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Abstract. Present work is concerned with the construction of a lattice-
Boltzmann (LB) model for ideal miscible fluids. In this particular case,
collision term in LB equation can be modelled by, only, considering mu-
tual and cross collisions between, respectively, particles of the same and
of different kind. A non-linear LB model with three distinct relaxation
times intended to be used in problems with large concentration gradients
is presented. Model enables the independent management of the fluid vis-
cosities µr and µb and binary diffusivity D. It is shown that mass and
momentum are, always, preserved and that the model retrieves consistent
hydrodynamic equations in the incompressible limit. Theoretical values,
obtained from Chapman-Enskog analysis, for binary diffusivity and mix-
ture viscosity are compared with numerical values, directly obtained from
LB simulations.

1 Introduction

When two fluids r and b are mixed, long-range intermolecular forces will control
the nature of the resulting physical system. When attractive r-r and b-b forces
are dominant with respect to r-b forces, fluids r and b will segregate. In this
case, fluids are said to be immiscible. Mixtures of fluids can be thermodynami-
cally stable when long-range attraction between molecules of different kinds are
dominant. In this second case, fluids are said to be miscible. When long-range
forces are negligeable, the fluids and their mixtures are said to be ideal.

A review on lattice-Boltzmann models (LB) for miscible fluids has been,
recently, given by Sofonea and Sekerka[1]. Most common LB are based on a single
BGK collision term and momentum conservation requires the relaxation times
for the species k to be identical [2],[3],[4]. In this way, simulation is restricted
to fluids with identical viscosity. Sofonea and Sekerka proposed the following
splitting of the collision term,

Ωr
i =

(
ρr

τr
+

ρb

τrb

)
[Req

i (ρr, u)−Ri] , (1)
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Ωb
i =

(
ρb

τb
+

ρr

τbr

) [
Beq

i (ρb, u)−Bi

]
, (2)

where, for fluids r and b, ρr, ρb are the densities, the τ ’s are relaxation times,
Ri, Bi are the distribution functions, and Req

i , Beq
i denotes the equilibrium

distributions, calculated using the mixture velocity u.
Momentum preservation requires(

ρr

τr
+

ρb

τrb

)
=

(
ρb

τb
+

ρr

τbr

)
=

1
τ

, (3)

or τbr = τr and τrb = τb. In this way, Sofonea and Sekerka’s model use two in-
dependent relaxation times, replacing the constant relaxation time by a function
of the fractional mass of r and b particles.

In this work, a three-parameter BGK model is presented for ideal miscible
fluids, enabling the independent management of the mass diffusivity and r and
b fluid viscosities.

Although in a different form, a three-parameter model with the same above
features has been, very recently, proposed by Luo and Girimaji[5]. Luo and
Gimaji’s rapid communication was published in the course of present work and,
in spite of the fact that a detailed comparison work is needed considering the
computacional performance of the two models, some comments are given in the
Conclusions section, for clarifying some main differences that could be important.

2 Model

Considering Ri(X, T ) to be the particles distribution of r-particles in site X
at time T and, similarly, for Bi(X , T ), lattice-Boltzmann equation for kind K
particles, K = R, B, will be written as

Ki(X + ci, T + 1) = Ki(X, T ) + Ωk
i (R0, R1, ..., Rbm , B0, B1, ..., Bbm) , (4)

where ci = lattice unitary velocity along direction i, bm = number of lattice
directions and index 0 corresponds to rest particles. Collision operator Ωk

i , k =
r, b is required to satisfy mass and momentum conservation:

bm∑
i=0

Ωr
i = 0 , (5)

bm∑
i=0

Ωb
i = 0 , (6)

bm∑
i=0

(
Ωr

i + Ωb
i

)
ci = 0 . (7)
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A three-parameter BGK collision term that satisfies the above restrictions is
proposed in present work, written as

Ωr
i = ωr Req

i (ρr, ur)−Ri

τr
+ ωb Req

i (ρr, ub)−Ri

τm
, (8)

Ωb
i = ωb Beq

i (ρb, ub)−Bi

τb
+ ωr Beq

i (ρb, ur)−Bi

τm
, (9)

where

ωk =
ρk

ρ
, (10)

and

ρk =
bm∑
i=0

Ki, (11)

uk =
1
ρk

bm∑
i=0

Kici, (12)

are, respectively, the macroscopic density and velocity of component k, k = r, b.
Equilibrium distributions are taken from the single-fluidO(v2) lattice-Boltzmann
equilibrium distributions as[6],

K0
i (ρk, v) =

ρk

b
+

Dρk

bmc2
ciαvα

+
D(D + 2)ρk

2bmc4
ciαciβvαvβ − Dρk

2bmc2
(v)2 , i = 1...bm (13)

K0
0 (ρk, v) =

ρk

b
br − ρk

c2
(v)2 , (14)

for a generic velocity v and k = r, b. In the above equation, as usually, D is
the lattice Euclidean dimension, c = |ci|, br is a free-parameter related to the
distribution of rest particles, b = br +bm. The first term in the r.h.s. of Eq. (8) is
related to the relaxation of r-particles distribution to an equilibrium state given
by r-component density and velocity, considering r-r collisions, only. The second
term considers r-b collisions and is related to the relaxation of r-particles to an
equilibrium state given by density ρr and by a b velocity ub. When component b
is dominant, i.e., when ρb/ρ→ 1, collisions r-r are very infrequent and collisions
r-b will impose velocity ub to component r.
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3 Chapman-Enskog Asymptotic Analysis

In the continuum limit, the Knudsen number Kn = h/L → 0, where h is the
length corresponding to a lattice unit and L is a macroscopic length, distribution
Ki(X , T ) is expanded in powers of Kn,

Ki = K0
i +KnK1

i + ..., K = R, B; i = 0, 1, ..., bm, (15)

and the time derivative has an induced decomposition

∂t = ∂0 +Kn∂1 + .... (16)

Collision term given by Eq. (8) can be expanded around Req
i (ρr, u), u = ωrur +

ωbub, giving

Ωr
i =

(
ωr

τr
+

ωb

τm

)
[Req

i (ρr, u)−Ri] +

+
ωr

τr
ρr D

bmc2
(ur − u) · ci +

ωb

τb
ρr D

bmc2
(ub − u) · ci +O(u2). (17)

Writting lattice-Boltzmann equation, Eq. (4), in continuous variables, using
a time scale δ and the length scale h and using dimensionless variables t∗ = t/tc,
where tc is a macroscopic time, x∗ = x/L,

ε

Kn
∂t∗Ri + ciα∂α∗Ri +

1
2

ε2

Kn
∂t∗t∗Ri +

1
2
Knciαciβ∂α∗β∗Ri +

+εciα∂t∗∂α∗Ri =
1
Kn

(
ωr

τr
+

ωb

τm

)
[Req

i (ρr, u)−Ri] +

+
ωr

τr

D

bmc2
jr,1 · ci +

ωr

τm

ρr

ρb

D

bmc2
jb,1 · ci , (18)

where ε = δ/tc and

jk,1 =
∑

i

K1
i ci, (19)

is the Kn first order contribution to species K diffusive flux

jk = ρk(uk − u) = Knjk,1 +K2
njk,2 + ... (20)

In Equation (18), the first term in the second member will be dominant when
ε ∼ Kn " 1 and the solution of(

ωr

τr
+

ωb

τm

)
[Req

i (ρr, u)−Ri] = 0, (21)

gives the zero-th order solution to Ri,
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R0
i = Req

i (ρr, u). (22)

Using the same reasoning for species b,

B0
i = Beq

i (ρb, u). (23)

In the first order, R1
i is the solution of

ε

Kn
∂0∗Ri + ciα∂α∗Ri =(

ωr

τr
+

ωb

τm

)
R1

i +
ωr

τr

D

bmc2
jr,1 · ci +

ωr

τm

ρr

ρb

D

bmc2
jb,1 · ci , (24)

giving,

R1
i = − τrτm

τrωb + τmωr

{
−ωr D

bmc2
ciαjr,1

α

(
1
τr
− 1

τm

)
+

+
1
b

[−∂α(ρruα) + ωruα∂αρ + (∂αρr − ωr∂αρ)ciα] +

+
[
−D + 2

c2
ωruβ∂αρ +

bD

bmc2
+

bD

bmc2
(∂α(ρruβ) + uβ∂αρr)

]
ciαciβ ,

}
.(25)

A similar expression can be obtained for B1
i .

