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Abstract. Monte Carlo simulations are performed to study the in-plane 
transport of spin-polarized electrons in III-V semiconductor quantum wells. The 
density matrix description of the spin polarization is incorporated in the 
simulation algorithm. The spin-orbit interaction terms generate coherent 
evolution of the electron spin polarization and also cause dephasing. The spatial 
motion of the electrons is treated semiclassically. Three different scattering 
mechanisms—optical phonons, acoustic phonons and ionized impurities—are 
considered. The electric field is calculated self-consistently from the charge 
distribution. The Monte Carlo scheme is described, and simulation results are 
reported for temperatures in the range 77-300 K.  

1. Introduction. 

Monte Carlo device simulation is a widely used method for modeling charge 
carrier transport in semiconductor devices. The approach can easily accommodate 
different properties of the electron transport. It is particularly well suited for 
highlighting the leading physical mechanisms [1]. It yields an accurate description of 
the device, which is not limited by the assumptions made in deriving the alternative 
drift-diffusion and hydrodynamic models [2,3]. Furthermore, Monte Carlo simulation 
can provide the physical parameters required as input for drift-diffusion and 
hydrodynamic models.  

Spin-polarized electron transport in semiconductors has attracted significant recent 
interest due to its promising role in novel device structures [4-7]. Many devices 
utilizing spin-dependent phenomena have been proposed [8-17]. The additional spin 
degree of freedom, which is usually ignored in charge-transport models, can be used 
to encode information in the spin-polarized current. Design of new spintronic devices 
requires control for the spin polarization in the device channel. Presently, there are 
numerous difficulties in accomplishing such control. Recent experimental advances 
[5] have allowed efficient injection of the spin-polarized current into low-dimensional 
semiconductor structures [18-19] and its maintenance for up to few nanoseconds at 
room temperature [20]. Generally, the electron spin dynamics can be controlled by 
external magnetic field, local magnetic fields produced by magnetic impurities and 
nuclei, and spin-orbit interaction. These interactions lead to coherent evolution of 
carrier spin polarization and also cause spin dephasing. 
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Different approaches have been proposed to describe the spin-polarized current in 
different transport regimes. Quantum-mechanical single-particle models have been 
utilized for ballistic spin-polarized electron transport [15,21,22]. Semiclassical drift-
diffusion models have been derived based on the two-current (spin-up and spin-down) 
approximation [23-25] or using the full spin-polarization vector description [26]. 
Recently, some nonlinear corrections in spin-polarized electron transport have 
attracted attention [27]. Boltzmann equations for two spin-states [28] and for spin 
density matrix [29,30] have also been considered.  

The size of the spintronic devices is limited by the spin dephasing length, which is 
expected to have values of order of one micron [31,32]. For such device size, the 
charge distribution in the channel is far from equilibrium. Therefore, the electric field 
must be calculated self-consistently from the charge distribution. Monte Carlo 
simulation provides a natural tool for such calculations [33-35]. The simulation 
results are promising and consistent with the existing experimental data, though 
details of the Monte Carlo simulation scheme have traditionally not been presented. 
Moreover, some simplified assumptions were included in many studies. In the work 
by Bournel et al. [33], the Monte Carlo simulation has been carried out for constant 
in-channel electric field, while in the paper by Kiselev and Kim [34], the assumption 
that all the carriers have the same velocity magnitude was made and anisotropic 
scattering effects were ignored.  

This work presents selected Monte Carlo simulation results [35] for spin-polarized 
electron transport in a device channel modeled as a single quantum well of a III-V 
heterostructure. Though the model is simple and involves certain assumptions on the 
device structure, we expect it to apply beyond the drift-diffusion transport regime. 
Moreover, additional details of the structure can be easily incorporated. The spin 
density matrix approach is used to evaluate the spin-polarization dynamics. The 
Poisson equation is solved for every sampling time step to update the electric field in 
the device channel. Electrons injected from the source have random momentum 
directions and Maxwellian distribution of magnitudes, determined by the lattice 
temperature. Both isotropic and anisotropic scatterings are considered. We review the 
model, describe the Monte Carlo procedure, and report new results on the temperature 
dependence of the spin dephasing length.  

 

2. Spin density matrix formalism and Monte Carlo simulation.  

To incorporate the electron spin dynamics into a typical Monte Carlo transport 
simulation model, we start with the Hamiltonian of a single conduction electron with 
spin, 

0 s s
ˆ( , ) ( ) 1 ( , )H H H= ⋅ +σ k k σ k  . (1) 

We assume that the external magnetic field is zero. The operator s1̂  on the right-hand 
side of Eq. (1) is the unity operator in the spin variables; H0 is the spin-independent 
self-consistent single-electron Hamiltonian in the Hartree approximation,  
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including also interactions with phonons and static imperfections. The term impV  
describes ionized nonmagnetic impurities, quantum well roughness and other static 
imperfections of its structure. The terms labeled “e-ph” and “ph” represent the 
electron-phonon interaction and the phonon mode Hamiltonian, respectively. The 
Hartree potential VH accounts for the electron-electron interactions. It is determined 
by the appropriate Poisson equation [36], 
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ε
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∇ = − − 
 
∑ r  , (3) 

where εs is the material permittivity, 
2

( )jψ r is the probability density to find the jth 

electron at r, and ND is the donor concentration. The second term on the right-hand 
side of Eq. (1) describes the spin dependent interactions with magnetic impurities and 
nuclear spins, and also the spin-orbit interaction. In this work, we only consider the 
effects of the spin-orbit interaction, which has been identified [37] as the main cause 
of the spin relaxation in III-V semiconductors at high (77-300 K) temperatures. 

The appropriate description of the electron spin in an open quantum system can be 
given by the spin density matrix [38], 

( ) ( )
( )

( ) ( )

t t
t

t t

ρ ρ
ρ

ρ ρ
↑↑ ↑↓

↓↑ ↓↓

 
=  
 

σ  , (4) 

where ρ↑↑  and ρ↓↓  are the probabilities to find the electron with spin up or spin 

down. The (complex-conjugate) matrix elements ρ↑↓  and ρ↓↑ describe the linear 

superposition of the spin-up and spin-down states. The density matrix (4) can be 

parameterized by the (real) electron spin-polarization vector as ( )( ) ( )S t Tr tζ ζσ ρ= σ , 

where ζ = x, y, z, and ζσ  are the Pauli matrices [38].  

To specify the spin-orbit interaction term, we consider a single III-V asymmetric 
quantum well grown in the (0, 0, 1) crystallographic direction. The main spin-orbit 
contributions in this case are due to the bulk inversion asymmetry of the crystal—the 
Dresselhaus mechanism [39,40], 

2
D ( )z y y x xH k k kβ σ σ= −  , (5) 

and inversion asymmetry of the quantum well—the Rashba mechanism [41], 

R ( )y x x yH k kη σ σ= −  . (6) 

To specify the momentum and spin-polarization vector components, we use the 
coordinate system where x is the direction of the electric field along the channel, 
while z is orthogonal to the quantum well plane. Moreover, the axes are oriented 
along the principal crystal axes, and the quantum well is assumed narrow, such that 
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2 2 2,x y zk k k . The latter properties are important for the form assumed for the 

Dresselhaus spin-orbit interaction term [40]; see Eq. (5).  
For submicrometer devices with smooth potential, in the considered temperature 

regime (T = 77-300 K), the spatial electron motion can be assumed semiclassical and 
described by the Boltzmann equation; see [36]. The electrons travel along classical 
“localized” trajectories between the scattering events. The scattering rates are given 
by the Fermi Golden Rule, and the scattering events are instantaneous [36]. The 
phonon bath in Eq. (2) is assumed to remain in thermal equilibrium with the constant 
lattice temperature T. In this case, the Monte Carlo simulation approach can be 
applied to the spatial transport [1-3]. We assume here that the back reaction of the 
electron spin evolution on the spatial motion is negligible owing to the small value of 
the electron momentum-state splitting due to spin-orbit interaction in comparison with 
its average momentum. This is consistent with the original model of the D’yakonov-
Perel’ spin-relaxation mechanism [42]. 

In the simulation model, electrons propagate with constant momentum during the 
time τ , which is the smaller of the sampling time step t∆  and the time left to the 
next scattering event or from scattering to the next sampling. The propagation 
momentum is set equal to the average value of the momentum of a particle moving 
with constant acceleration during this time interval. We term this motion “free flight.” 
For each “free flight” time interval, τ , the spin density matrix evolves according to 

( ) ( ) ( ) ( )/ /R D R Di H H i H Ht e eτ τρ τ ρ τ− + ++ =σ σ
 . (7) 

Equation (7) is equivalent to rotation of the spin polarization vector about the 
effective magnetic field determined by the direction of the electron momentum. We 
assume that there are no electron spin-flip events accompanying momentum 
scattering [43]. The exponential operators in Eq. (7) can be written as (2×2) scattering 
matrices,  

( )
( ) ( )

( ) ( )
/

*

cos sin

sin cos

R Di H H

i

e

i

τ

αα τ α τ
α

α α τ α τ
α

− +

 
 
 =  
  
 

 , (8) 

with the Hermitean conjugate of Eq. (8) for the operator ( ) /R Di H He τ+ . The sampling 
time step t∆  should be taken short as compared to all the dynamical time scales, in a 
proper Monte Carlo simulation. In Eq. (8), α is determined by the spin-orbit 
interaction terms, Eqs. (3,4), 

( ) ( )1 2 2
y z x x z yk k k i k k kα η β η β−  = − + − 

 . (9) 

During the “free flight,” the spin dynamics of a single electron spin is coherent; see 
Eq. (7). However, stochastic momentum fluctuations due to electron scattering events, 
produce the distribution of spin states, thus causing effective dephasing at times t > 0.  
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The spin polarization, ( , )S tζ r , of the current can be obtained by averaging Sζ  

over all the electrons in a small volume dv , which is located at the space position r, at 
time t. The absolute value of the average spin polarization vector is in the range 

( , ) 1t ≤S r . If ( , )tS r  is equal to 1, the electric current is completely spin-

polarized. The components ( , )S tζ r  define the orientation of the spin polarization, 

and evolution of the spin polarization vector may be viewed as consisting of coherent 
motion (rotation) and loss of polarization (reduction of magnitude) due to electron 
spin dephasing [40,42].  

The Monte Carlo simulation is carried out by sequentially performing free-flight 
and scattering calculations for all the particles. The next-scattering-event time is 

generated as scat (ln ) /t pδ = − Γ , where p is a random number between 0 and 1, and Γ 

is the total scattering rate including the self-scattering rate [2,3,44] that accounts for 
fictitious scattering introduced to make Γ constant. The sampling time step t∆  is 
specified small enough to properly update the particle motion and the electric field. 
The choice of the value of t∆  is based on the stability criteria [45]. The momentum 
increment and the distance of the “free flight” are calculated as  

e τ∆ =k E  ,    
( / 2)

m
τ+ ∆∆ = k k

r  , (10) 

where e−  is the electron charge and E  is the applied electric field. Based on the 
above discussion, the additional calculation needed to follow the spin polarization 
evolution of each particle, consists of an update of the spin density matrix at the end 
of each “free flight” time step, by using Eqs. (7,8).  

It is assumed that the electrons are confined in the 1st (lowest) subband and that 
their z-direction motion is steady-state and defined by the shape of the quantum well. 
In the scattering event calculations, three in-plane (xy) scattering mechanisms are 
included in the simulation: optical phonon scattering, acoustic phonon scattering (for 
the scattering rates, see Sect. 2.6 of [45]), and separated impurity scattering (for the 
scattering rate, see Sect. 7 of [46]).  

The selection of the scattering mechanism is performed by defining 

( ) ( )
1

/ , 1, 2, 3
n

n j

j

E W E n
=

Λ = Γ =∑k k  , (11) 

where Wj(Ek) is the integral scattering rate for the jth mechanism. The nth scattering 

mechanism is chosen if a random number p falls between 
1
( )

n
E−Λ

k
 and ( )

n
EΛ

k
.  

In the scattering calculation, the in-plane projection of the electron momentum 
' 'k = k  is obtained from the energy conservation relation as '

k2 /k mE ′= , where 

k kE E ω′ = ±  for the optical phonon scattering, and k kE E′ =  for the acoustic-
phonon and impurity scattering.  

The following boundary conditions are assumed. Electrons are injected at the 
emission boundary with the kinetic energy 
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lnBE k T p= −  (12) 

(T is the lattice temperature), and the injection angle (with respect to the x axis) is 
randomly distributed between / 2π−  and / 2π . The electrons that fly beyond the 
collection boundary (and some that return through the injection boundary) are 
absorbed, and a new electron is emitted whenever there is an electron absorbed. The 
electric potential is the solution of the Poisson equation with the boundary conditions 
specified by the voltage applied to the device.  

 

3. Simulation results. 

For simulations, we have used the structure with the 0.55 µm channel length and 
infinite width, Fig. 1(a). The confining potential is assumed to be a single asymmetric 
In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As quantum well, Fig. 1(b), in the one-subband 
approximation. The width of quantum well is 20d =  nm. The structure is highly n-

doped with donor concentration 1210DN = cm-2. We assume that all the donors are 

ionized, and the equilibrium electron concentration in the channel is equal ND. The 
calculated energy of the 1st subband is 1 0.2E ≈ eV. The energy splitting between the 

1st and 2nd, excited, subband is estimated as 12 60 70E∆ ≈ − meV. This value in turn 
defines the range of the drain-source voltage values, VDS , for which the one-subband 
approximation model is valid. The values of the electron spin-orbit coupling constants 

0.074η = eV·Å and 32.2β = eV·Å3 were taken from [47] and [48], respectively, 

while other material parameters were adopted from [49]. 
 

  

Fig. 1. The device structure, (a), and the confining potential, (b). 

 
In simulation, the total number of particles in the channel was N = 55000, with 

periodic boundary conditions, and the sampling time step was 1t∆ = fsec. To achieve 
the steady-state transport regime, we ran the simulation program for 20000 time steps, 
and collected data only during the last 2000 time steps. 

ND 

E1 

d 

∆E12 

(b) 

0.56 eV 

n-doped In0.52Al0.48As  

In0.52Al0.48As 

In0.53Ga0.47As 
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The simulated energy profile and in-channel electron concentration are shown on 
Fig. 2. In the considered range of the applied voltages, the steady-state charge 
distribution in the device channel is nearly constant. The injection region with varying 
charge distribution (up to 0.01µm) can be considered as quasi-ballistic, where 
electrons experience strong acceleration, Fig. 2(b), while the transport in the rest of 
the device is effectively drift-diffusive. The simulated steady-state distributions of the 
spin polarization for three different injected polarizations: along the x, y, and z axes, 
are shown in Fig. 3.  
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Fig. 2. The calculated electron transport characteristics: a) electron concentration in the 
channel; b) average energy profile, as functions of x, at T = 300 K and VDS = 0.05-0.25 V. 

 
In the considered model, the spin dephasing is influenced by the electron transport 

parameters and instantaneous orientation of the spin polarization vector. In the quasi-
ballistic transport region, the spin-polarization decreases significantly, as can be seen 
in Fig. 3. This likely reflects the energy dependence of the scattering rates. 

Due to anisotropy of the spin-orbit interaction terms, Eqs. (5,6), the spin dephasing 
rate is different for different orientations of the spin polarization in the drift-diffusive 
transport region. This leads to variations in the dephasing rate for the spin-polarized 
current with the injected spin polarization along the x and z directions, Fig. 3(d). For 
these cases, the spin polarization vector largely rotates in the xz-plane, Figs. 3(a) and 
3(c). The dephasing will be stronger for the polarization vector oriented in the z 
direction. This can be explained by the following observation. In the considered 
structure, the Rashba spin-orbit coupling is considerably stronger than the 

Dresselhaus coupling, ( )2 5.3zkη β ≈ . Thus, the term proportional to ky, see Eq. 

(6), is primarily responsible for the spin dephasing [8]. It will not affect the 
polarization vector oriented in the x direction, due to proportionality to xσ . 
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Fig. 3. The steady-state spin polarization, S, in the channel, for VDS = 0.1 V, T = 300 K, for 
three different injected polarizations; a), b), c) the components of the spin polarization vector; 

d) the magnitude of the spin polarization vector. 

 
The spin dephasing along the channel is not a simple exponential decay. However, 

we can still identify the spin dephasing length, ls, as the distance over which the spin 
polarization is reduced by the factor of e from the injected value. For higher values of 
the applied voltage, at low temperatures spin depolarizes faster, Fig. 4. This can be an 
effect of stronger scattering. However, at room temperature we observe the opposite 
dependence, due to larger drop of polarization in the ballistic region for smaller 
values of the applied voltage.  

 

4. Model improvements. 

Our simulation model has incorporated the leading, D’yakonov-Perel’-type spin 
dephasing mechanism only, which should be dominant in the semiclassical transport 
regime. For more accurate estimations of the electron spin dephasing, additional 
mechanisms should be considered [50].  
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Fig. 4. Spin dephasing length as a function of the temperature for different values 
of the applied voltage (for the injected spin polarization Sx = 1). 

 
In narrow band gap semiconductors such as InGaAs, the Elliott-Yafet spin-

dephasing mechanism [43] can play an important role. Due to admixing of the hole 
states in the conduction electron wave functions, the electron spin can flip with some 
probability even at a non-magnetic impurity. This mechanism can be integrated in the 
Monte Carlo scheme in the scattering calculation, together with the momentum 
scattering. Another possible spin dephasing mechanism arises due to the electron-
electron interaction [51]. While this does not contribute to the electron momentum 
and energy relaxation, the current spin polarization can be suppressed [51]. This 
mechanism could be important for high electron concentrations.  

The validity of the one-subband approximation model is in doubt for room-
temperature electron transport. In the considered case, it can be argued that the inter-
subband electron scattering only contributes corrections to spin dephasing [35]. 
However, for more accurate calculations, inter-subband processes should be 
incorporated into the simulation model. 

The specific device structure can also lead to additional spin dephasing 
mechanisms. For example, the current spin dephasing due to magnetic field created 
by the ferromagnetic source and drain in a spin-FET [52] may be more critical than 
the considered D’aykonov-Perel’-type spin relaxation. 

 

5. Conclusions. 

A Monte Carlo model for simulation of the spin-polarized electron transport in 
submicrometer device structures has been developed. The electron spin polarization is 
described by the spin density matrix, while spatial electron motion is treated 
semiclassically. The coherent dynamics of the current spin polarization, and spin 
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dephasing, are determined by the spin-orbit interaction. The electric field in the 
device is evaluated self-consistently from the charge distribution. The phonon and 
impurity electron momentum scattering mechanisms are incorporated in the 
simulation. The steady state spatial distribution of the current spin-polarization vector 
has been simulated. The temperature dependence of the spin dephasing length was 
calculated for the range 77-300K. The estimated value of the spin dephasing length at 
room temperature is of the order of 0.2 microns. 
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