Skip to main content

The Complexity of Detecting Fixed-Density Clusters

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2653))

Abstract

We study the complexity of finding a subgraph of a certain size and a certain density, where density is measured by the average degree. Let γ : ℕ → ℚ+ be any density function, i.e., γ is computable in polynomial time and satisfies γ(k) ≤ k − 1 for all k ∈ ℕ. Then γ-Cluster is the problem of deciding, given an undirected graph G and a natural number k, whether there is a subgraph of G on k vertices which has average degree at least γ(k). For γ(k) = k − 1, this problem is the same as the well-known clique problem, and thus NP-complete. In contrast to this, the problem is known to be solvable in polynomial time for γ(k) = 2. We ask for the possible functions γ such that γ-Cluster remains NP-complete or becomes solvable in polynomial time. We show a rather sharp boundary: γ-Cluster is NP-complete if \( \gamma = 2 + \Omega \left( {\frac{1} {{k^1 - \mathcal{E}}}} \right) \) for some ε > 0 and has a polynomial-time algorithm for \( \gamma = 2 + 0\left( {\frac{1} {k}} \right) \) .

Research of the third and of the fourth author supported by DFG, grant Ma 870/5-1 (Leibnizpreis Ernst W. Mayr).

Research supported by DFG (Deutsche Forschungsgemeinschaft), grant Ma 870/6-1 (SPP 1126 Algorithmik großer und komplexer Netzwerke).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Asahiro, R. Hassin, and K. Iwama. Complexity of finding dense subgraphs. Discrete Applied Mathematics, 121(1–3): 15–26, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  2. Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama. Greedily finding a dense subgraph. Journal of Algorithms, 34(2): 203–221, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. J. Alpert and A. B. Kahng. Recent developments in netlist partitioning: A survey. Integration: The VLSI Journal, 19(1–2): 1–81, 1995.

    Article  MATH  Google Scholar 

  4. S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes for dense instances of NP-hard problems. Journal of Computer and System Sciences, 58(1): 193–210, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. B. Boppana and M. M. Halldórsson. Approximating maximum independent sets by excluding subgraphs. BIT, 32(2):180–196, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. S. Charikar. Greedy approximation algorithms for finding dense components in a graph. In Proceedings 3rd International Workshop on Approximation Algorithms for Combinatorial Optimization, volume 1913 of Lecture Notes in Computer Science, pages 84–95. Springer-Verlag, Berlin, 2000.

    Chapter  Google Scholar 

  7. J. Cong and M. Smith. A parallel bottom-up clustering algorithm with applications to circuit partitioning in VLSI design. In Proceedings 30th ACM/IEEE Design Automation Conference, pages 755–760. ACM Press, New York, 1993.

    Google Scholar 

  8. A. Czygrinow. Maximum dispersion problem in dense graphs. Operations Research Letters, 27(5): 223–227, 2000.

    Article  MathSciNet  Google Scholar 

  9. U. Faigle and W. Kern. Computational complexity of some maximum average weight problems with precedence constraints. Operations Research, 42(4):1268–1272, 1994.

    Article  MathSciNet  Google Scholar 

  10. U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph problem. Algorithmica, 29(3): 410–421, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  11. U. Feige and M. Seltser. On the densest k-subgraph problem. Technical Report CS97-16, Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot, Israel, 1997.

    Google Scholar 

  12. G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algorithm and applications. SIAM Journal on Computing, 18(1):30–55, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  13. O. Goldschmidt, D. Nehme, and G. Yu. On the set union knapsack problem. Naval Research Logistics, 41(6):833–842, 1994.

    Article  MATH  Google Scholar 

  14. J. Håastad. Clique is hard to approximate within n 1−ε. Acta Mathematica, 182(1):105–142, 1999.

    Article  MathSciNet  Google Scholar 

  15. K. Holzapfel, S. Kosub, M. G. Maaß, and H. Täubig. The complexity of detecting fixed-density clusters. Technical Report TUM-I0212, Fakultät für Informatik, Technische Universität München, 2002.

    Google Scholar 

  16. D. J.-H. Huang and A. B. Kahng. When cluster meet partitions: New density-based methods for circuit decomposition. In Proceedings European Design and Test Conference, pages 60–64. IEEE Computer Society Press, Los Alamitos, 1995.

    Google Scholar 

  17. J. M. Kleinberg, S. R. Kumar, P. Raghavan, S. Rajagopalan, and A. S. Tomkins. The Web as a graph: measurements, models, and methods. In Proceedings 5th International Conference on Computing and Combinatorics, volume 1627 of Lecture Notes in Computer Science, pages 1–17. Springer-Verlag, Berlin, 1999.

    Chapter  Google Scholar 

  18. S. R. Kumar, P. Raghavan, S. Rajagopalan, and A. S. Tomkins. Trawling the Web for emerging cyber-communities. Computer Networks, 31(3):1481–1493, 1999.

    Article  Google Scholar 

  19. T. Murata. Discovery of Web communities based on the co-occurrence of references. In Proceedings 3th International Conference on Discovery Science, volume 1967 of Lecture Notes in Artificial Intelligence, pages 65–75. Springer-Verlag, Berlin, 2000.

    Google Scholar 

  20. D. Nehme and G. Yu. The cardinality and precedence constrained maximum value sub-hypergraph problem and its applications. Discrete Applied Mathematics, 74(1):57–68, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  21. A. Srivastav and K. Wolf. Finding dense subgraphs with semidefinite programming. In Proceedings International Workshop on Approximation Algorithms for Combinatorial Optimization, volume 1444 of Lecture Notes in Computer Science, pages 181–191. Springer-Verlag, Berlin, 1998.

    Chapter  Google Scholar 

  22. P. Turán. On an extremal problem in graph theory. Matematikai és Fizikai Lapok, 48: 436–452, 1941. In Hungarian.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holzapfel, K., Kosub, S., Maaß, M.G., Täubig, H. (2003). The Complexity of Detecting Fixed-Density Clusters. In: Petreschi, R., Persiano, G., Silvestri, R. (eds) Algorithms and Complexity. CIAC 2003. Lecture Notes in Computer Science, vol 2653. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44849-7_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-44849-7_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40176-6

  • Online ISBN: 978-3-540-44849-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics