPONSE with statusCode of 200 can fire
the TRANSITION node and cause the OKReceived ACKsent() function to
be invoked. The firing of the node arms the byeTimer timer and generates the
OKreceived ACKsent event and generates an outgoing ACK message. This mes-
sage has its From header derived form an agentId ”callee”. An AGENT is just
a way of specifying a list of attributes that are specific to the user that is being
called. It allows us to customize a small portion of the code without altering the
entire XML File. AGENTs may be bound to Registry entries (see section 5).

The service script can directly communicate with the event engine by gener-
ating events, starting and stopping timers etc, the same way as can be done with
the attributes of the TRANSITION tags, allowing for finer grained control at
the expense of clarity.

5 Implementation

In order to test for message formatting, our implementation [12] uses the
ANTLR [16] parser generator to generate a parser for the SIP grammar. Conver-
sion of the published EBNF to a format that is accepted by popular tools such
as YACC and LEX is not straightforward. Advanced tools such as ANTLR make
the task easier by allowing for closure on terminals as well as non-terminals, mul-
tiple lexical analyzers and the ability to switch between lexical analyzers during
parsing and grammar inheritance; however, one must still resort to manual use of
as Syntactic and Semantic Predicates to work through some ambiguities present
in the grammar.

Figure 5 depicts the logic of processing incoming messages using our protocol
templates. A Call-Id header identifies the call for the incoming message. This,

Testing SIP Call Flows Using XML Protocol Templates 41

</AGENTS>
/>
 registryEntry="0"
 agentId = "callee"
<AGENT
/>
 requestURI="JitterVik@myhome.org"
 agentId="caller"
<AGENT
<AGENTS>

</TRANSITION>

<REQUEST_LINE
<SIP_REQUEST>

</SIP_REQUEST>
/>

 method = "ACK"
 agentId = "callee"

>
 removeContent="true"
 retransmit="false"
<GENERATE

</GENERATE>

</TRIGGER_MESSAGE>
</SIP_RESPONSE>

/>

<STATUS_LINE
 statusCode = "200"

<TRIGGER_MESSAGE>

<SIP_RESPONSE>

 armTimer= "byeTimer"
>

 generatedEvent = "OKreceived_ACKsent"
 executeOnTrigger = "OKreceived_ACKsent"
 enablingEvent = "INVITEsent"
 nodeId = "expectOK"

<TRANSITION

<JYTHON_CODE>

def OKreceived_ACKsent():
print "OK received and Snet an ACK"

print "Client transaction is complete"

</JYTHON_CODE>

</CLIENT_TRANSACTION>

<CLIENT_TRANSACTION
onTransactionCompletion="onCompletion"

/>

def onCompletion():

Fig. 4. A Call Flow is represented as a set of TRANSACTIONs Events TIMERs and
triggered TRANSITION nodes. TRANSITIONs are triggered by events and messages
can generate outgoing messages and events to trigger other Expect Nodes. An AGENT
is a short hand way of referring to a user identity. An AGENT entry can refer to a
registry entry in the Proxy server. This is bound at run time to an actual value (see
Section 5).

along with the From and To tag parameters of the incoming request are used to
retrieve an instantiated DIALOG template for the call. If no template is found
for the incoming call, then the one is created by looking for a DIALOG that
can be instantiated. This is done by searching for a ready node. A node is ready
if there are no outstanding events or messages for the node which prevent it
from being enabled. A start node is one for which there is no enablingEvent tag
and no TRIGGER MESSAGE nested tag. Our stack and parser are written
entirely in JAVA and we use introspection and inheritance to implement pattern
matching facilities.

42 M. Ranganathan, Olivier Deruelle, and Doug Montgomery

the enclosing TRANSACTION tag
 invoke the executeOnTransactionCompletion method if specifed in

 If this is a transaction completion:
 Invoke the executeOnTrigger method if specifed
 Generate outgoing message list from nested GENERATE tag if it exists
 Stop any timers that are specifed by the disarmTimer attribute
 Start any timers that are specifed by the armTimer attribute

 Apply completion events to all NON−READY EXPECT nodes set
If this message resulted in a transaction completion

 if the incoming message matches TRIGGER_MESSAGE nested tag:
 mark it examined

 Send out the outgoing messages

While the READY set is not empty

Let TRANSITION set be the set of TRANSITION nodes
Apply incoming messsage to all nodes in TRANSITION
Let READY denote a set of TRANSITION nodes that are enabled
Let NON−READY denote a set of TRANSITION nodes that are not yet enabled

mark each TRANSITION node in the READY set unexamined
for each unexamined TRANSITION node in the READY set:

 Apply generated events to all NON−READY TRANSITION nodes set

 and move the enabled TRANSITION nodes to the READY set

 and move the enabled TRANSITION nodes to the READY set

Fig. 5. Event Processing Loop implemented by the Responder. The responder reads
the XML Protocol Template Specification and constructs a Finite State Machine for
the test before running this algorithm. Similar processing occurs on Timer generated
events.

