Skip to main content

Collaborative Filtering Using Interval Estimation Naïve Bayes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2663))

Abstract

Personalized recommender systems can be classified into three main categories: content-based, mostly used to make suggestions depending on the text of the web documents, collaborative filtering, that use ratings from many users to suggest a document or an action to a given user and hybrid solutions. In the collaborative filtering task we can find algorithms such as the naïve Bayes classifier or some of its variants. However, the results of these classifiers can be improved, as we demonstrate through experimental results, with our new semi naïve Bayes approach based on intervals. In this work we present this new approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithm for collaborative filtering. Technical report, Microsoft Corporation, Redmond, WA 98052, May 1998. One Microsoft Way.

    Google Scholar 

  2. P. Bruemmer. Google: Search technology for the millennium. Search Engine Guide, February 2002. Every 28 days, Google indexes 3 billion Web Documents.

    Google Scholar 

  3. R. Duda and R. Hart. Pattern Classification and Pattern Analysis. Wiley, New York, 1973.

    MATH  Google Scholar 

  4. J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann publisher, 2001.

    Google Scholar 

  5. D.J. Hand and K. Yu. Idiot’s Bayes — not so stupid after all? International Statistical Review, 69(3):385–398, 2001.

    Article  MATH  Google Scholar 

  6. M. Deshpande J. Srivastava, R. Cooley and P. Tan. Web usage mining: Discovery and applications of usage patterns from web data. SIGKDD Explorations, 1:12–23, 2000.

    Article  Google Scholar 

  7. R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In IJCAI, pages 1137–1145, 1995.

    Google Scholar 

  8. P. Larrañaga and J. A. Lozano. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer Academic Publisher, 2001.

    Google Scholar 

  9. O. Marbán, E. Menasalvas, C. Montes, and J. Segovia. Book: E-Commerce and Intelligent Methods in the Studies in Fuzziness and Soft Computing Series, chapter CRM in e-Business: a client’s life cycle model based on a neural network, pages 61–77. Springer-Verlag, 2002.

    Google Scholar 

  10. K. Miyahara and M.J. Pazzani. Collaborative filtering with the simple Bayesian classifier. In Pacific Rim International Conference on Artificial Intelligence, pages 679–689, 2000.

    Google Scholar 

  11. H. Mühlenbein. The equation for response to selection and its use for prediction. Evolutionary Computation, 5:303–346, 1998.

    Article  Google Scholar 

  12. P. M. Murphy and D. W. Aha. UCI repository of machine learning databases. http://www.ics.uci.edu/~mlearn/, 1995.

  13. P. Resnick, I. Neophytos, S. Mitesh, P. Bergstrom and J. Rieldd. Grouplens:An open architecture for collaborative filtering of netnews. In CSCW94: Conference on Computer Supported Cooperative Work, pages 175–186, 1994.

    Google Scholar 

  14. M. Pazzani and D. Billsus. Learning and revising user profiles: The identification of interesting web sites. Machine Learning, 27:313–331, 1997.

    Article  Google Scholar 

  15. A. Popescul, L. Ungar, D. Pennock, and S. Lawrence. Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments. In 17th Conference on Uncertainty in Artificial Intelligence, pages 437–444, Seattle, Washington, August 2–5 2001.

    Google Scholar 

  16. G. Salton and M. J. McGill. Introduction to modern information retrieval, 1983.

    Google Scholar 

  17. U. Shardanand and P. Maes. Social information filtering: Algorithms for automating “word of mouth”. In Proceedings of ACM CHI’95 Conference on Human Factors in Computing Systems, volume 1, pages 210–217, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Robles, V., Larrañaga, P., Peña, J.M., Marbán, O., Crespo, J., Pérez, M.S. (2003). Collaborative Filtering Using Interval Estimation Naïve Bayes. In: Menasalvas, E., Segovia, J., Szczepaniak, P.S. (eds) Advances in Web Intelligence. AWIC 2003. Lecture Notes in Computer Science, vol 2663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44831-4_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-44831-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40124-7

  • Online ISBN: 978-3-540-44831-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics