An Intuitive TTCN-3 Data Presentation Format

Roland Gecse and Sarolta Dibuz

Ericsson Hungary, 1037 Budapest, Laborc 1
{Roland.Gecse,Sarolta.Dibuz}@eth.ericsson.se

Abstract. This paper describes the TTCN-3 Data Presentation Format
(DPF). DPF is an intuitive graphical notation for representing TTCN-3
Core Language (CL) [I] types and values. The major advantage of using
DPF compared to free-text editing is that a DPF implementation en-
sures a consistent type and template structure by excluding references
to unexisting entities while significantly reducing typing work. The re-
sult is a shorter test suite development time. DPF covers all excluded
parts of Graphical Presentation Format (GFT) [3]. We believe that DPF
and GFT together could be the basis for building the ultimate graphical
representation of TTCN-3.

1 Introduction

Traditional test suite design starts with the preparation of declarations and con-
straints parts. This job requires careful analysis of SUT and good understanding
of the exact purpose of the test. A load test, for instance, requires less detailed
resolution of PDUs as conformance test. The former focuses on whether the
SUT can service a huge number of typical requests while the latter targets to
prove standards conformity. Another important factor of data part development
is the time. Working out type and template definitions takes 20-50% of total test
suite development time. The preparation of data part in CL comprises of free-
text editing of textual definitions. Unfortunately, existing presentation formats
(TFT [2], GFT [3]) do not provide help on this. TFT basically fragments CL
code into table fields while GFT targets dynamic behaviour only. The intention
with DPF is to facilitate test suite data part development and thereby make test
designers’ work easier.

A TTCN-3 module can be subdivided by functionality into several sections.
Some of these — constant declarations, type definitions, signature declarations,
template declarations, module parameter declarations, port and component type
definitions — constitute what we refer to as data part. DPF operates on data
part only — that is where its name comes from. Other sections containing test
cases, functions, alt steps as well as the module control part pass through DPF
unmodified (Figure [J).

DPF manifests itself in a utility, which provides a graphical representation
of data part constructions and assists the user to manipulate these. This GUI
provides separate panes for each section of the data part. The sections have been
introduced because we deliberately avoided using a distinct graphical symbol for

D. Hogrefe and A. Wiles (Eds.): TestCom 2003, LNCS 2644, pp. 63 2003.
© IFIP 2003

64 Roland Gecse and Sarolta Dibuz

Constant
Signature
Template
Component
ModulePar
Function
Altstep
Testcase
Control

Port

mees VLV VY
Templatesi V V S S SR :
wn V.V VXX XX

Fig. 1. Mapping of DPF and TTCN-3 parts

each type in order to keep the notation intuitve. This approach resulted that the
DPF notation became context sensitive; the same graphical construct can mean
different things when appearing at different sections, i.e. a template declaration
for a given type, for instance, looks similar to a constant declaration for the same
type provided the template consists of specific values only.

The example of Figure [lshows an imaginary test suite, splitted up into three
modules. This example presents how a DPF utility handles TTCN-3 modular-
ity. Each module contains some sections denoted either with a check-mark or
a cross depending on whether they are relevant to DPF or not. The module
Main is the root module of the test suite as it contains the control part gov-
erning the test execution. This module includes not only test cases, functions,
alt steps (the dynamic part) and module parameter definitions but some addi-
tional constants and templates, too. The other two modules appear because the
root module imports some or all of their definitions. The module Types contains
type, communication port and component type definitions and some signature
declarations while the module Templates holds constants and templates for the
types defined in either of the modules.

The GUI provides means for creating or editing adequate entities in every
section. A new template can be built, for instance, based on an existing type def-
inition simply by choosing the appropriate type from the type definitions section
and assigning values or wildcards to each of its fields. Alternatively, a new type
can be defined by extending or reducing an existing type or by merging several
types. It could be ensured that no undefined types or templates are referenced,
too. Optionally a DPF implementation could perform some basic checks such
as if all fields of a template had a value assigned or whether the designer really
wanted to create optional set-of types, etc. The fabricated definitions can be
saved into a CL module at any time during editing. Regardless of the changes
made to the data part DPF keeps dynamic module parts untouched. The only
difference between the original CL module and the one that has been processed
by DPF is that DPF may reorder some sections.

The rest of the paper presents graphical notations of DPF. The simple type
and value notations are described first. It is followed by the structured type
constructs. A dedicated section describes the embedded type definition as DPF

An Intuitive TTCN-3 Data Presentation Format 65

relieves the TTCN-3 limitation of embedded type definitions. Finally the nota-
tion for special CL features like signatures, templates, communication port and
component types are introduced. Each section contains some examples together
with their CL mapping when approprite in order to get an impression of DPF.

2 Simple Type and Value

The basis of DPF is the graphical notation for simple type as all structured types
are builtl] of simple types. Figure[2] presents the format of DPF simple type. The
graphical representation consists of a rectangle with a mandatory simple type
identifier in the middle. Three placeholders are also included for the optional
field identifier, with-attributes and value attributes.

[field-identifier]
simple-type-spec

[with-attributes] [value]

Fig. 2. DPF notation of simple type

The simple types of DPF include all predefined CL simple basic types and
basic string types. DPF supports subtyping according to CL 6.2 in [I]. Although
the permitted subtyping methods are equivalent DPF subtyping syntax slightly
diverges from CL. The mandatory simple-type-spec carries all type properties
including subtyping. The three optional attributes add further information to
the simple type. These include contextual properties, encoding directives and
assigned values.

2.1 Simple Type Specification
It has the following ABNF [4] syntax:

simple-type-spec =
[simple-type-id ":"] base-simple-type-id [subtype-spec]

where simple-type-id and base-simple-type-id shall be unique identi-
fiers within the scope of the module. subtype-spec is any valid CL sub-
type specification (SubTypeSpec, prod. 44 of CL BNF) of the corresponding
base-simple-type-id.

Depending on presence of optional parts simple-type-spec can be a sim-
ple type reference, a simple type alias, a subtype definition or an inline subtype
definition.

! The actual building methods are introduced at the structured types.

66

Roland Gecse and Sarolta Dibuz

A C:charstring
a) simple type reference b) simple type alias
I:integer(1..10) charstring("abc")
¢) simple type definition by subtyping d) simple type inline subtype definition

Fig. 3. DPF notations of simple type constructions

£fD
D encode BER E
a) simple type with field identifier b) simple type containing ’with’ attribute
g .
G:1nteger 8

c) value notation of simple type

Fig. 4. Examples of simple types with attributes

. The simple type reference (Figure B)/a) consists of a reference to a predefined

simple type or a user-defined simple type. Both optional simple-type-id
and subtype-spec are absent.

. Simple type alias (Figure B/b) is composed of a unique simple type identifier

followed by a semicolon and the reference to an existing simple type. This
construct is used to create a new simple type (an alias) with the given
identifier from a base type. The new alias type has the same value domain
as its base type. The CL mapping of the example is type charstring C;.

. The subtype definition in Figure B/c constructs a new simple type from

an existing simple type by means of permitted subtyping methods of
base-simple-type-id. The resulting subtype is considered as a distinct sim-
ple type. The CL equivalent of the example is: type integer I (1..10);.

. The inline subtype definition (Figure[3/d) derives an unidentified new type

from another simple type using subtyping. The difference between subtype
definition and inline subtype definition is that the latter can not be referenced
because it has no identifier.

It shall be noted that items 1 and 4 may occur in structured type definitions

only or additional attributes must be added to provide semantics!

2.2 Simple Type Attributes

The DPF representation provides three attributes to describe the context of
simple type specifications. The following paragraphs introduce each in detail.

Field Identifier. The optional context specific field-identifier (Figured)/a)
has different meaning in different module parts. It can stand for the identifier of

An Intuitive TTCN-3 Data Presentation Format 67

a constant or variable of the current simple type or the field identifier assigned
to a structured type element.

CL requires an identifier to be assigned to each structured type element in
order to distinguish between them. DPF provides graphical symbols for this
purpose that are sufficient in most cases. Consequently identifiers can become
superfluous and may be omitted. However, the identifiers must be provided when
exporting definitions into CL. Thus, missing field identifiers are automatically
generated during the exporﬂg. The field-identifier shall be unique within
the scope of the given structured type.

With Attributes. The with-attributes field (Figure[d/b) is the location of
CL with attributes. The with-attributes can be separately set for each simple
type in the bottom left corner of the rectangle symbolizing the simple type. The
syntax is similar to the format of CL with statement (CL BNF prod.491) except
that WithKeyWord and the enclosing curly braces are omitted. The content of
the with-attributes field shall be inserted into the with attributes of the given
simple type when exporting DPF into CL.

The Value. The bottom right value field is only used in value notation and
must be empty in type definitions. This field represents the value assigned to the
type instance specified in field identifier. It holds a specific value or expression,
which is valid for the current profile and results in a value adequate to the type
defined. The example in Figure H]/c presents a simple type instance g of type G,
an integer alias, having the value 8 assigned.

3 Structured Type and Value

DPF follows a general technique for building structured types; it defines oper-
ations for constructing structured types. These operations are ordering, choice,
permutation and repetition. Ordering, which joins types into a sequence is ex-
pressed by the record construct. Choice offers type alternatives equivalent to
union type of CL. Permutation of element types is represented with unordered
set. Finally, type repetition is modeled with quantors.

DPF type definitions are represented on a plane where the imaginary verti-
cal axis specifies ordering while the horizontal shows the potential alternatives.
The axes themselves are invisible in DPF. The representation can always read
unambiguously in top-down and left-right direction.

The graphical notation of structured types (Figure B) consists of a tag in-
corporating the list of element types arranged on the plane according to the
introduced principle.

2 A suitable procedure is to generate field-identifiers from type identifiers by
prefixing with literal £_ and postfixing with _n, where n is the index of occurrences
of the given type within the given context.

68 Roland Gecse and Sarolta Dibuz

[field-identifier] [quantor]
structured-type-id
[with-attributes] [valuel

Fig. 5. DPF notation of structured type

The tag contains the structured type identifier (structured-type-id) and
optionally the field-identifier, quantor, with-attributes and value. The
meaning of these is similar to the identically named properties of simple types.

Field Identifier. The optional field-identifier can be used to assign an
identifier to an instance of an embedded type definition. In value notation it is
used to identify the appropriate constant, variable or template instance.

Quantor. The quantor is used to express record-of and set-of constructs (see
section [L5)) including subtyping facility. The quantor is placed into the upper
right corner of the tag. It can only be used when the construct comprises of a
single element type! The quantor must appear in value notation but it must be
omitted in stuctured type reference. The quantor has the format (ABNF):

quantor = min [".."max] / "x" / n4n

where min and max are integral numbers such that max>min. The shorthands "*"
= 0..infinity and "+" = 1..infinity are also allowed.

With Attributes. The optional with-attributes has the same syntax and
semantics as the with attributes of simple types in section[2 except that the with
attributes specified for structured type apply for all element types. In case of
an element type reference appearing in element-type-list has different with
attributes this overrides the with attributes of the structured type.

Value. The value field shall only be used in value notation. It may hold either a
reference to a structured type value or an expression that evaluates to the given
structured type value. The value specified in the tag can be partially superseded
by values defined in element list.

3.1 Element Type List

The element-type-list determines structured type content. This can include
references to simple or complex types as well as embedded type definitions. The
graphical format and layout of element-type-1list depends on the construction
used for structured type definition. Section [4 presents the graphical format of
each structured type in detail.

An Intuitive TTCN-3 Data Presentation Format 69

X X

A A v A
B B 5
C C "hello!"

Fig. 6. Example for a record type and value notation

The element-type-list is omitted at structured type reference and struc-
tured type alias constructions. The graphical notation of these is identical to
their counterparts at the simple types, i.e. simple type reference as shown in
Figure B/a and simple type alias in Figure B|/b.

4 Structured Type Constructions

4.1 Record Type and Value

Fixed ordering of element types is expressed using the record construction. The
graphical notation of record type is a chain of element types along the position
axis arranged such that rectangles of neighboring element types have joint edges.
The record type definition example on Figure[flis shown together with its value
notation. Type X consists of an ordered list of types A, B and C. None of the
element types have field names assigned. Note that A, B and C are not necessarily
simple types. The value notation to the right assigns A the value v_A by reference,
while B and C get the literals 5 and “hello!” respectively. The equivalent CL
definitions are:

type record X { const X x := {

A f_A, f_A = v_A,

B f£f_B, f_B :=5,

c f£.C f_C := "hello!"
} }

4.2 Union Type and Value

The union construct expresses a choice of alternative types. DPF represents
type alternatives orthogonal to the position axis. The element types are enlisted
similar to the record construct but along the horizontal axis. The example in
Figure [(left) defines the union Y as an alternative of the three element types
A B and C.

The value notation of union type permits only a single alternative to get value
assigned. The not selected alternatives can as well be omitted. The example in
Figure [(right) shows a union value containing element type B having value 5
assigned. The CL equivalent definitions are:

70 Roland Gecse and Sarolta Dibuz

Y Y
A B C A B c

Fig. 7. Example for union type and value

A 7 V 7
A A va
B B 5
C C "hello!"