4 Macroscopic Equations in the Continuum Limit

Macroscopic equations were found by replacing the distributions R1
i and B1

i

in the Kn expansion of Eq.(4). Mass conservation equation for the k-species is
obtained by multipying the resulting equation by 1 in the ci-space and by adding
the Kn zero and first order contributions. At first order in Kn, species-r mass
conservation equation was recovered in the following form,

∂tρ
r + ∂(ρruα) + ∂α (jr

α) = 0 , (26)

where the r-species diffusive flux is given by

jr
α = −ρD∂α (ωr) = −ρ(τm − 1/2)

bmc2

bD
∂α (ωr) , (27)

in lattice units.
In this way, bynary diffusivity depends, only, on the cross relaxation time

and does not depend on the mass fraction of the r and b species. This result is
consistent with Chapman-Enskog resuts, considering the first order c-moments
of Boltzmann continuous equation, when the mass mr = mb [7]. In fact, this
restriction cancels the species diffusive flux dependence on pressure gradients.
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For the momentum equation, the lacking of energy conservation in present
model restricts the analysis to the low-velocity, incompressible limit. In this case,
after dropping-out the terms related to ∇ · u, O(u2) and O(j · u), Chapman-
Enskog analysis leads to

∂t(ρuβ) + ∂α (Pδαβ + ρuαuβ) = η∂α [ρ(∂αuβ + ∂βuα)] , (28)

where P = ρc2
s and the kinematic viscosity coefficient η , in lattice units, is given

by

η =
c2

D + 2

[
A + B

2 (ρrτm + ρbτr) (ρbτm + ρrτb)

]
, (29)

where A and B are shown below,

A = −ρrρb (τm)2 − (ρr)2 τbτm − (
ρb

)2
τrτm − ρrρbτrτb , (30)

B = 2ρrρb (τm)2 (τr + τb) + 2τrτbτm
[
(ρr)2 +

(
ρb

)2
]

. (31)

In this way, in the incompressible limit, Navier-Stokes equation is correctly
retrieved in this LB approximation. Mixture viscosity appears as a function of
the three parameters, τr , τb, τm and the mass fractions, ρr, ρb. When ρb → 0,

η =
c2

D + 2

(
τr − 1

2

)
, (32)

which is the correct expression for the kinematic viscosity of pure component r.

5 Comparison between Theoretical Predictions and
Simulation Results

Theoretical predictions Eqs.(27) and (29) were compared with simulation results.
Simulated diffusivity values, shown in Table 1, were obtained using the transient
method presented in Flekoy [8]. Simulation was performed using a 200 x 100 x
3, D3Q19 lattice, with a 10 particles/site for the particle density. Viscosity was
obtained in a 400 x 20 x 3 lattice from the velocity profiles of a plane Poiseuille
flow[9].

There is a very good agreement between theoretical predictions and simula-
tion results even for markedely different relaxation times, although, as it was to
be expected, large values of τ and/or large differences in viscosity can, substan-
tially, increase the simulation running time.

6 Conclusion

Intended to be used in diffusion-problems with large concentration gradients, in
presently proposed model, relaxation times are non-linear functions of the r and

1012 P.C. Facin, P.C. Philippi, and L.O. Emerich dos Santos 



Table 1. Comparison between theoretical and simulated results

τ r τ b τm D theoretical D simulated η theoretical η simulated

0.51 0.51 0.51 0.003333 0.003339 0.0033333 0.003467

0.51 0.8 0.9 0.133333 0.1335 0.083020 0.086198

0.51 2.0 3 0.833333 0.833984 0.378632 0.371125

1 1 1 0.166667 0.166669 0.166667 0.172615

1 3 1.5 0.333333 0.331565 0.366667 0.370507

3 6 1.5 0.333333 0.329481 0.566667 0.561238

1 3 3 0.833333 0.81903 0.583333 0.559141

b mass fractions. Previously, the following three-parameter linear BGK model
was used

Ωk
i =

Keq
i (ρk, uk)

τk
+

Keq
i (ρk, u)

τm
, (33)

with the same features of the model given by Eqs (8), (9). In this way, it pre-
serves mass and momentum in collisions and gives a consistent hydrodynamics.
Nevertheless, the use of constant relaxation times leads to constant mixture vis-
cosity and this appear to be, only, realistic when concentration gradients are
small. In present notation, Luo and Gimaji’s model [5] can be written as

Ωr
i =

Req
i (ρr, ur)−Ri

τr
+

1
τm

ωbReq
i (ρr, ur)(ci − u) · (ur − ub) . (34)

Although the authors did not report their mixture viscosity, the use of a
constant relaxation time for r-r collisions appear to be unrealistic when con-
centration gradients are important. In addition, contribution of r-b collisions to
Ri distribution is considered in Luo and Gimaji’s model to be, only, propor-
tional to the first-order non equilibrium term (ur − ub). This difference should
reveals to be unimportant, considering the low-velocity limitations of both mod-
els. Nevertheless, as commented in the Introduction of present paper, a more
detailed comparative analysis is needed, focusing, specially, the computational
performance.
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