Skip to main content

Preconditionning Techniques for the Solution of the Helmholtz Equation by the Finite Element Method

  • Conference paper
  • First Online:
Book cover Computational Science and Its Applications — ICCSA 2003 (ICCSA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2668))

Included in the following conference series:

  • 688 Accesses

Abstract

This paper discusses 2D solutions of the Helmholtz equation by finite elements. It begins with a short survey of the absorbing and transparent boundary conditions associated with the DtN technique. The solution of the discretized system by means of a standard Galerkin or Galerkin Least-Squares (GLS) scheme is obtained by a preconditioned Krylov subspace technique, speci.cally a preconditioned GMRES iteration. The stabilization paremeter associated to GLS is computed using a new formula. Two types of preconditioners, ILUT and ILU0, are tested to enhance convergence.

This research has been funded by the National Sciences and Engineering Research Council of Canada (NSERC), by the Army Research Office under grant DAAD19-00-1-0485, and by NSF. Support was also provided by the Minnesota Supercomputing Institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Gunburger A. Bayliss and E. Turkel. Boundary conditions for the numerical solution of elliptic equations in exterior regions. SIAM J. Appl. Math., 42:430–451, 1982.

    Article  MathSciNet  Google Scholar 

  2. X. Antoine, H. Barucq, and A. Bendali. Bayliss-turkel like radiationcondition on surfaces of arbitrary shape. J. Math. Anal. Appl., 229:184–211, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  3. J.P. Berenger. A perfectly matched layer for the absorption of electromagneticwaves. J. Comput. Phys., 114:185–200, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Djellouli, C. Farhat, A. Macedo, and R. Tezaur. Finite element solution of twodimensional acoustic scattering problems using arbitrarily shaped convex artificial boundaries. Journal of Computational Acoustics, 8(1): 81–99, 2000.

    MathSciNet  Google Scholar 

  5. B. Enquist and A. Majda. Absorbing boundary conditions for the numericalsimulation of waves. Math. Of Comput., 31:629–651, 1977.

    Article  Google Scholar 

  6. I. Harrari, K. Grosch, T. J. R. Hughes, M. Malhotra, P.M. Pinsky, J. R. Stewart, and L. L. Thompson. Recent developpments in finite element methods for structural acoustics. Archives of Computional Methods in Engineering, 3, 2 y 3:131–311, 1996.

    Article  Google Scholar 

  7. F. Ihlenburg and I. Babuska. Finite element solution of the helmholtz equation with high wave number. i. the h-version of the fem. Comp. Math. Appl., 30:9–37, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  8. J.B. Keller and D. Givoli. Exact non reflecting boundary conditions. J. Comput. Phys., 82: 172–192, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  9. Mardochée Magolu Monga Madei. Incomplete factorization based preconditionings for solving the helmholtz equation. Int. J. Numer. Meth. Engng, 50:1077–1101, 2001.

    Article  Google Scholar 

  10. A. A. Oberai and P. M. Pinsky. A numerical comparaison of finite element methods for the helmholtz equation. J. Comput. Acoustics, 8:211–221, 2000.

    MathSciNet  Google Scholar 

  11. Y. Saad. ILUT: a dual threshold incomplete ILU factorization. Numerical Linear Algebra with Applications, 1:387–402, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  12. Y. Saad. Iterative Methods for Sparse Linear Systems. PWS publishing, New York, 1996.

    MATH  Google Scholar 

  13. Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7:856–869, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Tezaur, A. Macedo, C. Farhat, and R. Djellouli. Three dimensional finite element calculations in acoustic scattering using arbitrarily shaped convex artificial boundaries. Intern. J. for Numer. Meth. in Engin., 53(1):1461–1476, 2000.

    MathSciNet  Google Scholar 

  15. A. Zebic. Equation de helmholtz: etude numérique de quelques preconditionneurs pour la méthode gmres. Technical Report 182, INRIA, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kechroud, R., Soulaimani, A., Saad, Y. (2003). Preconditionning Techniques for the Solution of the Helmholtz Equation by the Finite Element Method. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds) Computational Science and Its Applications — ICCSA 2003. ICCSA 2003. Lecture Notes in Computer Science, vol 2668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44843-8_92

Download citation

  • DOI: https://doi.org/10.1007/3-540-44843-8_92

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40161-2

  • Online ISBN: 978-3-540-44843-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics