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Abstract. We use a three-dimensional lattice Boltzmann model to in-

vestigate the spreading of mesoscale droplets on homogeneous and het-

erogeneous surfaces. On a homogeneous substrate the base radius of the

droplet grows with time as t
0:28 for a range of viscosities and surface

tensions. The time evolutions collapse onto a single curve as a function

of a dimensionless time. On a surface comprising of alternate hydropho-

bic and hydrophilic stripes the wetting velocity is anisotropic and the

equilibrium shape of the droplet reÿects the wetting properties of the

underlying substrate.

1 Introduction

Wetting processes, such as the spreading of a droplet over a surface, have at-
tracted the attention of scientists for a long time [1]. A great deal is understood
about the wetting behaviour of equilibrium droplets. However less is known
about the dynamics of these systems, a problem of considerable industrial rel-
evance with the advent of ink-jet printing. The droplets involved in printing
typically have length scales of microns. Experimental work on such mesoscopic
droplets is diÿcult and expensive because of the length- and time-scales involved.
Therefore there is a need for numerical modelling both to investigate the physics
and to help design and interpret the experiments.

Lattice Boltzmann models are a class of numerical techniques ideally suited
to probing the behaviour of þuids on mesoscopic length scales [2]. Several lat-
tice Boltzmann algorithms for a liquid-gas system have been reported in the
literature [3{5]. They solve the Navier-Stokes equations of þuid þow but also
input thermodynamic information, typically either as a free energy or as ef-
fective microscopic interactions. They have proved successful in modelling such
diverse problems as þuid þows in complex geometries [6], two-phase models [3,
4], hydrodynamic phase ordering [7] and sediment transport in a þuid [8].

Here we show that it is possible to use a lattice Boltzmann approach to model
the spreading of mesoscale droplets and, in particular, to illustrate how a droplet
spreads on a substrate comprising of hydrophilic and hydrophobic stripes.
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We consider a one-component, two-phase ÿuid and use the free energy model
originally described by Swift et al. [3] with a correction to ensure Galilean invari-
ance [9]. The advantage of this approach for the wetting problem is that it allows
us to tune equilibrium thermodynamic properties such as the surface tension or
static contact angle to agree with analytic predictions. Thus it is rather easy to
control the wetting properties of the substrate. Three dimensional simulations of
spreading on smooth and rough substrates have previously been reported in [10]
using a diþerent lattice Boltzmann algorithm.

The paper is organised as follows. First we summarise the main features of the
lattice Boltzmann approach. The model is validated by showing the consistency
of the measured equilibrium contact angle with that predicted by Young's law
and by measuring the base radius of the spreading droplet as a function of time
obtaining, as expected, a power law growth. We show that when the reduced
base radius is plotted as a function of reduced time the data fall on a universal
curve for several values of surface tension and viscosity.

We then consider spreading on a heterogeneous substrate consisting of alter-
nate hydrophobic and hydrophilic stripes. We ýnd that the spreading velocity
is anisotropic and that the ýnal droplet shape reÿects the wetting properties of
the underlying substrate. Finally, a conclusion suggests extensions to the work
presented here.

The lattice Boltzmann approach solves the Navier-Stokes equations by following
the evolution of partial distribution functions fi on a regular, d-dimensional
lattice formed of sites r. The label i denotes velocity directions and runs between
0 and z.DdQz+1 is a standard lattice topology classiýcation. The D3Q15 lattice
topology we use here has the following velocity vectors vi: (0; 0; 0), (ÿ1;ÿ1;ÿ1),
(ÿ1; 0; 0), (0;ÿ1; 0), (0; 0;ÿ1) in lattice units.

The lattice Boltzmann dynamics are given by

fi(r+ÿtvi; t+ÿt) = fi(r; t) +
1

þ
(feqi (r; t)þ fi(r; t)) (1)

where ÿt is the time step of the simulation, þ the relaxation time and f
eq
i the

equilibrium distribution function which is a function of the density n =
Pz

i=0 fi
and the ÿuid velocity u deýned through the relation nu =

Pz

i=0 fivi.
The relaxation time tunes the kinematic viscosity as

ý =
ÿr2

ÿt

C4

C2

(þ þ
1

2
) (2)

where ÿr is the lattice spacing and C2 and C4 are coeücients related to the
topology of the lattice. These are equal to 3 and 1 respectively when one considers
a D3Q15 lattice (see [11] for more details).
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2.1 The Lattice Boltzmann Model



It can be shown [3] that equation (1) reproduces the Navier-Stokes equations
of a non-ideal gas if the local equilibrium functions are chosen as

feqi = Aÿ +Bÿuþviþ + Cÿu
2 +Dÿuþuýviþviý + Gÿþýviþviý; i > 0;

feq
0

= nÿ

zX
i=1

feqi (3)

where Einstein notation is understood for the Cartesian labels ÿ and þ (i.e.
viþuþ =

P
þ viþuþ) and where ý labels velocities of diÿerent magnitude.

The coeþcients Aÿ , Bÿ , Cÿ, Dÿ and Gÿ are chosen so as to satisfy the
relations

X
i

feqi = n;

X
i

feqi viþ = nuþ;

X
i

feqi viþviý = Pþý + nuþuý + ü (uþ@ýn+ uý@þn+ uü@ünûþý) ;

X
i

feqi viþviýviü =
c2n

3
(uþûýü + uýûþü + uüûþý) (4)

where Pþý is the pressure tensor, c is deýned to be úr=út and the last term of
the third expression in equation (4) is included to ensure Galilean invariance.

Considering a D3Q15 lattice and a square-gradient approximation to the
interface free energy (ù(@þn)2=2) [3], a possible choice of the coeþcients is [12]

Aÿ =
wÿ

c2

ÿ
pb ÿ

ù

2
(@þn)

2
ÿ ùn@þþn+ üuþ@þn

þ
;

Bÿ =
wÿn

c2
; Cÿ = ÿ

wÿn

2c2
; Dÿ =

3wÿn

2c4
;

G1üü =
1

2c4
ý
ù(@ün)

2 + 2üuü@ün
ü
; G2üü = 0;

G2üû =
1

16c4
(ù(@ün)(@ûn) + ü(uü@ûn + uû@ün)) (5)

where w1 = 1=3, w2 = 1=24, ù is a parameter related to the surface tension and
pb is the pressure in the bulk which is deýned below. One can show [13] that the
pressure tensor can be written as

Pþý =
ÿ
pb ÿ

ù

2
(@ün)

2
ÿ ùn@üün

þ
ûþý + ù(@þn)(@ýn): (6)

In this paper, we will focus our attention on üat substrates normal to the z
direction. The derivatives in that direction should then be handled in such a
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way that the wetting properties of the substrate can be controlled. A boundary
condition can be established using the Cahn model [14]. He proposed adding
an additional surface free energy ÿc(ns) = þ0 ÿ þ1ns + ÿ ÿ ÿ at the solid surface
where ns is the density at the surface. Neglecting the second order terms of ÿc(n)
and minimizing ÿb + ÿc (where ÿb is the free energy in the bulk), a boundary
condition valid at z = 0 emerges [15]

@zn = þ

þ1
ý
: (7)

Equation (7) is imposed on the substrate sites to implement the Cahn model in
the lattice Boltzmann approach. Details are given in [15].

The Cahn model can be used to relate þ1 to ü the contact angle deÿned as
the angle between the tangent plane to the droplet and the substrate. Within
the Cahn model the surface tension at the interfaces is given by [1]

ûlg =

Z nl

ng

p
2ýW (n; T )dn

ûsl;sg =

ÿÿÿÿ
Z ng;l

ns

p
2ýW (n; T )dn

ÿÿÿÿ+ þ0 þ þ1ns (8)

where W (n; T ) is the excess free energy, ûlg , ûsg, ûsl are the surface tensions
at the liquid-gas, solid-gas and solid-liquid interface respectively and ns, nl,
ng are the densities at the substrate, of the liquid phase and of the gas phase
respectively. Young's law [16] gives a relation between the static contact angle
and the surface tensions of the three phases

ûlg cos ü = ûsg þ ûsl: (9)

A convenient choice of bulk pressure is [15]

pb = pc(úp + 1)2(3ú2p þ 2úp + 1þ 2ùøp) (10)

where úp = (nþ nc)=nc, øp = (Tc þ T )=Tc and pc = 1=8, nc = 3:5 and Tc = 4=7
are the critical pressure, density and temperature respectively and ù is a constant
typically equal to 0:1. The excess free energy then becomes [15]

W (n; T ) = pc(ú
2

p þ ùøp)
2: (11)

Inserting equation (11) into relation (8) and using equation (9), gives the
relation between þ1 and ü

þ1 = 2ùøp
p
2pcý sign(ü þ

÷

2
)

r
cos

ö

3

þ
1þ cos

ö

3

ý
(12)

where ö = cosÿ1(sin2 ü) and the function sign returns the sign of its argument.
We impose a no-slip boundary condition on the velocity. Because a collision

takes place on the boundary the usual bounce-back condition must be extended
to ensure mass conservation (see [11] for a wider discussion). This is done by a
suitable choice of the rest ÿeld, f0, to correctly balance the mass of the system.
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We consider a 80ÿ 80ÿ 40 lattice on which a spherical drop of radius R0 = 16
just touches a ÿat surface at z = 0. Unless otherwise speciþed the temperature
is T = 0:4 which leads to two phases of density nl = 4:128 and ng = 2:913.
Fig. 1 shows how the droplet evolves in time to reach an equilibrium shape with
contact angle 60ÿ.

t = 0 t = 250 t = 500

t = 1000 t = 5000 t = 20000

Fig. 1. Spreading of a spherical droplet of radius R0 = 16 on a 80 ÿ 80 ÿ 40 lattice.

The equilibrium contact angle is 60ÿ.

We þrst present a check on the accuracy of the equilibrium properties of
the model. Fig. 2 reports a comparison between two methods of measuring the
contact angle. ÿy is the contact angle obtained from equation (9) with the surface
tensions measured at equilibrium. ÿg is the contact angle measured from the
proþle of the simulated droplet once equilibrium is reached. The agreement is
good. Small errors results from the diýculty of a direct measurement of the
contact angle on a discrete lattice.

The shape of the area formed by the contact of a droplet with a homogeneous
substrate is a disk. Its radius Rc is a quantity which is rather simple to measure
and has consequently attracted the attention of many scientists, see [17] and
references therein. The time evolution of Rc has been found to follow a power
law Rc = mtn=2. The exponent n has been widely reported in the literature but
with no consistent result. Marmur [17] in his review lists exponents between 0:06
and 0:6. The value of m appears to be related to the droplet volume.

Fig. 3 shows the time evolution of Rc for diüerent values of the viscosity and
the surface tension. The curves correspond to a value n = 0:56 which is within
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Fig. 2. Comparison between equilibrium contact angles ÿy and ÿ
g (deÿned in the text)

on a 110 ÿ 110 ÿ 50 lattice. The input contact angles are set from 30ÿ to 140ÿ every
10ÿ. þ = 1:0 and ý = 0:003. The initial droplet has a radius R0 = 18. 80 000 iterations
were used to reach each equilibrium. The dashed line is the expected agreement.

the range reported in the literature. The power law is independent of the surface
tension and the viscosity.

Indeed if the evolution curves are plotted as a function of the dimensionless
time [18]

t ÿ! tÿ =
ÿlg

þR0

t (13)

the data collapses onto a single curve as shown in ÿg. 3(b). Experimental data
taken from [18] shows similar behaviour.

Almost any surface will contain physical and chemical inhomogeneities which will
aþect the spreading of a mesoscopic droplet. It has recently become feasible to
fabricate surfaces with well-deÿned chemical properties on micron length scales
and it is becoming possible to perform well-controlled experiments which probe
the behaviour of mesoscopic droplets on chemically and physically heterogeneous
substrates. Thus it is particularly interesting to develop techniques to model the
eþect of these surfaces on the spreading properties of a droplet.

One of the simplest heterogeneous surfaces can be formed by alternating
stripes of materials with diþerent wetting properties. The static properties of
droplets on such substrates have been discussed [19{21]. However less attention
has been paid to the dynamics of the spreading.

In this section we consider heterogeneous surfaces formed by alternating hy-
drophilic and hydrophobic stripes. They are characterised by widths wphi,wpho

and contact angles ýphi, ýpho respectively. Fig. 4 presents the behaviour of a
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Fig. 3. Time evolution of the radius of the droplet base Rc on a 90ÿ90ÿ50 lattice (a)
as a function of time t (b) as a function of dimensionless time tÿ. The contact angle is
set to 60þ and R0 = 16. The solid line is the result of laboratory experiments [18].

three-dimensional droplet spreading on such a surface with ÿphi = 50ÿ, ÿpho =
110ÿ, wphi = 6, wpho = 5. The droplet has an initial radius R0 = 18.

It is apparent from the ÿgure that the behaviour of the droplet depends on
whether it is on a hydrophobic or a hydrophilic stripe. The equilibrium shape of
the contact line shown in ÿg. 4(b) reþects the pattern of the underlying substrate
which is comparable to that found in laboratory experiments [20].

The time evolution of the contact line is also shown in ÿg. 4(b). Note that
its velocity decreases smoothly in the y-direction parallel to the stripes but
not in the x-direction where it moves faster on the hydrophilic than on the
hydrophobic stripes. Note also that the droplet remains symmetric about an
axis perpendicular to the stripes but that the shape becomes asymmetric about
an axis parallel to the stripes, depending upon the initial position of the center
of the droplet.

Observation of the movement of the contact line in the x-direction shows that
in a hydrophilic region the contact angle tends to decrease and the velocity of the
contact line increase. When the contact line reaches the boundary its progress
is stopped and the contact angle increases until it is large enough to cross the
hydrophobic stripe.

It has been proposed that an equilibrium droplet on such a surface has a
spatially averaged contact angle following Cassie's law [21]

cos ÿ = pphi cos ÿphi + ppho cos ÿpho (14)

where pphi and ppho are the proportion of the substrate area which are hy-
drophilic or hydrophobic respectively. However, this relation is not universally
accepted. In particular it has been argued that there should be a dependence on
the relative size of the droplet and the surface stripes [19]. Fig. 4(c)-(d) show
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Fig. 4. Spreading of an initially spherical droplet on a heterogeneous surface formed
by alternating hydrophilic (ÿphi = 50ÿ, dark grey) and hydrophobic (ÿpho = 110ÿ,
light grey) stripes of width equal to 6 and 5 respectively. A 99 ÿ 99 ÿ 60 lattice and
a droplet with an initial radius R0 = 19 are used. The droplet initially just touches
the substrate at x = 50, y = 51. þ = 1:0 and ý = 0:003. Equilibrium is reached after
100 000 iterations. (a) Three-dimensional view of the droplet at equilibrium. (b) Time
evolution of the contact line. Each contour corresponds to 1000 iterations. (c) Cross
section at x = 48 (solid) and x = 53 (dashed) of the droplet proÿle at equilibrium. (d)
Cross section at y = 51 of the droplet proÿle at equilibrium.
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characteristic angles for the droplet considered here. Their average is 76:5ÿ which

is close to the one predicted by Cassie's law, 78:7ÿ.

5 Conclusion

We have used a three-dimensional lattice Boltzmann algorithm to model the

spreading of a mesoscopic droplet. By incorporating the Cahn theory of wetting

into the simulation we obtain a way of easily tuning the contact angle of the

droplet on the substrate. This gives us the ability to simulate spreading on both

homogeneous and heterogeneous surfaces.

The approach provides a well-controlled way of investigating the dependence

of the spreading on such properties as the droplet volume, contact angles and

the substrate geometry. Further work is in progress to systematically determine

how these parameters aÿect the velocity and shapes of the spreading droplets.

It would also be interesting to investigate the eÿect of physical inhomogeneities

on the spreading and to consider a droplet spreading on a porous surface.

A particular aim of the work will be to compare the results to forthcoming

experiments on substrates which have chemical patterning on mesoscopic length

scale. This will allow increased understanding of both the experimental results

and the model assumptions. For example we assume, as is the standard practice,

no-slip boundary conditions on the velocity. These may not be appropriate on

short length scales near a contact line. Moreover the liquid-gas density diÿer-

ence in lattice Boltzmann models is very small compared to real þuids and it is

important to undertake further work to assess the eÿect of this on the modelling

results.
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