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Abstract. Nuclear Magnetic Resonance (NMR) is a widely used tool in func-
tional and structural genomics for the study of three-dimensional structures of
proteins. The experimental data obtained by this method are multidimensional
spectra consisting of about 10’ data points. We demonstrate that Three Way De-
composition (TWD) provides an inherently suitable tool for the analysis of
these spectra. We apply here TWD for the first time to a NOESY-NOESY
spectrum, which in terms of number of signals is among the most complex
spectra. The application shows that the three-dimensional NMR spectra can be
faithfully described by the components resulting from TWD, yielding among
other advantages a data compression factor of over 100. The inherent relation
between NMR and TWD is demonstrated on the NOESY-NOESY spectrum by
deducing the TWD model from the mathematical description of the NMR ex-
periment. Applicability of TWD to various types of NMR spectra, the use of
sparse experimental data sets in order to reduce instrument time and other as-
pects of the analysis are discussed.

1 Introduction

The current contribution concerns the processing and analysis of large data sets (~10’
individual measurements) that arise from nuclear magnetic resonance (NMR [1]) ex-
periments when applied to biological macromolecules, in particular proteins. The im-
portance of the problem can be illustrated on the one hand by the interest in deci-
phering the human genome, and on the other hand by the large NMR investments of
pharmaceutical companies for the development of new medicines. The algorithm pro-
posed here is three-way decomposition (TWD), which has an inherent relation to
multidimensional NMR data sets as shown below. The TWD algorithm has been pre-
sented earlier as such [2] and more recently as a tool for the analysis of NMR spectra
[3-5]. Here, we complement earlier, in part more technical publications [6] by dem-
onstrating the application of TWD to the most complex NMR spectrum so far (in
terms of number of signals). In the rest of this introduction, some general aspects of
proteins and of NMR are mentioned.

Proteins and DNA are very large molecules (macromolecules) that form the basis
of life. DNA molecules serve mostly as medium for information storage, and world-
wide efforts to read the entire genomic information are currently being completed.

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2657, pp. 15-24, 2003.
© Springer-Verlag Berlin Heidelberg 2003



16 M. Billeter and V. Orekhov

Genes from the most important part of this information: they encode the building
plans for proteins. Proteins play a crucial role in almost any metabolic process, and
the study of the function of these gene products is referred to as “functional ge-
nomics” and enjoys at present enormous attention. Typically, proteins exert their
function by intermolecular interactions, and thus an understanding of the function of a
protein requires knowledge of its three-dimensional (3D) structure. In addition, the
description of the internal dynamics of these molecules may often provide significant
clues when explaining function at a molecular level. Besides fundamental questions
about life, numerous practical applications rely on knowledge of structure and dy-
namics of proteins, an example being the design of clinically active reagents (“‘drug
discovery”).

Proteins are molecules that consist of thousands of atoms. Experimental methods
for 3D structure determinations that yield coordinates for each atom must therefore
provide a large amount of data. NMR is one of few methods that presently can pro-
vide complete structures of macromolecules at atomic resolution, and it is the prime
experimental method for the characterization of internal molecular dynamics. NMR
provides multidimensional spectra with typical sizes of several million data points.
Their analysis offers a significant computational challenge. This is further accentuated
by a variety of experimental artifacts, by limited access to the expensive NMR
equipment and by problems related to the availability of sufficient and stable protein
samples.

The purpose of this contribution is twofold. TWD, an algorithm for the analysis of
three- or higher dimensional matrices is applied to a NMR spectrum of type NOESY-
NOESY [7]. This application allows a relatively simple illustration of the intimate
relation between 3D NMR spectroscopy and TWD by deducing the model assumption
of TWD directly from the description of the NMR experiment. The discussion in-
cludes analyses of other types of NMR data sets, including spectra with information
on 3D structure [3], on molecular dynamics [4] and on intermolecular binding as used
in "drug discovery" [5]. It thus shows the wide applicability of TWD in the field of
high-resolution NMR. Other issues addressed include spectrum reconstruction, data
compression, and the handling of sparse data allowing significant savings of instru-
ment time, or alternatively optimization of spectral resolution and sensitivity.