Fig. 8. DPF notation for set type and value

type union Y { const Yy := {
A f_A, f B :=5
B f_B, }
C f_C }

4.3 Set Type and Value

Arbitrary ordering of types is expressed with the set construct. The graphical
representation of set is formed by enclosing the element types into a rectangular
box with rounded corners such that the element types must not touch each other.

The example set type Z in Figure [§ (left) stands for any permutations of
element types A, B and C. The value notation for the set type (Figure [§] (right))
assigns value to each element type either literally or by value reference. The
equivalent CL definitions are:

type set Z { const Z z := {

A f_A, f_A := v_a,

B £f_B, f_B :=5,

c f£.C f_C := "hello!"
+ }

4.4 Optional Elements in Structured Types

Protocol specifications often make use of optional types. Optional types may
occur in record and set types. The graphical notation distinguishes optional
element types with a dotted border. The element types B and C in the example
in Figure [are optional in both X0 record and Z0 set types.

The CL equivalent type dinfitions are:

An Intuitive TTCN-3 Data Presentation Format 71

X0 4 Z0O

Fig. 9. DPF notation for optional element types in record and set types

type record X0 { type set Z0 {
A f_A, A f_A,
B f_B optional, B f_B optional,
C f_C optional C £_C optional
X X

The value notation of structured types containing optional element types is
similar to structured types except that omitted optional element types get the
“—" (omit) value assigned. Figure contains example values for both types
defined in Figure [

X0 Xo ‘ZO ZO

Fig. 10. DPF value notation for optional record and set types

The CL mapping of the constants in Figure [0}

const X0 xo := { const Z0 zo := {
f_A := v_A, f_A := v_A,
f_B := omit, f_B := omit,
f_C := "hello!" f_C := "hello!"
¥ }

4.5 Record and Set of Types

The quantor inside the tag of record or set types expresses record-of or set-of
types. The element type list of set or record types definition must consist of a
single element type. Note that the quantor can put length restrictions on set-
of and record-of types and thereby express subtype constraint. The set-of type

72 Roland Gecse and Sarolta Dibuz

P of the example in Figure [[1] stands for zero or more unordered appearances
of element type A. The record-of type R represents an ordered list of 1 to 3
repetitions of type A.

Fig. 11. ITN notation for set-of and record-of types

The equivalent CL definitions are:
type set of A P; type record length(1..3) of A R;

The type notation for set-of and record-of types shall contain as many instances
of its element type as specified by the quantor. The value of the quantor must
always be in accordance with the type definition. The set-of and record-of values
of the example in Figure[12 both consist of three element instances.

‘P P * r R 1..3
A v A A v_A
A 3
A 3
A 100
A 100

Fig. 12. Value notation for set-of and record-of types

The corresponding CL declarations are:

const P p := { v_a, 3, 100 }; const Rr := { v_a, 3, 100 };

5 Embedded Type Definitions

TTCN-3 forbids embedded type definitions. DPF on the contrary provides graph-
ical notation for embedded type definitions. The only requirement is that even
the embedded type shall have an identifier assigned. The element-type-list
part of structured type definitions may contain embedded type definitions of
both simple and structured types. At embedded typed definition, the type def-
inition to be embedded simply replaces its reference in the element type list.

An Intuitive TTCN-3 Data Presentation Format 73

4 RequestLine 4 UserInfo
userOrTelephoneSubscriber
Method charstring
: password
SipUrl : charstring
sipversion 1 oo ooooonooomrromnrrrnnar s
charstring
HostPort
host .
charstring
TportField TT T
integer
SipUrl 4 GenericParam
scheme
1 Naqp " id .
charstring ("sip") | charstring
. . paramvalue ,
UserInfo : : charstring
HostPort
* urlParameters . .
GenericParam List GenericParam List
THeadérsT 7T :
: GenericParam List G: GenericParam D

Fig. 13. DPF “flat” definitions for SIP RequestLine

The inner type inherits the field name and value attributes of the reference.
The frame format (optional, mandatory) is also kept in the embedded type.
When exporting DPF definitions into CL format, all these definitions shall be
decomposed into standalone “flat” type definitions.

DPF implementation shall enable editing in flat view (Figure [3)), in em-
bedded view (Figure [[4)) and in mixed view (Figure [[6). Furthermore, it shall
support conversion between these modes by expanding references into embedded
type definitions or vice versa collapsing embedded type definitions into refer-
ences. The default type view could be the uppermost level flat view. The desired
type reference shall then be expanded into an embedded definition at user re-
quest. The embedded view of a type could be collapsed when the user finished
editing. This way the user could keep overview of the whole type hierarchy.

The example in Figure [[3 shows structured type definitions of RequestLine
part of the SIP Invite-Request message. The complete definition consists of five
tables (except the simple type definitions). The equivalent embedded definition
in Figure [[4lfits into one table. Although the embedded notation can be harder
to read in this printed form it expresses element type hierarchy and gives a better
overview of the entire complex type definition.

The embedded graphical representation increases overview of complex data
definitions and thereby helps to detect certain unconformities, which may oc-
cur in definitions. These include record-of/set-of types referenced in an optional

74 Roland Gecse and Sarolta Dibuz

‘ K ‘ req_line K
RequestLine RequestLine
‘ Method ‘ Method wvrre
A SipUrl A SipUrl
scheme scheme
charstring ("sip") ‘ charstring ("sip") ..
;‘ UserInfo ‘ UserInfo :
UserOrTelephoneSubscriber UserOrTelephoneSubscriber
: charstring ‘ : charstring iy wimy
. password . T . password . v
: charstring C = charstring
HostPort HostPort
Bost ™ Tt o Bost ™ Tt o :
charstring charstring ..., oo
integer
‘ urlParameters K | * ‘ urlParameters K |
: GenericParam_List : : GenericParam_List
GenericParam . GenericParam
id id
charstring charstring valphav
- paranvalue . : : - paranvalue . .
charstring : : : . charstring
Theaders T S AP = GenericParam
GenericParam_List i
""""""""""""""" charstring beta
SipVersion K
charstring
Sipversion
charstring "s1P/1.0"

Fig. 14. Embedded DPF view of SIP RequestLine with an example value

field, an optional definition of a record/set consisting of solely optional elements
and much more. The GenericParam_List type, which is defined to be a set-of
GenericParam type, for instance, appears twice as an optional field of SipUrl.
This feature can further contribute to correctly designed declaration parts.

The value notation for embedded type follows the same way as ordinary
structured types. Figure [[4] (right) presents a dummy value for RequestLine.

6 Recursive Definition

The recursive definition is a special case of embedded definition. The defined
type contains a reference to itself. Following the CL guideline DPF does not
place any restrictions on recursions therefore it is the user’s responsibility to
make sure that no endless recursion loop is defined. Figure [15] presents a simple
example recursive type definition (left).

type record U { var Uu := { f_a :=1, £.U := {
a f_a, f_a :=3, £_.U :={
U £f_U optional f_a :=5, £_U := omit } } };

An Intuitive TTCN-3 Data Presentation Format 75

U A U
A A .
U ‘ U '
§ A ;
M v
A 5
. |

Fig. 15. Example of recursive type definition and value notation

The value notation, however, must not contain recursion. The recursive def-
initions shall be unfolded similarly to embedded type definitions before getting
a value assigned. A matching value for the example recursive type definition is
shown in Figure [[H (right).

7 Signature Declaration

The declaration of signatures is a prerequisite of procedure based communica-
tion. In DPF, the signature declarations are collected into a separate section. The
graphical representation of a signature resembles to structured type definition
(Figure B). The signature name takes the place of structured type identifier. The
return type identifier replaces the field identifier while the exceptions go into
the top right corner into the position of the quantor. In case of non-blocking
signature types the noblock keyword replaces the return type in the top left
corner of the tag. The signature parameters appear on the element type list in
an ordered fashion. For each item of the parameter list: the parameter type goes
into the middle, the parameter name into the top left identifier while the direc-
tion indicator keyword into the top right corner. Figure [TGl (right) contains the
DPF equivalent of the following CL signature declaration:

signature IPConnection (inout ProtocolID protocol,
in IPAddress srcHost, in integer srcPort,
out IPAddress dstHost, out integer dstPort)
return SuccessIndication exception (ErrorException);

8 Template Definition

DPF provides graphical representation for CL templates. The notation resem-
bles to value notation. The major difference is that wildcard symbols expressing

76 Roland Gecse and Sarolta Dibuz

M eq ine RequestLine (Method m, A Successind)ca:;fxp(:onnection ErrorException
charstring h, UserInfo u, SrotoeeT Fvs
GenericParam List 1) ProtocolID
srcHost in
‘ Method o IPAddress
| : SroPort n
SipUrl integer
scheme dstHost ou
charstring ("sip") .. IPAddress :
. dstPort out
UserInfo o integer
HostPort
: charstring n
integer 876

charstring "51P/1.20

Fig. 16. DPF example for parameterized template definition (left) and signature dec-
laration (right)

matching mechanisms can be used beside specific values and value references in-
side the bottom right value attribute. Parameterized templates are also available.
The formal parameters list must be specified in parentheses behind the template
identifier inside the tag. The formal parameters can then be incorporated as
references in expressions of the value field.

DPF also supports modified templates. The name of the base template shall
appear in the value attribute of the outermost template definition. The GUI
shall then fill all elements according to the base template and offer the user
to make changes. The implementation keeps track of the changes and creates
appropriate modified templates when the module is exported to CL. A benefit
of this approach is that the user always see the full template even if she works
with modified templates. Optionally DPF implementation could also perform
template optimization, which includes the generation of modified and parame-
terized templates when feasable.

Note that the representation on Figure (left) contains both embedded
definitions and references at the same time. This is an example of a mixed view.

9 Component and Port Type Definitions

Component and port types belong to different DPF sections. Both are based
upon the graphical notation of the set type (Section [43).

DPF supports procedural, message based as well as mixed port types. The
structured-type-spec of port type definition contains the name of the given
port type. The field identifier consists of the literal procedure, message or mixed
signalling the operation method of the port. The element type list consists of
messages, procedure signatures or both consequently. The message type defini-

An Intuitive TTCN-3 Data Presentation Format 77

message
‘ MyComponentType ‘ PortType
msgPortA M in
PortType A
msgPortB out
PortType B
myRequestLine . inout
RequestLine c
myCompVar
integer 42
t .
timer
= _/

Fig. 17. DPF notation of component and port type definitions

tions and procedure signature declarations come from their respective sections.
The keyword in, out or inout appearing on the top right corner determines the
direction of the message or signature. Figure [IT (right) shows an example port
type definition.

The graphical layout of component type is similar. The component type name
belongs to the structured-type-spec. The component type definition must not
have any attributes. TTCN-3 components may contain port, timer and variable
declarations. The element type list uses DPF value notation. Port declarations
consist of a reference to a port type and a port name inside the field identifier.
Ports must not have other attributes that the field identifier. Variables are also
declared by reference but these may have an initializer present inside the value
attribute. Timers are declared using the timer keyword as simple-type-spec.
Similarly to variables, timer may also have an initial value set. The example
in Figure 07 (left) shows the DPF definition of MyComponentType. The CL
equivalent definitions:

type component MyComponentType { type port PortType message
port PortType msgPortA, msgPortB; {
var integer myCompVar := 42; in A;
var RequestlLine myRequestLline; out B;
timer t; inout C;
b b

10 Conclusion

We presented a new TTCN-3 presentation format, the Data Presentation For-
mat, for intuitive graphical representation of TTCN-3 data. DPF provides graph-
ical notation for all kinds of CL types and values, which is especially useful in
large-scale test development where protocol(s) contain several hundreds or thou-
sands of type definitions and templates. A typical DPF implementation enhances

78 Roland Gecse and Sarolta Dibuz

test data design and thereby reduces the lead time of test suite development.
We hope that DPF gets acceptance from the testing community either as a
stand-alone presentation format or as a complementary part of GFT.

References

1. Methods for Testing and Specification (MTS); The Testing and Test Control Nota-
tion version 3; Part 1: TTCN-3 Core Language, ETST ES 201 873-1 V2.2.0 (2002-03).

2. Methods for Testing and Specification (MTS); The Testing and Test Control Nota-
tion version 3; Part 2: TTCN-3 Tabular Presentation Format (TFT), ETSI ES 201
873-2 V2.2.0, (2002-03).

3. Methods for Testing and Specification (MTS); The Testing and Test Control Nota-
tion version 3; Part 3: TTCN-3 Graphical presentation Format (GFT), ETSI TR
101 873-3 V1.2.1, (2002-05).

4. D. Crocker, Ed., P. Overell: Augmented BNF for Syntax Specifications: ABNF,
RFC-2234, Nov. 1997.

	1 Introduction
	2 Simple Type and Value
	2.1 Simple Type Specification
	2.2 Simple Type Attributes

	3 Structured Type and Value
	3.1 Element Type List

	4 Structured Type Constructions
	4.1 Record Type and Value
	4.2 Union Type and Value
	4.3 Set Type and Value
	4.4 Optional Elements in Structured Types
	4.5 Record and Set of Types

	5 Embedded Type Definitions
	6 Recursive Definition
	7 Signature Declaration
	8 Template Definition
	9 Component and Port Type Definitions
	10 Conclusion
	References