Timers can be used to delay sending responses or to send multiple requests
or responses. We keep a list of Timer records which is scanned periodically for
ready timers. When a timer fires, it can generate events. Timer events are always
global and timers may be enabled or disabled from TRANSIITION nodes.

The evaluation of the boolean expressions that enable the TRANSITION
nodes is done using an embedded Jython control interpreter (different from the
one that is used to evaluate the service scripts).

We have used the Protocol Template idea to prototoype and deploy a SIP
web-based interoperability tester (SIP-WIT [11]). Figure 6 depicts the imple-
mentation architecture of SIP-WIT as comprising three main components: the
test proxy, a Responder Event Engine and a Trace Visualizer. The proxy has
a XML-based SIP Message pattern matching facility (not described here) that
can be used to invoke external tools (including additional Responder instances)
while the test is in progress. Both the test proxy and the Responder generate
detailed message logs. The proxy uses the Record-Route header to ensure that
it is in the signaling path for the entire Dialog. While the test is in progress or
after the test is complete, the client can visualize the signaling exchanges using
the trace viewer application described in section 5.1.

The entire test system is controlled by a HTTP Servlet Engine that acts
as a front end. The test system user selects a test case and enters appropriate
parameters into a HTML form, which results in an instantiation of a test proxy

Testing SIP Call Flows Using XML Protocol Templates 43

Responder
Event

Message Log

Message Log

INVITE

1 REGISTER

Test User Agent

2

3 INVITE

Engine

Servlet Engine (Front End)

Take user input and start

Registrations

Tester

Poll For

Call Flow Protocol Template

Test Proxy

Fig. 6. The Test System: The Servlet Engine is used to start the test components.
The Responder takes the Protocol Template as input and constructs a FSM for the
test. It polls the test proxy for registrations to synchronize test startup.

and one or more Responders for the test. The trace viewer runs as an applet on
the user’s browser.

A SIP Registrar is a software component in a SIP-enabled network that allows
users to register themselves and declare where they may be contacted. Our proxy
server implements a registrar funciton and exports its registry entries for access
via RPC. The protocol template may have AGENT tags which are bound at
run time to Registry entries in the proxy. This is convenient when we do not
know the identities of the participants of a test a-priori. If such bindings are
specified, the Responder will poll the Registrar until the binding can be satisfied
before it runs the test script. This allows for easy test synchronization and a
customization.

5.1 Visualizing the Trace

The Proxy and Responder store their signaling trace for a pre-specified time
period and makes it available for viewing by client applications. The traces are
accessible via JAVA RMI and are grouped by call identifier. Each trace record
has attributes that indicate where the message came from, where it is headed to,
transaction identifier and other details that allow for the trace viewer to match
Request and Response headers. The stack recognizes a special NISTExtension
header which allows clients to record status information in SIP messages that
are extracted and provided as part of the log file.

The trace viewer application retrieves a trace log from the proxy and can
display a message sequence as a set of arcs that pass between stacks. Each stack
is identified by IP address and port. The trace is sorted by time and Responses
are matched with Requests and color coded appropriately. In order to reduce the

44 M. Ranganathan, Olivier Deruelle, and Doug Montgomery

PROXY

UA UA

Local
Log

Local
Log

Log Repository VIEWER

TRACE

Log

Local

Fig. 7. Signaling Trace Collection : Traces may be collated at a single collection
point. The request to fetch a trace is dispatched to slave repositories from the master
repository and returned from the master repositry via JAVA RPC.

number of logging-related messages, and have a central collection point, traces
are stored locally on each stack and collated on demand. This is done as fol-
lows: when a stack is initialized, a remote repository for the trace data may be
specified. This is specified as an JAVA RMI URL. When the stack initializes, it
registers with the central repository. When a request to retrieve the log comes
into the central repository, the central repository dispatches the request to the
slave repositories with a log collection request. This request can again be re-
cursively broadcast by the slave repositories to its slaves. The slave repositories
respond with the gathered log file. This hierarchical collection structure allows
for scalability and decentralization. We have defined an XML syntax for the
trace records to allow for possible standardization in future.

In order to avoid clock synchronization problems with merging the traces,
we display the traces individually from the point of view of each collection point
rather than as a single merged trace. Time stamps for each message are displayed
along with the message relative to the beginning of the trace collection time.