2 Methods

2.1 Three-Way Decomposition

Three-way decomposition (TWD) is a mathematical concept for the approximation of
a three- or higher dimensional matrix by lower-dimensional matrices (often one-
dimensional) [2]. TWD has been introduced as a tool for data analysis in the early
seventies under various names such as parallel factor analysis or canonical decompo-
sition. Theoretical considerations concerned notably questions of uniqueness of opti-
mal approximations and convergence behavior. Applications include data compres-
sion, chemometrics and more recently the processing of multidimensional NMR
(nuclear magnetic resonance) spectra. While the use in chemometrics, e.g. the analy-
sis of fluorescence data, concerns decomposition of matrices of about 10’ elements
into less than ten components, data compression and NMR applications involves data
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matrices exceeding 10’ elements and requiring hundreds of components. TWD can be
formulated as follows. Given a matrix S with elements s,, (i=1..1, j=1..J, k=1..K), find
numbers a” and vectors FI1”, F2” and F3” with elements f1/, f2/.’g and f3/, respectively,
such that the norm

IS-%,(@’FI'®F2" ®F3’) ()

becomes minimal.

The sum in this expression represents the fundamental model assumption of TWD:
Direct products of one-dimensional vectors are sufficient to describe all features of a
high-dimensional matrix. In the following we refer to S as the (input) spectrum and to
the entities in the sum over Bas amplitudes a’ and shapes F1”, F2” and F3”, while the
summation terms are called (output) components. The amplitudes a” result from the
use of normalized shapes F1°, F2” and F3”. The summation index [ runs over the
number of components used for the decomposition. The range for this index depends
on the type of application. For typical 3D NMR spectra, which consist of several mil-
lions of data points, it is sufficient to use a few hundred components. Consequently, a
description of the spectrum by components may yield a significant compression of the
data. The redundancy present in many types of NMR spectra may thus be used to save
experiment time when solving a modified problem [6]: Minimize

|G e[S’-%,(" FI'®F2"®F3) | 2

where the matrix G contains elements g, € {0,1} that indicate the absence or pres-
ence of a data point in S’, and e describes element-wise multiplication of matrices.

The product G e S’ is used to denote a sparse matrix S as input for the decomposi-
tion. Note that while the input sparse data matrix S lacks many entries, the shapes
F1’, F2” and F3’ representing the output of TWD are complete, allowing to recon-
struct a full matrix description. As shown later, omission of elements of S results in
savings of NMR experiment time, which is a relevant issue when considering the
price of instruments (several million dollars) and the duration of experiments (for
practical reasons usually limited to about one week). An alternative formulation of the
gains achieved with TWD is that with a given total experiment time one may improve
spectral resolution. Furthermore, compared to conventional methods based on Fourier
transform, which requires uniform data sampling, the use of sparse data matrices al-
lows for optimized sampling and provides improved spectral sensitivity.

2.2 Nuclear Magnetic Resonance

NMR is based on the interaction of spins with magnetic fields'. Avoiding physical ex-
planations as much as possible, the following description concentrates on aspects re-
quired below when showing the intimate relation between 3D NMR and TWD using
NOESY-NOESY spectra [7]. We need only consider the spins of the nuclei of hydro-
gen atoms (i.e. simple protons). A typical protein contains a few hundred hydrogen
atoms and thus a large number of probes for NMR measurements. In a strong, static
magnetic field, spins assume preferred states (orientations), corresponding to different
magnetizations. An analogy of this effect is the alignment of a compass needle in the
magnetic field of the earth. In a NMR experiment, short pulses of electromagnetic ir-
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radiation can manipulate the spin magnetization. For example, pulses can be designed
to flip the magnetization from an initial state parallel to the strong static magnetic
field to a perpendicular orientation. Magnetization perpendicular to the magnetic field
will precess around the field direction. A third effect that we need to mention is the
exchange of magnetization between nearby spins. This transfer occurs only across
short distances (<0.5 nm). It is popular to view NMR experiments as a series of steps
called a "pulse sequence", and the individual steps can be characterized by a set of

"recipes" [1]. The following is a simplified and incomplete list of recipes, reduced to

meet our purposes. Spin magnetization is described by a vector 1.

