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Abstract. A lattice Boltzmann method for two-phase immiscible ÿuids

with large density ratios is proposed. The diÆculty in the treatment

of large density ratio is resolved by using the projection method. The

method can simulate two-phase ÿuid ÿows with the density ratio up to

1000. The method is applied to the simulations of a single rising bubble in

liquid and many bubbles rising in a square duct. The terminal shapes and

the terminal Reynolds numbers of the single bubble for various Morton

and E�otv�os numbers are in good agreement with available experimental

data. The complicated unsteady structures of the interface and the ÿow

þeld are illustrated in many bubbles rising in a square duct.

1 Introduction

Recently, the lattice Boltzmann method (LBM) has been developed into an
alternative and promising numerical scheme for simulating multicomponent ÿuid
ÿows [1{4]. Inamuro et al. [5, 6] have also proposed a lattice Boltzmann method
for multicomponent immiscible ÿuids with the same density. The LBM has great
advantages over conventional methods for multiphase ÿows. It does not track
interfaces, but can maintain sharp interfaces without any artiþcial treatments.
Also, the LBM is accurate for the mass conservation of each component ÿuid.
Although the LBM is a promising method for multicomponent ÿuid ÿows, one
of disadvantages is that all above schemes are limited to small density ratios less
than 10. Usually the density ratio of liquid-gas systems is larger than 100, e.g.,
the density ratio of water to air is about 1000 to 1.

The aims of the present paper are to propose an LBM for two-phase ÿuids
with large density ratios and to apply the method to the simulations of rising
bubble ÿows. The diÆculty in the treatment of large density ratio is resolved
by using the projection method [7]. Two particle velocity distribution functions
are used. One is used for the calculation of an order parameter which represents
two phases, and the other is used for the calculation of a predicted velocity of
the two-phase ÿuid without a pressure gradient. The current velocity can be
obtained by using the relation between the velocity and the pressure correction
which is determined by solving the Poisson equation.

The method is applied to the simulations of a single rising bubble in liquid and
many bubbles rising in a square duct. The terminal shapes of the single bubble
for various Morton and E�otv�os numbers are calculated, and the shape regime
and the terminal Reynolds number are compared with available experimental
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data. The complicated structures of the interface and the ÿow þeld of many
bubbles rising in a square duct are calculated.

2 Numerical Method

Non-dimensional variables, which are deþned by using a characteristic length
L, a characteristic particle speed c, a characteristic time scale t0 = L=U where
U is a characteristic ÿow speed, and a reference density ÿ0, are used as in [8].
In the LBM, a modeled ÿuid, composed of identical particles whose velocities
are restricted to a þnite set of N vectors ci (i = 1; 2; ÿ ÿ ÿ ; N), is considered. The
þfteen-velocity model (N = 15) is used in the present paper. The velocity vectors
of this model are given by

[c1; c2; c3; c4; c5; c6; c7; c8; c9; c10; c11; c12; c13; c14; c15] =2
40 1 0 0 þ1 0 0 1 þ1 1 1 þ1 1 þ1 þ1
0 0 1 0 0 þ1 0 1 1 þ1 1 þ1 þ1 1 þ1
0 0 0 1 0 0 þ1 1 1 1 þ1 þ1 þ1 þ1 1

3
5 : (1)

The physical space is divided into a cubic lattice, and the evolution of particle
population at each lattice site is computed. Two particle velocity distribution
functions, fi and gi, are used. The function fi is used for the calculation of an
order parameter which represents two phases, and the function gi is used for
the calculation of a predicted velocity of the two-phase ÿuid without a pressure
gradient. The evolution of the particle distribution functions fi(x; t) and gi(x; t)
with velocity ci at the point x and at time t is computed by the following
equations:

fi(x+ ciþx; t+þt) = fi(x; t)þ
1

ýf
[fi(x; t)þ feqi (x; t)] ; (2)

gi(x+ ciþx; t+þt) = gi(x; t)þ
1

ýg
[gi(x; t)þ geqi (x; t)]
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where feqi and geqi are equilibrium distribution functions, ýf and ýg are dimen-
sionless single relaxation times, þx is a spacing of the cubic lattice, þt is a
time step during which the particles travel the lattice spacing, g is the gravita-
tional acceleration, and the other variables, ÿ, ÿL, ü, and u, and constants Ei

are deþned below.
The order parameter û distinguishing the two phases and the predicted ve-

locity uÿ of the multicomponent ÿuids are deþned in terms of the two particle
velocity distribution functions as follows:

û =

15X
i=1

fi; (4)
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u
ÿ =

15X
i=1

gici: (5)

The equilibrium distribution functions in Eqs. (2) and (3) are given by

feqi = Hiÿ+ Fi
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where

E1 = 2=9; E2 = E3 = E4 = þ þ þ = E7 = 1=9;

E8 = E9 = E10 = þ þ þ = E15 = 1=72;

H1 = 1; H2 = H3 = H4 = þ þ þ = H15 = 0;

F1 = ÿ7=3; Fi = 3Ei (i = 2; 3; 4; þ þ þ ; 15) ; (8)

and
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with ú; ù; ø = x; y; z (subscripts ú; ù; and ø represent Cartesian coordinates and
the summation convention is used). In the above equations, Æÿþ is the Kronecker
delta, þf is a constant parameter determining the width of the interface, and þg
is a constant parameter determining the strength of the surface tension. In Eq.
(6), p0 is given by

p0 = ÿT
1

1ÿ bÿ
ÿ aÿ2; (10)

where a; b; and T are free parameters determining the maximum and minimum
values of the order parameter ÿ. It is noted that fi is the same as that of the
Swift et al. model [3]. The following ÿnite-diþerence approximations are used to
calculate the derivatives in Eqs. (6), (7), and (9):
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The density in the interface is obtained by using the cut-oÿ values of the
order parameter, ÿÿL and ÿÿG, for the liquid and gas phases with the following
relation:

þ =

8>><
>>:
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2
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(13)

where þG and þL are the density of gas and liquid phase, respectively, ýþ =
þLÿþG, ýÿÿ = ÿÿLÿÿÿG, and ÿÿ = (ÿÿL+ÿÿG)=2. The viscosity û in the interface
is obtained by

û =
þÿ þG
þL ÿ þG

(ûL ÿ ûG) + ûG; (14)

where ûG and ûL are the viscosity of gas and liquid phase, respectively. The
surface tension ú is given by

ú = ùg

Z
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with ø being the coordinate normal to the interface [9].
Since uþ is not divergence free (r ýuþ 6= 0), the correction of uþ is required.

The current velocity u which satisþes the continuity equation (r ý u = 0) can
be obtained by using the following equations:

Sh
uÿ u

þ

ýt
= ÿ

rp

þ
; (16)

r ý

þ
rp

þ

ý
= Sh

r ý uþ

ýt
; (17)

where Sh = U=c is the Strouhal number and p is the pressure. The Poisson
equation (17) can be solved by various methods. In the present paper, we solve
Eq. (17) in the framework of LBM. Namely, the following evolution equation of
the velocity distribution function hi is used for the calculation of the pressure p:

hn+1i (x+ ciýx) = hni (x)ÿ
1

÷h
[hni (x)ÿEip

n(x)]ÿ
1

3
Ei

@uþÿ
@xÿ

ýx; (18)

where n is the number of iterations and the relaxation time ÷h is given by

÷h =
1

þ
+

1

2
: (19)

The pressure is obtained by

p =

15X
i=1

hi: (20)
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Fig. 1. Computational domain: (a) a single rising bubble, (b) 48 bubbles in a duct.

Fig. 2. Shape of a bubble and velocity vectors on y = Ly=2 at terminal velocity for
M = 1, E = 15 with ÿL=ÿG = 1000.

The iteration of Eq. (18) is repeated until jpn+1 ÿ pnj=ÿ < " is satisÿed in the
whole domain.

Applying the asymptotic theory to Eqs. (2), (3), and (18), we ÿnd that the
asymptotic expansions of macroscopic variables, þ, ÿ, u, and p, satisfy the phase-
ÿeld advection-diþusion equation (the Cahn{Hilliard equation plus advection)
for þ, the continuity equation, and the Navier{Stokes equations for incompress-
ible two-phase ýuid with relative errors of O[(ýx)2] [10].

It is also found in preliminary calculations that using the present method we
can simulate multiphase ýows with the density ratio up to 1000.

3 Results and Discussion

3.1 A Single Rising Bubble

A single bubble with diameterD is placed in a liquid inside a rectangular domain
(see Fig. 1(a)) and is released at time t = 0. The density ratio of the liquid to the
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Shape of a bubble at terminal velocity with ÿL=ÿG = 50. (a) M = 1 ÿ 10ÿ3,
E = 1; (b) M = 1ÿ 10ÿ3, E = 5; (c) M = 266, E = 116; (d) M = 1ÿ 10ÿ4, E = 20; (e)
M = 1ÿ 10ÿ3, E = 42; (f) M = 43, E = 339.

gas is ÿL=ÿG = 50 or 1000 (ÿL = 50 or 1000, ÿG = 1). The dimensionless param-
eters for this phenomenon are the Morton number M = gþ4

L
(ÿLÿ ÿG)=ÿ

2

L
ý3, the

E�otv�os number E = g(ÿLÿÿG)D
2=ý, and the Reynolds number Re = ÿLDV=þL

where V is a terminal velocity of the bubble. The periodic boundary condition
is used on all the sides of the domain. The domain is divided into an 80þ80þ160
cubic lattice. The parameters in Eq. (10) are a = 1, b = 1, and T = 2:93þ 10ÿ1;
it follows that the maximum and minimum values of the order parameter are
ümax = 4:031þ 10ÿ1 and ümin = 2:638þ 10ÿ1. The cut-oÿ values of the order
parameter are üþ

L
= 3:80þ10ÿ1 and üþ

G
= 2:75þ10ÿ1. The other parameters are

þxed at ûf = 1, ûg = 1, " = 10ÿ6, D = 30úx, þL=þG = 50, ùf = 0:05(úx)2 and
ùg = 1þ 10ÿ5(úx)2 for ÿL = 50, and ùf = 0:1(úx)2 and ùg = 1 þ 10ÿ7(úx)2

for ÿL = 1000. The liquid viscosity þL and the gravitational acceleration g are
changed for various values of the Morton and E�otv�os numbers.

Figure 2 shows the terminal shape of a bubble and the velocity vectors relative
to the averaged bubble velocity for M = 1 and E = 15 with ÿL=ÿG = 1000. It is
seen that the bubble is deformed into a mushroom shape and a circulatory ýow is
induced inside the bubble. Figure 3 shows terminal shapes of a bubble for various
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Fig. 4. Comparison of shape regime map (left) and terminal Reynolds number (right)
with experimental data [11, 12].

tÿ = 3:05 tÿ = 6:77

Fig. 5. Shape of interface and velocity vectors on y = 0:425Ly of 48 bubbles for M =
1 ÿ 10þ3 and E = 5 with ÿL=ÿG = 1000 (tÿ = tV ÿ=Lx where V ÿ is the averaged
gas-phase velocity of the result on the right-hand side).

values of the Morton and E�otv�os numbers with ÿL=ÿG = 50. The calculated
results are classiÿed into (a) spherical, (b) ellipsoidal, (c) ellipsoidal cap, (d)
disk, (e) spherical cap, and (f) smooth skirt shapes. We calculate terminal shapes
and terminal Reynolds numbers for various conditions, and those are in good
agreement with the experimental regime map [11] and the experimental terminal
Reynolds numbers [12] as shown in Fig. 4.
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3.2 Bubbles Rising in a Square Duct

Many bubbles (48 bubbles) are placed in a square duct (see Fig. 1(b)) and are
released at time t = 0. The density ratio is ÿL=ÿG = 1000. The periodic boundary
condition is used on the top and bottom of the domain, and the bounce-back
condition is used on the sides of the domain. The parameters of computation are
the same as those used in the previous section except D = 20þx, ýLþx = 2:506,
and gþx = 2:778ÿ10ÿ7. Figure 5 shows the calculated results for M = 1ÿ10ÿ3

and E = 5. It is seen that the bubbles coalesce each other, and then the interface
between the gas and liquid phases is deformed into a complicated unsteady
shape representing a churn ÿow. Note that the complicated ÿow þeld can be
stably calculated even for the large density ratio of ÿL=ÿG = 1000. Also, it is
found that the velocity þeld inside the gas phase is more complicated than those
in the liquid.

4 Concluding Remarks

A lattice Boltzmann method for two-phase immiscible ÿuids with large density
ratios has been developed. The method can simulate two-phase ÿows with the
density ratio up to 1000. In the application to a single rising bubble, the calcu-
lated results are in good agreement with experimental data. For many bubbles
rising in a square duct, the complicated unsteady structures of the interface and
the velocity þeld can be stably simulated. The method is considered to be a
promising method for simulating two-phase ÿows with large density ratios.

The accuracy of the method would depend on the interface width related to
the parameter üf , the mobility determined by the parameter ûf , and the lattice
spacing þx. The study of the accuracy concerning these parameters is required
in future work.
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