In order to aid scalability and clarity, traces are organized by call-Id. Requests
and responses are matched by identifying the transaction ID of the request and
matching it to the corresponding response. The Figure 8 shows the trace visu-
alization GUI. Each arrow corresponds to a message and the first line of the
message is shown along with the arrow.

6 Field Experience

We took our tester implementation to the SIP Interoperability Test Event (SIPIT
11 [18]) where we were able to test against several proxy servers, user agents and
IM clients. Our experience with the tester was positive in general but clearly we

Testing SIP Call Flows Using XML Protocol Templates 45

Fig. 8. The Trace Visualizer: This tool can accept traces gathered at the trace repos-
itory (which is part of the Proxy) or from an Ethereal trace capture. Trace records
are formatted using XML. Arcs are color coded based on transaction and traces are
separated by Call-Id.

need to add usability features (we often found ourselves editing configuration
files). We were able to test third party call control, instant messaging and simple
call flows using our responder and test proxy. We were also able to quickly script
tests for extensions that are not part of the test proxy implementation. While
further testing is needed, this increases our confidence that the programming
model and XML representation are flexible and adequate to handle extensions
that we have not yet considered.

An area of concern may be the performance and scalability of the system.
When a message is received, the processing engine looks for an available TRAN-
SITION node to fire. This currently involves a linear search through all the
TRANSITION nodes that belong to a DIALOG. While this search can be
pruned, in practice this turns out not to be a problem because a DIALOG
usually only consists of a few TRANSITIONs. The use of Jython to evaluate
the trigger expressions and enabling conditions does lead to a performance bot-
tleneck. However, Jython was only adopted for expedient prototyping purposes
and may be replaced in future releases.

6.1 Related Work

As the popularity of the SIP protocol grows, many SIP testers have become com-
mercially available. These are usually geared towards load testing. Load testing

46 M. Ranganathan, Olivier Deruelle, and Doug Montgomery

involves subjecting SIP components to high signaling loads such as hundreds or
thousands of simultaneous calls. Load testing helps in uncovering synchroniza-
tion bugs and tests scalability. Load testers differ significantly in function and
have a different goal than our system.

The ITU-T has adopted TTCN-3 as a basis for building a test suite for
SIP [15,13]. TTCN-3 is a procedural programming language with test-specific
extensions which is applicable to a wide range of communication protocols. The
test cases thus generated are procedural with an explicit encoding of the protocol
to be tested through the TTCN language. On the other hand, our approach
is explicitly tailored for SIP testing and our test cases are declarative rather
than procedural. Like the TTCN testing approach, we base our tests on pattern
matching but in addition we construct an XML description of the protocol call
flow to run the test, thus leading to a simpler expression of the test case.

Finally, our approach bears a resemblance to Control XML [17] but functions
at a lower level and is explicitly SIP-aware.

7 Conclusions and Future Work

In this paper we presented a protocol template based approach for testing the
SIP protocol. Its main advantages are the clean separation between protocol
actions and test actions and the specification of entire call flows using the pro-
tocol template, which leads to customizable scenario-based protocol testing. We
demonstrated the viability of our approach by constructing a SIP web-based
interoperability test system and have exercised our system at industry wide in-
teroperability testing events.

Our future work will focus on adding the ability for users to customize their
own test scripts by giving them the ability to insert their own service functions
to be executed during the execution of the Call Flow. While our initial goal is to
expand the capabilities of our test system, the addition of these capabilities will
require that we address the two critical issues for any dynamic service creation
environment: security and resource control. We plan to use bytecode re-writing
techniques to address these issues.

One of the attractive features of SIP is the ability to customize call flows on
a per-user basis. For example, users may wish to have the ability to customize
call forwarding based on time of day or other considerations. Such customiza-
tions possible in a restricted domain using CPL. Here we are suggesting a more
general technique which could enhance the programmability currently possible
with CPL.

The ideas we have outlined in this paper can be applicable to wider domain
than test scripting. Indeed, a SIP Stack is a software component that is aware
of protocol state and generates events that can be fielded by a piece of appli-
cation code. API layers such as JAIN-SIP [2] and JAIN-SIP-Lite [3] define an
event model and expose the stack to the application at different layers of event
abstraction. The application code is able to express an interest in events at dif-
ferent layers of abstraction via the Listener mechanism. However, these models

Testing SIP Call Flows Using XML Protocol Templates 47

constrain the application to one layer of another. What we have done here is to
generalize this so that applications may express an interest in protocol events
at any level of abstraction (i.e. at the message layer, transaction layer or dialog
layer) in one unified framework. Thus, using an extension of the approach we
have defined in this paper, we can go beyond test scripting and define standard-
ized means for expressing dynamic behavior for protocol extensions that are yet
to be proposed. More system support may be needed to extend this approach to
do this. Exactly what support is needed will be determined by actually building
such services. We are working on this idea collaboration with others in industry.

Our test system and the implementation of the mechanisms we have described
in the paper are available from [12].

Acknowledgement

This work was sponsored in part by the NIST Advanced Technology Program
(ATP) and by the Defense Advanced Research Program (DARPA). NIST-SIP
includes the contributions of many people including Christophe Chazeau and
Marc Bednarek who where guest researchers on this project at an early stage.
An early version of the visualization tool was done as part of a student project
at ESIAL conducted by Fabrice Burte, Hugues Moreau, Damien Rigoudy and
Damien Rilliard.

References

1. Johnston, A., Donovan, S., Sparks, R., Cunningham, C., Willis, D., Rosenberg, J.,
Summers, K., Schulzrinne, H.: SIP Call Flows. Note
http://www.iptel.org/info/players/ietf/callsignalling/
draft-ietf-sipping-call-flowers-00.txt

2. Specification Lead Harris, C. (DynamicSoft Inc.): JAIN SIP 1.0 API. Note
http://jcp.org/aboutJ ava/communityprocess/final/jsr032/

3. Specification Lead Rafferty, C. (Ubiquity Ltd.): JAIN SIP LITE API. Note
http://jcp.org/jsr/detail/125.jsp

4. Specification Lead Kristensen, A. (DynamicSoft Inc.): SIP Servlet API. Note
http://jcp.org/jsr/detail/116.jsp

5. Lennox, J., Schulzrinne, H.: CPL: A Language for User Control of Internet Tele-
phony Services. Note
http://www.ietf.org/internet-drafts/draft-ietf-iptel-cpl-06.txt

6. Hugunin, J., Warsaw, B., van Rossum, G.: Jython: A Python implementation in
JAVA. Note http://www.jython.org

7. Lennox, J., Schulzrinne, H., Rosenberg, J.: Common Gateway Interface for SIP.
Note http://www.faqs.org/rfcs/rfc3050.html

8. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks,
R., Handley M., Schooler, E.: SIP: Session Initiation Protocol RFC 3261.
http://www.ietf.org/rfc/rfc3261.txt

9. Handley, M., Schulzrinne, H., Schooler, E., Rosenberg, J.: SIP: Session Initiation
Protocol RFC 2543. Note http://www.ietf.org/rfc/rfc2543.txt

48 M. Ranganathan, Olivier Deruelle, and Doug Montgomery

10. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext Transfer Protocol–HTTP/1.1 (RFC 2068). Note
http://www.ietf.org/rfc/rfc2068.txt

11. NIST Advanced Networking Technologies Division: NIST-SIP Web-based Interop-
erability Tool (SIP-WIT) Note http://www.antd.nist.gov/sipwit

12. NIST Advanced Networking Technologies Divsion: NIST-SIP Parser and Stack.
Note http://www.antd.nist.gov/proj/iptel

13. Wiles, A., Vassiliou-Gioles T., Moseley, S., Mueller, S.: Experiences of Using
TTCN-3 for Testing SIP and OSP. Note
http://www.etsi.org/tiphonweb/documents/
Using TTCN 3 for Testing SIP and OSPv8.pdf

14. Dahm, M.: Apache Byte Code Engineering Library (BCEL). Note
http://www.apache.org

15. Schieferdecker, I., Pietsch, S., Vassilou-Gioles, T.: Systematic Testing of Inter-
net Protocols - First Experiences in Using TTCN-3 For SIP. Note Africom 2001,
Capetown, South Africa,
http://www.testingtech.de/technology/Africom2001.PDF

16. Parr, T.: ANTLR parser gnerator. Note http://www.antlr.org
17. Auburn R.J., et al.: Call Control XML. Note http://www.w3.org/TR/ccxml/
18. SIP Interoperability Test Event.: Note http://www.pulver.com/sipit11/

	1 Introduction
	2 Testing the SIP Protocol
	2.1 Testing at the Message Layer
	2.2 Testing at the Transaction Layer
	2.3 Testing at the Dialog Layer
	2.4 Call Flow Testing

	3 SIP Testing with Protocol Templates
	4 Protocol Template Programming Model
	5 Implementation
	5.1 Visualizing the Trace

	6 Field Experience
	6.1 Related Work

	7 Conclusions and Future Work
	References