(a) The initial (equilibrium) orientation of all spin magnetization is along the static
magnetic field, which defines the direction of the z-axis. Thus only the compo-
nents Iz are different from zero.

(b) A “90x-pulse” rotates the magnetization by 90 ° around the x-axis: “Iz - 1Iy”.

(c) Precession with time ¢ of magnetization perpendicular to the z-axis occurs with a
frequency (2 characteristic for each spin: “Iy — Iy cos(£2t) + Ix sin( £2t)”.

(d) Different spins (labeled o and ) oriented along the z-axis and separated by a
short distance interact with each other with a mixing efficiency m,; “Iz" —
maﬂlzﬁ’ .

(e) Observation along the y-axis yields a scalar (amplitude), a, as the sum of contri-
butions from all spins: “XyI’—a”, where y enumerates all spins.

In a 3D NMR experiment, successive magnetization transfers between three different
spins I, J and K provide a signal that carries information on all three characteristic
frequencies (2, £2 and (2. This signal can be reported in a 3D spectrum at the posi-
tion given by the coordinate triple (£2, £2, £2). The complete spectrum will include
signals for all possible magnetization pathways, i.e. for all spin triples for which the
transfer defined by the experiment takes place.

2.3 Experiments

A three-dimensional NOESY-NOESY’ experiment was collected at 30°C on a sample
with the protein ubiquitin (1 mM in 50 mM potassium phosphate buffer pH 5.8,
H20/D20 9:1). The experiment required 144 hours on a 600 MHz Varian Unity
Inova spectrometer (mixing times: 100 ms for both NOESY steps). The experimental
data formed a matrix of 120*180%608 complex data points (sizes in the dimensions
tl, t2 and t3). The spectrum was Fourier transformed in all dimensions yielding a data
matrix with 240*810*901 entries. For an illustration, a section of this spectrum with
matrix size 240%28%901 was selected (range 8.75-8.5 ppm in the second dimension),
and this sub-spectrum was subjected to TWD using 27 components.

3 Results
3.1 Application to NOESY-NOESY Spectra

The NOESY-NOESY sub-spectrum described in Methods was chosen as input to
TWD; a plane perpendicular to the second dimension is shown in Fig. 1 (left side).
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Crowded groups of signals along the horizontal and vertical axes correspond to di-
agonal planes in the 3D matrix. Genuine 3D peaks connecting three different hydro-
gen atoms, and carrying structural information, are located outside any diagonal
planes. The vertical stripe of peaks visible in the middle of the spectrum is an artifact
caused by the strong signal of water. The main result of the decomposition with 27
components is shown in Fig. 1 (right side), where a reconstruction of the plane from
the left side is presented. The reconstruction corresponds to the sum of all 27 compo-
nents according to expression (1). All important features of the original spectrum, in-
cluding strong and weak signals, are preserved in the reconstruction, thus illustrating
the good fit of the model given by expression (1) to the experiment. Note that the
number of used components is several times smaller than the number of peaks in the
sub-spectrum, which totally contains 28 planes like the one shown in Fig. 1. This jus-
tifies the validity of the model and proves the redundancy of the experimental data. A
measure of the latter is given by the compression factor. The original data consisting
of 240%28*901 data points is approximated by the (240+28+901)*27 parameters of
the model. The compression factor, given by the ratio of the two values, is as high as
185. This compression can be used directly to simplify handling of data set of hun-
dreds of megabytes. Alternatively, redundancy of the data can be used to save ex-
periment time by applying sparse detection.

[ Ik F1
' 5 [ | ﬁ ' ppm
A .‘-r". [ b 2
5 L [ E I o 4

Jodle o s ] . - 13
——g- ] 1 L - — —t : g - 5
[ ‘. I : = | ' &
g } P 7
kK :".‘;‘_if“"_‘" Pl cd st il ‘%"‘ e e mpmmee g
e <4 . '
9 8 7 6 § 4 3 2 9 8§ 7 8 5 4 3 2 1
F3 ppm

Fig. 1. Selected plane along the F1 and F3 dimensions from a 3D NOESY-NOESY spectrum
(left side). The strong vertical line of signals in the middle is an artifact caused by strong sig-
nals from water. For the decomposition, a stripe covering this artifact was bleached out. Other
strong signals along lines describe diagonal planes of the 3D spectrum. Genuine cross peaks de-
fined by frequencies from three hydrogen nuclei lie off these diagonals, together with weaker
noise peaks. A sub-spectrum with 28 planes (including the one shown here) was decomposed
using 27 components. Reconstruction of this sub-spectrum by summing the resulting compo-
nents according to expression (1) yields for the selected plane the result shown on the right
side. In addition to significant data compression, noise is strongly suppressed.

3.2 Relation between 3D NMR and TWD

TWD and 3D NMR spectroscopy are intimately related, as can be shown by deducing
the model assumption for TWD (expression (1)) from the description of 3D NMR ex-
periments. This connection can be shown on a general level; however, in the follow-
ing we use for this purpose the experiment presented above, NOESY-NOESY. Fig.
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2A schematically summarizes this experiment. Initially, all hydrogen nuclei are irra-
diated; these nuclei are referred to as spins I and enumerated with the index o Mag-
netization is then transferred to neighboring nuclei, called J with the index S pro-
vided that the distance I” to J’ is short. A second transfer step brings the
magnetization to neighbors of J, referred to as nuclei K with the index 7. The individ-
ual steps of the experiment together with description of the resulting spin states and
the "recipes” used for the steps (see Methods) are listed in Table 1. The initial states
with magnetization vectors parallel to the magnetic field, Iz" are rotated to the y-axis
by the first pulse. During a time ¢/ the spins process around the z-axis, so that their
components along the y-axis are given by cos(£2t1). After a further pulse, the mag-
netization can be transferred to neighboring spins J” in a step called "mixing". Since
this transfer occurs only over short distances, the sum over « is reduced to a small
number of terms where the transfer efficiency m , differs significantly from zero. We
can abbreviate the sum over & as a function FI% note that this function is unique for
each spin J”, and it depends on the precession time /. Repeating the sequence pulse-
precession-pulse-mixing we have labeled the magnetization in addition with the fre-
quency of the nucleus J”, and transferred the magnetization to nuclei referred to as K.
The short notation F2” for cos( _Qjﬂ 12) cannot include the sum over SBsince F1” depends
as well on this summation index. F2”is a function of the precession time 72. A final
pulse-precession combination labels the magnetization with the frequencies of the nu-
clei K”. The observation, which yields a scalar given by an amplitude a’, is the sum of
all existing magnetization. Thus, we can define a third function F3’ that collects the
terms in the summation over % and that depends on #3.

A Bo=1 fla=2 3 c
a=1 p=1 o =1 7\ O
2 _\‘.ﬂ - A
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Fig. 2. (A) Schematic summary of the NOESY-NOESY experiment. Spheres denote individual
spins with different shading for the spins I, J and K (see text) and Greek lettering for their
enumeration. Arrows indicate magnetization transfers. (B) Fourier transformed shapes corres-
ponding to one component, J', and I and K spins that interact with it. (C) Schematic result of
the direct product of the Fourier transformed shapes from (B) according to expression (1).



Three-Way Decomposition and Nuclear Magnetic Resonance 21

Table 1. NOESY-NOESY experiment and connection to TWD

Step Spin state description’ Rec- Comments

ipe’
initial state T 1z (@) o enumerates hydrogens
90x-pulse T Iy (b) 90° rotation around x-axis
tl-evolution s, Iy® cos(QI“tl) (©) precession during t1 }
90x-pulse -3, 12" cos(t1) (b) 90 ° rotation around x-axis
mixing -I 1Z° T m cos(€tl) (d) short distance interaction
90x-pulse -3, Jy'F1’ (b) 90 °rotation around x-axis

define F1"= Eumuﬂcos(Q\“tl)

t2-evolution | — %, Jy" cos(12) F1" (©) precession during 2 *

90x-pulse ) 2" F2’F1* (b) 90° rotation around x-axis

define F2£’=c0s(Q.| "©2)

mixing % ZKz'm,g F2 F1* (d short distance interaction
90x-pulse %, TKy'm F2"F1° (b) 90°rotation around x-axis
t3-evolution | % T Ky'm cos(€,t3) 2’ F1? (© precession during (3 *
observation | ¥, a" F3' F2’F1’ © | define F3'=2m cos(Q,13)

' In the present simplified explanation of an experiment, terms are dropped after some of the
steps; these terms are not essential for the outcome of the resulting spectrum.

* See Methods for a list of the recipes used.

* Terms in sin(Qt) are not affected by the following step and therefore not further considered.

The final data recorded forms a matrix with the three axes given by the precession
times ¢/, 2 and t3. To this end, discrete values for these three precession times are
selected. The pulse sequence of Table 1 is repeated for all combinations of selected ¢/
and 12 values. At the end of each pulse sequence, observation occurs for all selected-

values of 3. With the resulting 3D grid of observations, the functions F1”, F2” and
F3’ become vectors that are equivalent to the shapes used in expression (1). Compo-
nents are enumerated by the index £ and each component corresponds to one spin J*.
The shapes consist of a (discrete) cosine function with the characteristic frequency £
in F2’, and a sum of cosines for the characteristic frequencies of the spins I* in FI1*
and K”in F3’ that interact with the spin J” as follows:

F1'(t]) = Zm 4cos(2't]) 3)
F2/(12) = cos(2'12)
F3'(13) = Em jcos(£2/13)
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Fourier transform of these three discrete functions yields the 1D-spectra of Fig. 2B
(for one of the B-nuclei of Fig. 2A). The direct product of these three 1D-spectra pro-
vides the 3D spectrum of Fig. 2C, and summation over the 3D spectra of all nuclei J*
corresponds to the experimental data after Fourier transform in all three dimensions
according to expression (1). Analysis of a 3D NMR data set by TWD thus provides
(a) a way of data compression and (b) a separation of the subset of signals that belong
to individual nuclei J.

4 Discussion
4.1 Applicability of TWD to NMR Data of Proteins

The above derivation of the model expression (1) for TWD for the NOESY-NOESY
illustrates for a particular 3D NMR experiment the close relation between NMR data
sets and TWD. Other examples are heteronuclear NMR experiments that rely on ad-
ditional nuclei with spins ¥, namely the isotopes carbon-13 (°C) and/or nitrogen-15
(°N). Thus, the application of TWD to 3D NMR spectra was first demonstrated for
another experiment, a 1‘:’N-NOESY-HSQC3. The connection between NMR and TWD
is, however, much more general; in fact it holds also for data sets that are not strictly
the result of 3D NMR experiments. Since no requirement is made on the form of the
shapes F1’, F2” and F3” of expression (1), one may consider any type of modulation.
Two such examples have been presented earlier [4,5]; both rely on the same simple
two-dimensional NMR experiment yielding a "N-HSQC spectrum. In this spectrum,
every hydrogen-nitrogen pair connected by a single chemical bond gives rise to a sig-
nal defined by the characteristic frequencies of the two nuclei, and these frequencies
define the shapes F1”and F2”. At a first glance this may look little informative; how-
ever, the usefulness of these spectra becomes apparent when considering a series of
such spectra with a particular modulation. Thus, one may record "N-HSQC spectra
where the signal intensity is modulated by an additional parameter that describes re-
laxation. The third function, F3”, follows an exponential expression, and curve fitting
yields a decay time for each hydrogen-nitrogen pair, i.e. a dense characterization of
the different relaxation behavior over the protein [4]. Relaxation data in turn provide
information on the internal molecular dynamics and thus allow a better description of
the biological function. A second application of "N-HSQC spectra concerns ligand
binding to a protein. In “drug discovery”, the goal is to detect ligands with good
binding properties to a given target protein. These ligands (or “leads”) may after fur-
ther improvement become a drug with a selective clinical activity that targets the
given protein. For such a search, libraries with sometimes 100’000 small molecules
are screened. Although several ligands may be tested simultaneously, the large num-
ber of spectra recorded requires some automated and reliable high-throughput
screening method. The spectral feature to recognize binding in a given mixture is
change of position of the signals from those hydrogen-nitrogen pairs that are part of
the binding site. With TWD applied to a set of "N-HSQC spectra recorded for differ-
ent mixture of the target protein and potential ligands, the third function, F3”, simply
indicates the presence or absence of a signal for the hydrogen-nitrogen pair /. For a
given signal, the function adopts a non-zero value for all spectra where no binding oc-
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curs near the corresponding atom pair, and drops to zero when the signal is shifted
away due to ligand binding. (Other components may describe the complementary be-
havior for signals at the new position.)

4.2 Sparse Data Sets

So far the discussion was limited to the description of a complete, large 3D matrix
with experimental NMR data by a sum of direct products of 1D vectors. This resulted
in several advantages. First, the use of lower rank matrices yields a significant com-
pression of the data, which due to the tight relation between the NMR data and the
TWD model can be achieved without relevant loss of accuracy. The second advantage
is a consequence of the NMR-TWD relation. The decomposition produces a natural
separation of the NMR data, i.e. the individual terms of the sum in expression (1)
typically correspond to individual nuclei and the shapes F1°, F2” and F3” describe
interactions of these nuclei.

A further advantage was very recently suggested”; it is based on expression (2) and
concerns incomplete experimental data. Significant savings of example 75% in NMR
instrument time can be achieved. The processing of the 25% experimental data by the
algorithm corresponding to expression (2) provides complete shapes FI%, F2” and F3’
for all components. Multiplication of these functions and addition as in expressions
(1) and (2) subsequently yields the reconstruction of a complete spectrum. Tests show
that the reconstructed spectrum closely corresponds to a reference spectrum that
would result from the recording of a full NMR data set.

4.3 Mixing and Regularization

The decomposition according to expression (1) is for data sets with a dimensionality
exceeding three in general unique as long as the shapes differ in all three dimensions.
If signals overlap in one dimension, a phenomenon referred to as mixing occurs (this
mixing has nothing to do with the mixing mentioned in Table 1). Both the appear-
ances of mixing and automated procedures for removing it have been described in
detail [3,9]. In short, a mixed component contains signal intensity from two or more
components. With additional information, e.g. that signals must be strictly non-
negative, one can determine a transformation that "demixes" such components. Con-
sider for example two mixed components with near-identical shapes F3’. The fol-
lowing transformations yield non-mixed components F1' cos( @) + FI’ sin( y) and F2'
cos(@) + F2 sin(y). Signals that overlap in two dimensions can be combined into a
single component. Sometimes, due to non-perfect appearance of the experimental data
with respect to the model of expression (1), two components result from TWD that
describe essentially only one component. Often, these two components have very
large amplitudes with different signs such that they mostly cancel each other. To
avoid this phenomenon, a Tikhonov regularization term is introduced that penalizes
amplitudes that are significantly larger than the others [10]. The term, which is added
to expression (1), has the following form R Zﬂ (a"y, where R is the regularization fac-
tor.
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5 Conclusions

TWD is a very versatile tool for the processing and analysis of NMR experiments. It
has an intimate relation to 3D NMR spectra, and it is applicable to many different
types of NMR data. Besides aspects that are specific to individual NMR data sets, e.g.
grouping of signals that involve one particular nucleus as in the example of Table 1,
TWD offers two major advantages. First, the large NMR spectra with typically sev-
eral million data points can be efficiently compressed while maintaining high similar-
ity to the original data. Second, the original data, but also selected subsets thereof, can
be reconstructed by multiplying shapes and summing components according to ex-
pression (1). These reconstructions allow visualization and analysis with the normal
tools used for NMR spectra. A special case relying on reconstruction is the decompo-
sition of sparsely recorded data sets, saving costly instrument time, which yields
complete shapes and thus allows reconstruction of a full data matrix.
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